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We will study certain geometric properties of Riemannian manifolds M™+! in
terms of dynamical properties of geodesic lines in the unit tangent sphere bundle
527+l This study was prompted by the observation that a dynamical calculation
related to quasi-linearity corresponds exactly to § pinching of negative curvature.
(See Theorem 2.)

Oriented geodesic lines may be grouped into asymptotic equivalence classes as
time tends to plus infinity or as time tends to minus infinity. Thus £; and £; lie
on the same “leaf” of Ay (respectively A_) if there is z; in £; and z2 in £ so
that distance (g.(z1), g¢(x2)) - 0 as time tends to plus infinity (respectively, minus
infinity) where g, is the geodesic flow on $?"+1. When M"+! has bounded negative
curvature —b% < k < —a?, each leaf L™ of At or A~ is a smooth n + 1-manifold
which is a covering space of M™+! via the composition L*™! ¢ 5?71 — M w1,

We say two negatively curved manifolds are g-homeomorphicif there is a home-
omorphism G between their unit sphere bundles preserving oriented geodesic lines,
and we say G is a g-homeomorphism. Gromov and Mostow shewed each isomor-
phism of fuindamental groups in the compact case leads to a rather canonical g-

homeomorphism. (The correspondence between geodesic lines is canonical.}

Theorem 1. A closed %-pinched (i.e., 46> < b*) negatively curved mani-
fold M™*?! is g-homeomorphic to a constant negative curvature —1 manifold (a
hyperbolic manifold) if the geodesic flow in the asymptotic leaves is transversally

irreducible relative to Lebesgue measure.

Remark. The meaning of the condition in Theorem 1 is the following. The
tangent bundle to the leaves A4 modulo the subbundle tangent to geodesic lines
defines a continuous n-dimensional bundle C over 521 (we only need Borel mea-

surable to make the definition). The condition transversally irreducible relative to
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Lebesgue measure means there is no Borel measurable subbundle of ¢ almost ev-
erywhere invariant under the geodesic flow, where a.e. means relative to Lebesgue

measure on St

Examples. A compact hyperbolic manifold is measurably irreducible. A compact

complex hyperbolic manifold is not (see below).

Recently, Gromov and Thurston [Pinching constants for hyperbolic manifolds,
Inventiones Math. 1986] produced arbitrarily pinched negative curved manifolds
of dimension 4, 5,6, ... which are not g-homeomorphic to hyperbolic manifolds. By
the theorem all these examples must have measurably reducible geodesic flows.

If we sharpen the statement of Theorem 1, the condition of measurable irre-
ducibility becomes necessary and sufficient for the conclusion. For this we need some
more concepts.

We say the geodesic flow is uniformly gquasi-conformal or uniformly quasi-
similar if the action of g; on the transversal bundle C to the geodesic lines in the

asymptotic leaves of AT (figure 1)

figure 1

is given by linear transformations which are a bounded distance from similarities,
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with a bound uniform in points of $27*1 and uniform in time. Because of the time
reversal involution on S%"%! this quasi-similarity implies the equivalent property
in A_, the negative asymptotic foliation. For a hyperbolic manifeld of constant
negative sectional curvature the geodesic flow acts by precise similarities in these
tangent spaces and so is uniformly quesi-conformal,

We say the geodesic flow is uniformly gquasi-linear if the derivatives of ¢; acting
on the fibres of C are uniformly continuous in the asymptotic leaves of Ay with
constants and moduli of continuity independent of the leaf in $?**! and the time.
Uniformly quasi-similar implies uniformly quasi-linear (see Proposition 1).

A negatively curved manifold obtained from the ball in €" by dividing out
by a discrete group of holomorphic motions (a complex hyperbolic manifold) has
a uniformly quasi-linear but not guasi-similar geodesic flow, in fact for n = 2 the

action is by exact “homotheties” of the 3-dimensional Heisenberg group

1 =z =z 1 Az Az
01 y|—1010 1 Xy
0 0 1 \ 0 O 1

These concepts are related by the following two theorems.

Theorem 2. A complete ;llu—pin.cbed negatively curved manifold has a uni-

formly quasi-linear geodesic flow.

