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ESTIMATING SMALL EIGENVALUES OF RIEMANN SURFACES

Jozef Dodziuk*, Thea Pignataro*, Burton Randol,
’ and Dennis Sullivan

0. Introduction. In this paper we will describe a unified
approach to the problem of deriving’ geometric bounds for the
small eigenvalues xj(M) of the Laplace operator on a Ricmann
surface M. The technique combines features of [PS] and [DR], and
applies to any Riemann surface having a finite-sided fundamental
polygon, whether of finite or infinite area. For compact Riemann
surfaces the results of this paper were obtained by a different
method by Shoen, Wolpert and Yau [SWY]. The case of ), for
infinite-area geometrically finite surfaces is treated in [PS], and the
lower bound for X (M) on a finite-volume hyperbolic manifold of
any dimension is treated in [DR]. In order to bring out the
essentially simple ideas before cnfering into their technical
description, we will briefly outline the basic approach for
obtaining the lower bounds, and as our model we will discuss },(M)
in the compact case, since this serves as a paradigm of the general
method. Since the method applies to all dimensions, and is in the
compact case marginally simpler for dimension n 2 3, we will, for
illustrative purposes, make no initial assumption about the

dimension of M.
Accordingly, assume for the moment that M is a compact

n-dimensional hyperbolic manifold. The Margulis lemma (_cf. .[Bu],
[Th), [Ra], [Be]) then implies that there exists an € = €(n) such that
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M can be decomposed into a union of a part M,;ie0 at every point
of which the injectivity radius is > €, and a possibly empty part
M,;;, Which, if not empty, consists of a disjoint union of tubular
neighborhoods of short closed simple geodesics. For our purposes,
it is important that a neighborhood of the boundary of each tube
(also called a cylinder if dim M = 2) in Mpin lies in the set Mipicie
and that this can always be arranged. Note that this is slightly
different than the usual description of M, ., and M, and that, if
n 2 3, M,,. . is connected. '

It is very easy to prove that the first Dirichlet eigenvalue of a
tube is greater than ((n—1)/2)? (cf. Lemma 3.2). Assume now that
» (M) is very small, so that if ¢ is a normalized eigenfunction
corresponding to )\,(M), its energy is by definition very small. By a
simple Sobolev estimate, this means that |V¢| is small on % R
Since the injectivity radius is bounded below on My ik it follows
easily ‘that if Mipick i connected, which we will assume for the
moment to be the case, then the oscillation of ¢ on M} must be
small. In other words, if ) (M) is very small, then ¢ is almost
constant on M,,... If we assume that ¢ is not uniformly small on
Mipice it then follows that ¢ must be of one sign on M, Since
IMcp = 0, this implies that ¢ must be a Dirichlet eigenfunction for a
subdomain of some tube, and by the domain monotonicity of
Dirichlet eigenvalues, this shows that NM) > ((n=1)/2)% which
contradicts the presumed smaliness of 3 (M). On the other hand, if
¢ is.uniformly small on M,,,. then ¢ has nearly zero Dirichlet
‘data on the boundary of each tube, and an approximate version of
Lemma 3.2 (Lemma 3.3), coupled with the fact that ¢ must have
some Is2 norm on at least one tube, shows that ¢ must have some
energy on one of the tubes, and hence on M itself, which again
contradicts the presumed smallness of 3 (M). In other words, it is
not possible for X (M) to be too small. When properly quantified,
the above argument yields a good lower bound for xl(M). If it
should happen to be the case that the set Mthick is disconnected,
which can only occur if n = 2, the argument shows that if N is
small, then ¢ is nearly constant on each component of Miiae It
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then easily follows, by studying the oscillation of ¢ across each
tube, that one recovers the results in [SWY], including those for
higher cigenvalucs.

This strategy carries over uneventually to the finite-volume
case in all dimensions, the only new feature being that cuspidal
components, as well as tubes, will be present if M is not compact.
Since a version of Lemma 3.2 applies to such components, the
argument is essentially unchanged. Similarly, in the 2-dimensional
infinite-area case, the structure of the infinite-area ends is very
simple, and a version of Lemma 3.2 is again valid for such
components, which allows us to apply the argument in that case as
well. .

