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A C-linear holomorphic bundle map 7 (M)—57*(T) determines (and is de-
termined by) a minimal surface A in R® covering M. The geometric meaning of w

is the following:

i) M is a Riemann surface, M a certain Abelian covering space, T the holomor-
phic tangent line bundie of M, 7*( @) the holomorphic cotangent line bundle of

the Riemann sphere €, and 7(Af)~—-7*('€) determines the minimal surface

(see v)).

i1) The induced map in the base Af 9,T is the classical Gauss map (made holo-
morphic instead of anti-holomorphic by composing with the antipodal map of

the sphere).

iii) The quadratic differential ¢ defined by ¢(v) = (w(v),dg{v)) for v € T(M; is
the holomorphlc _ciua-d;a.tic &'iﬁiafential %sociated with constant mean curvature
whose real foliations are the lines of curvature and whose measure is v/~ K c?m,
K the Gaussian curvature and dm defined by the Riemannian metric. Note

that w is determined by ¢ and ¢, and these are linked by a common zeroes

condition.

iv} The Riemannian metric on M as a minimal surface in space is the pull back
of the Hermitian metric on T*(€). So M is immersed precisely when w is a

bundle isomorphism.

v} Classical Weierstrass representation of minimal surfaces

Let us recall how a minimal surface is constructed from w. Think of 7*( )
as the tautological line bundle over ©P2? (= lines in .C*) restricted to the quadric
{27 + 22 + 22 = 0}. Then if v € T(M) let ¢1(v), p2(v), ¢2(v) be the coordinates of =
w(v)in ©* — {0}. We obtain three holomorphic 1-forms on M satisfying ¢ +¢2 +

2 = 0. The coordinates of the minimal surface immersion are defined by integrating
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these forms and taking real parts. Thus there are period conditions which nsure
the coordinates are well defined on M. In general, the coordinate functions @ =
{z1,29,73} are defined on an Abelian cover M of M, they are harmonic, and the
algebraic equation satisfied by 1, @2, @3 is equivalent to the assertion that M ZLR3
is conformal.

Conversely, an Abelian cover Mof M . a “conformal immersion” of M to R®
with harmonic coordinates, equivariant with respect to a representation of m M
into the translations of R* determines iy, w2, @3 by differentiating and then w,
using @1{v}, w2(v), w3(v) as coordinates of w(v).

The classical Welerstrass representation also makes use of the ancient parametriza-
tion of solutions of a®+8% = c? by (a, b, ¢) = (u? —v?, 2uv, u2+§2). We can reformu-
late this step in terms of holomorphic spinors, namely sections of the hne bundles
VT and vV7*. The period conditions mentioned above have a neat expression in

terms of these spinors. ,

vi) The Spinor representation of minimal surfaces

By tapology there are in general many complex line bundles /T, namely solu-
tions of (\/’T) oy (\/f ) ~ T over a Riemann surface M. These “square roots” or
“spin structures” are parametrized by quadratic functions ¢ : H,(M, Z/2) — Z/2, n
that is o(z+y) = ¢(z)+¢(y)+ intersection (z, y). Any immersed orientable surface
in R® has such a function ¢ defined by (z) = number of twists mod 2 in a band
around z.

Alternatively, a spin structure on an immersed surface M can be defined by
inducing the spin structure on the 2-sphere to M using the Gauss map.

Since 71{503) = Z/2 is generated represented by a path of frames where one

vector stays fixed and the other 2 rotate the twisting band description of the spin

structure and the Gauss map description can be correlated.

For our minimal surface M — R® defined by T(M)—T*( ) we can go a bit =
further. The unique spin structure on T*(€), V7 *, is just the tautological line
bundle L over © = CP! = lines in €*. The double covering L — 7 ‘(({}) can be




induced using w (in the immersed case) to a double covering ¢*L — T(M). Define
m to be ¢*L. Then we have a canonical bundle map \/mﬁﬁ We
call /w the spinor representation of the minimal surface.

There are two holomorphic spinors {u, v} associated to the spinor representa-
tion . i s € /T(M), let u(s) and v{s) be defined as the coordinates of /o(s)
in € — {0} = { nonzero vectors of L}.