Theorem 3. Suppose the geodesic flow is ergodic and uniformily quasi-linear.
Then the geodesic flow is uniformly quasi-similar if and only if it is measurably

srreducible.

We say that a g-homeomorphism G s transversally quasi-conformal if there is
a constant K so that the maps induced by G in the local quotients of asymptotic
leaves by geodesic lines (say using unit size flow boxes) are all K-quasi-conformal

homeomorphisms.

Theorem 4. Suppose two compact g-homeomorphic negatively curved man-
ifolds have uniformly quasi-similar geodesic flows. Then any g-homeomorphism

between them has to be transversally quasi-conformal.
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Theorem 5. A compact negatively curved manifold M is g-homeomorphic to
a byperbolic manifold by a G which is transversally quasi-conformal if and only if

the geodesic flow of M is uniformly quasi-similar.

Theorems 2,3,4, and 5 yield the more precise form of Theorem 1 promised

above,

Corollary. A compact i-pinched negatively curved manifold is quasi-conformally
g-homeomorphic to a hyperbolic manifold if and only if its geodesic flow is measur-

ably irreducible.

Remark. An obvious gap in our study is a theorem describing how often mea-
surable irreducibility or uniform guasi-similarity occurs among i—pinehed metrics.

For example is it an open condition on negative metrics?

Section 1. Quasi-linearity

First we calculate in R™. If ¢ is a local diffeomorphism, let Jo denote the
field of Jacobian matrices of partial derivatives and let 5(y) denote the matrix
of one-forms recording the nonlinearity of ¢, namely n(¢) = (Jo) 'd(Jp). If
is any maftrix of 1-forms defined in the range of a diffeomorphism ¢ define ¥ by
n¥ = Jo~!-(¢*n)-Jo. Differentiating the chain rule for J, J(pa1) = @1(J2)-Jeoy
yields the cocyele identity for the nonlinearity

n(e1p2) = ne1) + (n(w1))** .

Iterating the cocycle identity yields

N(pnpn—1-- 1) = nler) + n(e2)? + -+ 7(pa) o7

Now suppose for each k, n{pg) = J cpk_ld.f ¢k 18 bounded by IV, and each ¢, contracts
each tangent vector by a factor no larger than 1/ < 1. Then only one obstruction
remains to derive a bound on the nonlinearity of the composition ¢,pn_1---¢. In

the sum consider the k™ term

nr) 17 = J(pp—n - 991)_1(9%—1 o) n{er)d (k-1 1) -
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The inner factor is bounded by N - (1/X\)*~1. If the conjugation has a controlled

effect the series would be geometric and a bound results. This works in several
cases:

i) in dimension one conjugation is trivial and we arrive at a bound called
the “basic distortion lemma”. Namely n(pn-- 1) < N (X%”—T)? a bound
independent of n.

ii) In complex dimension one, the ¢y complex analytic, we arrive at a complex
analytic version of the basic distortion lemma.

iii) If the ¢ are uniformly K quasi-conformal then conjugation has a bounded

effect and the sum is bounded by K - (3\3:{) - N.

iv) If the quasi-conformality of ¢i_; - @1 grows at a slow enough exponential

rate, namely < Cp*~! where g < ), then we again have a bound
( y<C N[ —2

Note: 1) There will be a bound as required in iv) if for each contraction ¢y the
biggest and the smallest eigenvalues Ays and Ay, of (Jpr Jobi)/? satisfy Apr/Am
the quasi-conformality is strictly less than the contraction 1/Ap. In other words
A%, < ¢\ where ¢ < 1 is valid for all points in domain ¢y and all k.

2)

3) Bounds on the nonlinearity of a composition n{@np@n—1 - - ¢:1) implies
J(Pnipn—1--¢1)

has a modulus of continuity independent of n using the following:

Lemma. If g(z) is a smooth field of matrices in an open set U/ in R so that
lg~1dgl| < M then
la(2)g(y) 71| < exp ML

where £ is the length of any path in U connecting r and y, and the norm n matrix

satisfies || A - B|| < | 4| - | B].