In the 2-dimensional case one can easily obtain upper bounds
of eigenvalues by constructing appropriate test functions: constant
on components of M., and suitably infcrpolatcd across tubes.
These upper bounds turn out to be of the same order as the lower
bounds obtained by the procedure outlined above. In particular,
xl(M)/Ll(M) is bounded above and below by constants depending
only on the topology of M, where L,(M) denotes the minimum of
total lengths of chains of disjoint simple closed geodesics which
separate M and have lengths < 2¢. The results concerning higher
cigenvalues can be stated broadly as follows. To the surface M we
associate a graph K whose edges are tubes surrounding short simple
closed geodesics. The vertices of K are bounded components of
M, tOBEther with one vertex called the ground, corresponding to
all expanding ends of M, if M has infinite area. Every edge of K
carries a label, the length of the corresponding geodesic. In .terms
of these data, we define a discrete eigenvaluec problem, whose
cigenvalues are of the same size as the small cigenvalues of M.
The number of eigenvalues which can be estimated in this way is
equal to the number of vertices in the graph, i.e. depends only on
the topology of M.

The paper is organized as follows. In Section 1, we describe
the discretization of the eigenvalue problem and give precise
statements of the estimatcs. Section 2 is devoted to the discrete
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problem. Estimates of the Dirichlet integral on doubly connected
Riemann surfaces are proved in Section 3, and a detailed
description of the geometry of tubes, funnels (i.e. expanding ends)
and cusps is provided in Section 4. Finally, in Section 5, we prove
the eigenvalue estimates.

1. Discretization and statcment of the result. Let M be a
Riemann surface with metric of constant curvature =1 and having
finitely generated fundamental group. In this section we describe
how to associate a finite graph to M and state our eigenvalue
estimates in terms of this graph. The fundamental result
describing thé geometry of such surfaces is the "thick and thin"
decomposition M = M,,;., YU M,;. - (cf. [Be, Theorem [1.7.1] or [Th]).
We describe this decomposition in terms convenient in our context.
There exists a positive number ¢ > 0 independent of M (chosen
once and for all to be sufficiently small) such that the set of
points M., = {x ¢ M| inj(x) > €} is non-empty, where inj(x)
denotes the injectivity radius at x. The complement of M,.., is
contained in the set M, (possibly empty) which is the union of
finitely many pieces, of the following types.

a) Cvlinders. A cylinder is a tubular neighborhood of a simple
closed geodesic ¥ of length 2(y) < 2e¢ connecting two
components of M,;. ..

'b) Cusps. A cusp is isometric to [a,®) x S! with the metric ds® =
(dx? + dy?)/y? where x € S = R/Z, and y € [a,®). Every cusp
is attached to one of the components of Mk '

A cylinder might be thought of as approximately isometric to a
doubled truncated cusp. A cusp is conformally equivalent to a
punctured disk and a cylinder is equivalent to an annulus.
Unbounded components of Mtk contain expanding ends, which
shall be called funnels. The number of cusps will be denoted by p,
f will stand for the number of funnels, g will be the genus of M,
and the number of compact components of M,k will be denoted
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by N. Finer aspects of this decomposition together with the choice
of ¢ will be discussed in Section 4.

A graph K is associated to M as follows. The vertices of K
correspond to the bounded components of M. and there is an
additional vertex, the ground, if M has funnels. Thus all funnels
are regarded as being connccted to each other at infinity. Each
cylinder of M is represented by an edge joining the vertices
corresponding to the components of M., connected by the
cylinder. If a cylinder surrounds a short geodesic 7, we label the
corresponding edge 7 and attach the number 2(7) to this' edge.
Note that thcre may be more than one connection between two
vertices of K and- the endpoints of an edge may coincide. Our
main result states that the eigenvalues of the surface can be
estimated in terms of these discrete data. Hence the small
eigenvalues of the Laplacian A on M can be estimatcd in terms of
lengths of closed geodesics.

‘We may think of K as an electrical circuit diagram with a
resistance 1/2(y) along the edge 7 [PS]. If the arca of M is infinite,
then K contains the ground denoted v, In this case all functions
defined on the sct of vertices of K will be required to vanish at v,
Some circuit diagrams which may arise when M is homecomorphic to
a punctured torus are shown in Figure 1. For example ¢) will

Figure 1
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occur if M has a funnel bounded by a geodesic of length greater
than or equal to 2¢ and another simple closed geodesic of length

less than 2e.
A more complicated surface illustrated schematically in Figure

2 yields the diagram (drawn in two different ways) in Figure 3.

Figure 2
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Figure 3

The analog of the Rayleigh-Ritz quotient of a vertex function
h in this context is the following expression.

L,8h(2)? 2(9)
L h(v)?