Thus we have shown the three holomorphic 1-forms ¢y, 2, ;3 satisfying
@? + ¢% 4 1 = 0 in the classical Weierstrass representation can be written u? — v2,
2uv, i(u? + v?) where u and v are holomorphic sections of a naturaily defined spin
reduction v7*M = Hom (\/TH , €), namely u and v are two holomorphic spinors.

Conversely, given two holomorphic spinors u, v on M not both zero we obtain

an immersed minimal surface. Namely, define 1, 2,93 by the above formulae.
vil}) The period conditions

For the real parts of the integrals of ¢, 2,3 to be 4we11 defined on M we need
to know these 1-forms have purely imaginary periods.- Using the spinor represen-
tation (1, 92,92) = (u? — v2,2uv,i(u? + v?)) we see these period conditions are
equivalent to the

sspinor period relations” = {i) u? and v? have conjugate periods
it} wuv has imaginary periods |
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where u?, v?, uv are the holomorphic 1-forms associated to the spinors u, v.

viii) Note that G(2, €) acts on spinor representations of minimal surfaces

() — (£ 5) )

and the subgroup R*x SU(2) = { ( ; %’B ) } preserves the period conditions.

ix) Complete minimal surfaces of finite conformal type

Suppose that M is a compact surface N with finitely many punctures
{a1,a2,...,a,} C N, that Af is immersed in R® as a complete minimal surface with
the geometry asymptotically planar near each puncture. As Osserman observed,

the Gauss map extends over N in this case.
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In terms of the Weilerstrass representation 7 (Af )i»T"—G_j we have
a) w is a bundle isomorphism;
b} w has quadratic poles at each puncture;

c) w satisfies the period conditions.

In terms of the spinor representation /7 (M }ﬁv T* € where \/w is defined

by the holomorphic spinors (u,v) one has
a) u and v have no common zeroes on M ~ {ay,...,q,}.

b) u and v have at most simple poles at each of the punctures a, and both

cannot be holemorphic near any puncture.

¢) u and v satisfy the period conditions 1} ©? and v»? have conjugate periods

on N — {ay,...,a,} and 2) uv has imaginary periods there.

x) Conversely, we can try to construct minimal surfaces this way. Holomorphic
spinors may not exist on a compact surface N. However, by Riemann Roch
{(dim(D}—dim (7 * ~ D) = |D]~ g+ 1) there is always at least a 1-dimensional
subspace of holomorphic spinors on N — {a} with at most a single order pole
at a (D =+v7 +a, |D}=g). Thus even if N is without holomorphic spinors
we have p-dimensional spaces of spinors as required in ix).

Varying N and {@1,...,a,} yvields 3¢ — 3 + p C-parameters. Varying (u,v)
among 2-dimensional subspaces of spinors gives 2p—4 more. That makes 3¢+3p—7
complex parameters plus 4 more real parameters for the choice of u,v in the 2-
dimensional subspace (see viii)). Thus we have 6g + 6p — 10 real parameters to put
up against the {29+ p—1) 3 real period conditions. So we have more real parameters

than conditions (3p — 7) when there are at least three punctures.

xi) Embedded minimal surfaces

If we have a complete minimal surface of finite conformal type and planar
ends as in ix} which is embedded in R®, the quadratic function H;(M, Z/2)-?—>Z/2 '
associated to the spin structure has a special property. First of all ¢ is zero for the

cycles around the punctures. Secondly, the Arf invariant of this quadratic function
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{now thought of as a quadratic function on the closed surface H, (N, Z/?)»»i":—»Z/E)
must be zero. This 1s so abstractly because one knows the Arf invariant represents
the unique cobordism invariant* of compact immersed oriented surfaces in R*, and
clearly embedded surfaces bound.

More simply, the Arf invariant of ¢ is zero exactly when there is a good basis
for the mod 2 intersection form on which ¢ vanishes. Such a basis for an em-
bedded surface can be constructed by looking at the kernels of homology to each

complementary component (after suitably filling in the punctures topologically).

* For cobordisms of unoriented immersed surfaces there is a complete Z /8— Arf

invariant associated to quadratic functions H,{M,Z/2) — Z/4.
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