R(h) =

where the summation in the numerator extends over all edges 7 and
if v, w are the endpoints of 7, then 8h(7)? = (h(v) — h(w))?% The
summation in the denominator is over all vertices of K. By
analogy with the continuous case the critical values of the function
R will be,called the eigenvalues of K. '

We are now ready to state our result. Let n be the number of
nonzero eigenvalues of K. ‘Since the trivial ecigenvalue X, = 0
occurs only when the area A(M) is finite, n = N if the area A(M) =
@ and n = N — 1 otherwise. Broadly speaking, we claim that the
first n eigenvalues (3} of the Laplacian on M are of the same
order as the eigenvalues V,, Vy .. V, of the graph K associated to
M. The statement is complicated somewhat by the fact that M
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might have continuous spectrum in the interval [1/4,2) (see the
remark following Lemma 3.2).

Theorem 1.1. There exist positive constants «, «, ag which
depend only on ¢ and the topology of M (i.e. on g, f and p) such
that, for every j=1,2, .. n
a) If \J. < 1/4, then

a € X‘i/vj $a,.

b) If @V, < 1/4, then the spectrum of A contains at least j
eigenvalues in (0,1/4) and a) holds.

¢) inf spec(d) N (3,,®) 3 «.

If M is compact, the requirement that xj < 1/4 in a) is unnecessary.

Moreover, when A(M) < =, the constants «;, @, a; can be made

independent of € using [B].

To translate our estimates of xj into geometric terms we
introduce a notion of a cut and its length.

Decfinition 1.2, A j-cut C is a collection of edges of the graph
K whose removal disconnects K into j+1 components. Equivalently,
it is a collection of simple closed geodesics of length < 2¢, whose
removal disconnects M into j+1 pieces, where we regard the union
of all components containing funnels as a single piece. The length
L(C) of the j-cut C is the sum of the numbers 2(y) over the edges ¥
constituting the cut and Lj(K) = LJ.(M) is defined to be the minimal
length of a j-cut. If there are no j-cuts we take Lj(K) =@,

Using results of the next section, Theorem 1.1 can be restated
in the following equivalent form.

Theorem 1.1'. There exist constants By, B,, B, depending only
on ¢ and the topology of M, so that for j =1, 2, .. n,
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a) If xj < 1/4, then
B, ¢ xj/Lj(M) ¢ B,

b) If BzLj(M) < 1/4, then the spectrum of A contains at least j
eigenvalues in (0,1/4) and a) holds.

¢) inf spec(d) N (,,®) 3 Bj..

If M is compact, the requirement that Xj < 1/4 in a) is unnecessary.

Moreover, when ‘A(M) < =, the constants By, B, By can be made

independent of € using [B].

Remark. This result was provéd for compact surfaces in [SWY]
(see also [Bu]). The estimate for ), in case f > 0, was given in
[PS], and the lower bounds for surfaces of finite area were derived
in [DR]. ’ '

Recall that Lj(K) is the minimum sum of lengths of simple
closed geodesics of length less than 2e separating M into j + 1
components, where we regard the union of all pieces containing a
funnel as a single component. The maximum numbcr of disjoint,
simple, closed geodesics on M is 3g + p + 2f — 3, and their
complement in M has 2g + p +{ —2 bounded components. If 7,, ...
Ysg+p+a1-3 3TC such geodesics and all their lengths tend to zero, then
xj approaches zero for j =1, 2, .. n, but X, is bounded away from
Zero. Hcrc,n:N-l=2g+f+p-3iff=0,andn=N=Zg+
f + p — 2 otherwise. Thus we obtain

Corollary 1.3. Let M be as above. There exists a constant B >
0, depending only on 2g + p + f such that spec(s) N (0,B) is discrete
and contains at most n eigenvalues, where n = 2g + f + p — 2 if
AM) ==and n =2g + p — 3 for AM) <=.

Remark. Since the lengths of disjoint simple closed geodesics
on M can be prescribed arbitrarily, one can produce examples of
surfaces with a maximal number of arbitrarily small eigenvalues.
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On the oihcr hand, if the number of disjoint simple closed
geodesics of length < 2e is smaller than 3g + p + 2f — 3, one can
still obtain estimates of 2g + f + p — 2 eigenvalues. However, the
constants in Theorem 1.1' would depend in this case not only on
the topology, but also on lengths of "boundary curves”, i.e. geodesics
which bound funnels.

2. The discrete modcl. In this section we consider the discrete
model of our eigenvalue problem. Thus, let K be a finite
connected graph with possibly more than one connection (edge)
between a pair of nodes (vertices) and possibly with edges whose
endpoints coincide. The graph K is equipped with an additional
structure: a number 2() > 0 is assigned to every edge 7. We shall
estimate the smallest positive eigenvalue v, of K in terms of the
numbers (2(y)}. This, in turn, will allow us to estimate the higher

eigenvalues. Clearly, if there is no ground,
: 2
2.1 v, = inf Ly 8h*® 2(y)

over the set of all vertex functions satisfying I:Vh(v)z =1, Lh(v) =
0 (as in the continuous case v, is the infimum of the Rayleigh-
Ritz quotient defined in Section 1 over functions perpendicular to
constants). Similarly, if the ground, Vo is present (2.1) is still
valid if the infimum is taken instead over all functions h
satisfying £ h(v)? = I, h(vy) = 0.

The notion of the j-cut and its length was introduced in
Section 1. Recall that N = N(K) is the number of vertices of K
different from the ground. In addition, let E = E(K) be the
number of edges. 4 '

Theorem 2.2. Suppose N(K) € q. There exists a constant o
depending only on q, so that

@ ¢ v/L (K) € 2.
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Proof: Let M, and m, denote the maximum and the minimum
value of the function h, respectively. Replacing h by its negative
if necessary, we can assume that M, >0 in case the ground is
present, and M, 3 jm,| if K does not contain a ground. Since
1:vh(v)2 =1, M, 3 1/v3. Consider the sequence of all values m, =
a, ¢a, €ag ¢ .. $a, = M, Clearly, M, - m, 3 1/vq and k € q so
there will exist an integer j, 1 € j € k =1 for which a;,, = 3, 3
1/(q-1)vq. Split the set of vertices of K into two disjoint subsets
such that h 3 a;,, 0N one and h € a; on the other, and define a cut
consisting of all edges connecting vertices in different sets. It is

now obvious that
v, = inf Ly 3h% 2(7) 3 oL,(K),

with a = (1/(@=D)v@)* _ _

To prove the upper bound consider a minimal l-cut C and a
function h which is constant on each of the two components of K —
C. The constants have to be chosen so that h is an appropriate test
function for (2.1) to hold. Since h is normalized, |8h] ¢ vZ for
every edge. It follows easily that v, € R(h) ¢ 2L, (K).

As a consequence, we can estimate the higher eigenvalues.

Theorem 2.3. Let v, € v, € Vg € .. ¢ v, be the sequence of all
positive eigenvalues (if there is no ground, n = N(K) — 1, otherwise
n = N(K)). There exists a constant « depending only on upper
bounds for N(K) and E(K), such that, for j = 1,2, .. m,

- « € V/L{K) ¢ 2.

Proof: Suppose K is cut into j + I pieces K, K,, .., Kj+1 by
removing a cut C. Assume also that L(C) = Lj(K). Consider the
space F of all functions which are constant on every component of
K - C and vanish on the component containing the ground. As
above we see that 3g(y) = 0 unless 7 ¢ C, and |8g| ¢ vZ for 7 € C if
l:vg(v)2 = 1. Therefore, using the mini-max principle [Ch], V; S
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sup (R(g) | g € F} € 2L(K).

To prove the lower bound suppose that a (j=1)-cut C = {7, 7,,
. 7} decomposes K into j pieces K,, K, .., KJ., that L(C) =
Lj_l(K), and that Kj contains the ground. The obvious inequality

. 8h(y)22(y) ¢ I 8h(7)%2
(2.4) 7€§_C h(7)*2(7) X M*2(?)
implies that

(2.5) lrgiisx} vi(K,) ¢ vJ.(K).

The two quadratic forms in (2.4) are defined on the space of all
vertex functions on K. The eigenvalues of the quadratic form on
the left are simply the eigenvalues of all the pieces K, K,, .., Kj.
Among these eigenvalues of the pieces, 0 occurs j — 1 times
‘(corresponding to constants on components other than the ground).
The first non-zero eigenvalue occupies the j-th slot in the sequence
and is equal to minivl(Ki). Therefore, by the mini-max principle,
the inequality (2.4) implies (2.5). It remains to estimate v,(K;). By
Theorem 2.3

(2.6) - | vi(K) 2> oLy(K).

Recall that C = (7, 73 o 7). We claim that L,(K)) 3 #(7) for all
vy ¢ C. Otherwise, by cutting K, along a cut C’ realizing L,(K)
and _reattaching along 7, we would obtain a (j=1)-cut of K of total
‘length smaller than L(C) = Lj_l(K). Therefore L(K)) 2 2(7). It
follows that kL,(K,) 3 L;-l(K) and (k+1)L,(K) 2 Lj_l(K)_ + L(C").
The number on the right is the length of the cut C U C' separating
K into j + 1 components. Thcr_et'ore L,(K) 2 LJ.(K)/(k+l) 2
Lj(K)/(E(K) + 1). This, in view of (2.6), completes the proof in the
case when the ground is present. A very similar proof in the case

of no ground is omitted.

Remark. Theorem 2.3 and Lemma 4.2 below imply that
Theorem 1.1 and Theorem 1.1' are equivalent.
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3. Energy integral for doubly connected Riemann surfaces.
This section contains technical lemmas needed to prove the results
of Section 2. We begin with the lower bound for the bottom of the
spectrum of a doubly connected complete surface with constant

Gaussian curvature —l.

Lemma 3.1. Let M be one of the following Riemann surfaces.
a) (—=,®) x S! with the metric dr? + exp(-2r)d8? ‘
b) (—=,=) x S! with the metric dr? + 2%cosh?rd®? where r € (—=,),
8¢S =R/Zand 2 >0 is a constant. Then ‘

[ o2 > (1/4)f Il
M M
for every smooth function h with compact support.

Proof: The two cases are very similar and we shall give the
proof only in the case a) (cf. [DR] for details in case b)). Note that
the volume element dV = exp(-r)drd@ and |Vh| 3 lh ). We write h'! =
h_ and consider the integral

{7 nietar = [~ 2hh'eTdr.

Applying the Schwartz inequality with respect to the measure
exp(-t)dr we obtain

® ® 120 o 1/2
[__h%eTdr ¢ Z[I_the"dr] [ I_ﬂ(h')’e"dr] .
Hence .

% J'_thc"dr € J._.(h 1)2e-"dr.

Integration with respect to 6 yields the desired estimate.
In the sequel we shall have to apply the inequality of the
lemma above to some functions without compact support. The

result we need is
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Lemma 3.2. Let T be one of the following:
a) a cusp [a2,®) x S! with the metric dr? + exp(~2r)d8?
b) a cylinder [a,b] x S! with the metric dr? + 22cosh’rde?
¢) a funnel [a,®) x S! with the metric dr? + 2%cosh?rd6?

Suppose h is a continuously differentiable function which vanishes
on 8T and in case a) and c) satisfies IThz < = J',x.]Vht2 <@, Then

1-]'Th2 < J’Twm’.

Proof: Casc b) is covered in Lemma 3.1. To recduce the
remaining cascs to Lemma 3.1 we use a standard cut-off argument
(cf. [DR], page 187). Consider the function pp defines as follows.

1 ifr ¢«R -1

pg(r) = {R -1 if R-1¢r <R
0 if r 2 R.

Let hg = hug. Lemma 3.1 applies to hy and when R tends to
infinity the integrals of |Vhg|? and |hg|® converge to the integrals of
|Vh|? and |h|® respectively.

Remark. For a complete Riemannian manifold the Laplacian A
on C:(M) has a unique extension to an unbounded self-adjoint
opcrator (also denoted by 4) on L3}(M) [Che]. The lemma implies
that the essential spcctrum of A on a Ricmann surface with finitely
generated fundamental group is containcd in [1/4,=). Indced, by a
~ result of Donnelly and Li [DL], the essential spectrum of & on M is
cqual to the essential spectrum of A on M — F, for an arbitrary
compact subset F with smooth boundary, if Dirichlet boundary
conditions are imposed on 8F. If F is sufficiently large M = F
consists of cusps and funnels only and their entire spcctrum is
contained in [1/4,«) by the lemma.

The ncxt lemma is an approximatec version of the preceding
one. It says that a function h with substantial L2 norm on T which
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is nearly zero on 9T must have substantial energy ITIVhlz.

Lemma 3.3. Let T be as in Lemma 3.2 and let S CT be the
shell ie. the set of points of T at distances less than or equal to |
from the boundary of T. If T is a cylinder (case b) in Lemma 3.2)
we require that b —a > 2. There exists 7 > 0 such that if hisa

function on T satisfying
a) «> J. h2=c>0
_ T
b h? < nc
) J‘s
c) f [Vh|? < nc,
s

then

[ 19012 > c/8.
T

Proof: Let u be a function on T depending on r only, equal to
1 on T - S, vanishing on 3T and varying linearly in r on S. Sct H
= ph. By b), if n is small enough, most of the contribution to the
integral in a) comes from T —S. Thus, for small n, ITHz > (3/4)c,
and it follows from Lemma 3.2 that [1/VH* > (3/16)c. On the other
hand

J'S|VH|2 = J'SUNh + hvy?

< [[J’Slvw]m + _[js hz]l/z]z = O(nc),

by b) and c), since | € 1 and |[V4 = 1 on S. Thus, for sufficicntly

small n,
| 'vH2=' Vhi? > ¢/8,
_| | -sI | /

which proves the lemma.

The preceding lemma gives a lower bound for the energy of a
function which is very small near the boundary of a doubly
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connected surface T. The next result will be used to estimate the
encrgy of functions which are not nearly zero on 3T. Since the
energy integral is a conformal invariant in two dimecnsions, we
replace T by a right circular cylinder.

Lcmma 3.4. Let T = [a,b] x s! with the flat metric dp* + d6Z
Suppose h is a continuous function smooth in the interior of T.
Then

[ Ioni? > [ 1(h(b,8) = h(a,B))"de.

b-a
Proof: Write h(b,8) — h(a,8) as the integral of hp with respect
to p, apply Schwartz inequality and integrate in 6.

Remark 3.5, Lemma 3.4 will be applied to cylindcrs and
funncls with the metric dr? + #2cosh?rd8% An explicit conformal
mapping of such a surface to a right circular cylinder of
circumference | is given by (r,8) = (p,6), with p = (2/2)tan"Y(exp(r)).
This will allow us to estimate the energy in terms of the length 2
of the simplc closed geodesic defining the cylinder. '

4. Thick and thin dccomposition. Before proving Theorem 2.2
we have to discuss the decomposition M = M. U M, of a
surface with finitely generated fundamental group and explain the
choice of the number ¢ used to define it. A reference for most of
this material is [Be, Section 11.7].

The rcsult that we need states that each simple closed geodesic
lies »n an open "collar,” called a cylinder whose size can be
estimated in terms of the length of thc geodesic; every cusp, i.e.
contracting end, is of a definite size; two collars corresponding to
disjoint gcodesics do not intersect; different cusps are disjoint; and
cusps do not itersect collars. We list below rclevant properties of
these sets and of funnels.

Cylinders. Let 7 be a simple closed gcodesic of length 2(7) = 2
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in M and let r(7) be defined by
sinh(r(7)) sinh(2/2) = 1.

The set of points of distance € r(y) from 7 is an embedded
annulus. In terms of Fermi coordinates, the metric on this set is given
by dr? + 22cosh?rd8?, where 2d@ is the arc length element alongyandr
denotes the signed distance from 7. When 2(7) < 2¢, we call the seta
cylinder and denote it by T7. If € is chosen small enough and 2(7) <
2¢, then r(7) > 1 and theshell S=(p € T7| r(y) —1 <|rl< r(?)} consists of
points with injectivity radius 3 €. This is

-
N\

-r(y) +! () r(y)-t r(vy)
Figure 4

one of the conditions € has to satisfy. For further reference,. note
the diameter of each component of S is bounded independently of
2(y), when 2(7) < 2e.

Cusps. In every cusp we can choose coordinates near infinity
so that the metric takes form dr? + exp(—2r)d8%, with 8 ¢ S! = R/Z.
Then, the set

T={(r,8)|r 3 -n 2)
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NZ

-1n2 1=-1n2

Figure 5

embeds in M. Clearly, if € is sufficiently small, then S = {(r,9) |
—-In 2 €r € -In 2 + 1} is contained in M, .. N.B. From now on ¢
is fixed so that every cylinder '1'7 with 2(7) < 2¢ has radius r(y) >
1 and its shell contained in M,;.,, and so that the shell of every
cusp is contained in M, .. This is a universal choice independent

of M.

Funnels. Every expanding end has a simple closed geodesic ¥ at
its base. If 2(Y) < 2¢ we shall call this a thin end. Otherwise the
end shall be "thick". In terms of the Fermi coordinates the metric
" on an expanding end is given by dr? + 2%cosh?rd@?, with 2 = 2(7).
Part of a thin end is contained in the cylinder T7. The set {(r,0) |
r > r(y) — 1} will be referred to as a thin funnel, and we défine its
shell to be {(r,8) | r(7) =1 < r < (). Thus the shell of every thin
funnel is just one of the components of the shell of the cylinder
adjacent to it. For a thick end 2(y) 3 2¢. In this case the term
thick funnel will be used to refer to the whole end cut off by ¥
and the shell of such a funnel will be the set of points in the
funnel at distance € 1 from the base geodesic.
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4

T T

o r(y)=-1 r(y)
Figure 6

°’| 1

Figure 7

In the next section, we shall have to estimatc the energy of
eigenfunctidns on cylinders and funnels using Lemma 3.4. To do
this we nced to know the length of the .right circular cylinder of
unit circumference conformally diffeomorphic to a cylinder or
funnel. The diffemorphism is given explicitly by (r,8) - (p,©),
where p = (2/1)tan‘1(cxp(r)). The following is an easy conscquence.

Lecmma 4.1. a) The length d of the right circular cylinder
conformally equivalent to a cylinder T./ with 2(7) < 2¢ satisfics
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c(e)/2(y) ¢ d € m/2(7), where c(e) = tan~}(exp(sinh-}(2/sinh¢))) -
tan-!(exp(-sinh-1(1/sinhe))).

b) A thick funnel bounded by a geodesic ¥ of length 2(y) 3 2¢
is conformally equivalent to the cylinder of length n/2(Y).
Moreover for every r, ¢ [0,1], the subset {(r,8) | r > g} is
conformally equivalent to a cylinder of length d, ¢/2(7) < d <
m/2(7). The constant c is independent of r; and 2(7), in fact one
can take ¢ = 0.67. :

c) The subset {(r,8) | r > rp), for r(y) — 1 ¢ ry € (), of a thin
funnel is conformally equivalent to a cylinder of length d, c, €d ¢
¢, where ¢, > 0 and c, depend only on e. ¢, can be taken to be
m/2¢ while ¢, is more complicated and is equal to

ming_, ., ((m = 2tan"Y(exp(sinh-!(1/sinh(2/2)))))/ ),

In Section 1 we described how to associate a finite graph K to
the surface M. We now state an estimate of the number of edges
and vertices of this graph in terms of the topology of M. Recall
that N(K) is the number of vertices of K different from the
ground, and E(K) is the number of edges.

Lecmma 4.2. If g denotes the genus of M, p equals the number
of cusps, and f is the number of funnels, then N(K) € 2g + p + =2
and E(K) € 3g + 2f + 2p — 3.

Proof: ‘Every funnel is bounded by a simple closed geodesic.
Cut off all funnels to form a surface M, with f holes bounded by
closed *geodesics. The Gauss-Bonnet formula for surfaces with
boundary implies that the area AMy) = 2n(2g + p + f — 2). On the
other hand if we cut M, along a maximal set of disjoint, simple,
closed geodesics, the number of pieces obtained is at least N(K).
By Gauss-Bonnet again, every component has area greater than or
equal to 2n. Hence

2nAN(K) ¢ AMy) = 2n(2g + f + p — 2).
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In the decomposition of M, by a maximal set of disjoint simple
closed geodesics, every piece is homeomorphic to a three-holed
sphere. An easy count shows that the maximal number of disjoint
simple closed geodesics is equal to 3g + 2f + p — 3. Thus E(K) ¢
3g + 2f + 2p — 3, a quantity depending only on the topology.

5. Thc proof. In this section we prove the eigenvalue
estimates. We adopt the following convention. The letter ¢, with
or without subscripts, will stand for a constant independent of the
surface M; « or B will denote a constant depending only on the
topology of M, ie. on the genus g, the number of cusps p, and the
number of funnels f. These constants may depend on the choice of
¢, but ¢ is fixed once and for all. Moreover constants represented
by the same symbol in different incqhalitics nced not be equal.

We begin by proving the upper bounds in Theorem 1.l1. Note
that, by using a cut-off argument as in the proof of Lemma 3.2,
one can prove that the space of piecewise C! functions with
| compact support is densc in the Sobolev space of L? functions with
L? gradient. Therefore, to prove thc'uppcr bounds it suffices to
construct test functions in this space.

Let K be the graph associated to the surface M and let h be a
function on K which vanishes on the ground. We associate to h a
function ¥ on M as follows. Let B, be the component of Mk
corresponding to a vertex v. Make ¢ constant and equal to h(v) on
the complement of shells in B,. If a cylinder T7 connects B, and
B, we interpolate ¢ linearly in the variable p on the associated
flat cylinder. On a cusp attached to a component B of Myy.hs P is
also constant and equal to h(v). Clearly

J' W3¢k h(v)z,
M v

since A(B)) 3 A(D(), where D, is the hyperbolic disk of radius e.
On the other hand, a simple calculation using Lemma 4.1 yiclds
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N E IT7 L 10)3h(7)

It follows that the discrete Rayleigh-Ritz quotient of h is greater
than a universal constant ¢, times the Rayleigh-Ritz quotient of .
In particular, let 0 < v $V, . SV be the positive eigenvalues of
K. Denote by hy, h,, .. h the corresponding eigenfunctions, and
let ¢, ¢, . Y, be the. associated functions on M. Let j be the
largest integer such that \Jj/c1 € 1/4 if M is noncompact, and j = n
otherwise. (This restriction 1is necessary since the essential
spectrum of is contained in [l1/4,%) when M is noncompact.) The
functions hy, h,, .. hj are linearly independent and the inequality
between the Rayleigh-Ritz quotients implies that the Laplacian A
has at least j positive eigenvalues in (O,Vj/cll and )\, € v, /c, for k =
1,2 ..] A

As in the discrete model, the lower bounds for higher
eigenvalues follow easily from the lower bound on ;. We give the
proof of this estimate for the case of infinite area. The proof for
finite area surfaces is very similar and, in fact, somewhat easier.
We shall only indicate necessary changes in the argument for that
case.

Thus let A(M) = =, and let ¢ be a normalized eigenfunction
belonging to an eigenvalue =) < 1/4. The following lemma
describes the behavior of ¢ on M,,. ..

Lemma 5.1. Suppose X < n? < 1/4, 1> 0. For every x € M,

[Ve(x)| € cn

and .

2 scf 2
le(x)l foe(x)"

where D (x) is the disk of radius ¢ centered at x.

Proof: By the Sobolev and G%rding inequalities (cf. [A])
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2 2 2 2 2

X))  €c¢ +C Ag|* Sc(l+ )

le(x)l IDE w’ IDe (x)l ¢l )_fDe w0’

Similarly, since A,d¢ = dag = —)de, where A, is the Laplacian on
forms of degree one,

Yo(x)? € ¢ Vel + ¢ dag|?
V()| J’D€ o7 J’De 42

sc(l + 2% J'M|v¢{2 = c(1 + ).

The lemma follows.
The lemma above implies that an cxgenfunctxon ¢ belonging to

a small eigenvalue » is almost constant on the boundcd components
of M, and on the shells of thin funnels since these sets are
bounded and |V¢| is uniformly small on them Next, we mvestxgate
the behavior of funnels.

Lemma 5.2. Suppose N is a funnel with shell S. Then

J'Scpz $c,» and ¢? €¢,) on S

Proof: We give a proof for a thick funnel only. Let? be the
geodesic at the base of N, 2 = 2(7). We use the Fermi coordinatcsb
Since o is in L2 it follows from Lemma 5.1 that ¢(r,8) approaches
zero uniformly in 8 as r tends to infinity. Thercfore

/ J’s«p" = I; J‘; ¢%(r,0) 2coshrdrd® = J'; scoshrdr j: ¢*(r,0)d8

s*cosh(1)2 I: d(r) dr Ivlvwlz,

where the inner integral is csti'matcd using Lemma 3.4 and d(r) is
the length of the flat cylinder of waist one conformally equivalent
to (x € V | dist(x,y) 2 r). Since d(r) < m/2(y) by Lemma 4.1, the
first inequality follows. The second inequality is a consequence of
Lemma 5.1. :

Let ¢ be as above, but assume that X = ),. We will show that
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there exists constants g and « depending only on the topology, such
that if %) < 4 then \; 3 oL (M). Hence ), 3 min(k%,al (M)). Since
all geodesics contributing to L,(M) are shorter than 2e and their
number is bounded in terms of the topology, L,(M) itself is -
bounded. Therefore ), 3 min(uz,aLl(M)) 3 BLI(M).

Thus suppose that n > 0 is a small constant (t'o be specified
later) and that )\, < n%. We saw above that the oscillation of ¢ is
very small (of size c;n) on every bounded component of M,;; ., and
that ¢ is small (at most c,n) on the shell of every funnel. If ’l'7 =
T is a cylinder and x e 8T, denote by x* the reflection of x in 7.
The quantity sup aple(x) = @(x*)| will be called the variation of ¢
on T. We will show that if n is sufficiently small then ¢ has
substantial variation on one of the cylinders. Suppose the variation
of ¢ is smaller than c,n on every cylinder. Since ¢ is near zero on
the shells of funnels, it follows that |¢| < «n on M,pir Therefore
the integral of ¢? is very small on every bounded component of
M, . By Lemma 5.2 these integrals are also small on the shells of
funnels. Moreover, every thick funnel N is attached to a bounded
piece of M,,;, — N and the integral of ¢2 over such a set is also
very small. The L? norm of ¢ on the union of all shells and
bounded components of M picx is € an.

Remark. This leads to a contradiction if M,  is connected
(i.e. LI(M) = «) and n is small. Therefore spec(d) is bounded below
for all surfaces whose thick part is connected.

Since IMcpz = 1, there exists a cylinder, a cusp, or a funnel on
which the L? norm of ¢ is substantial (i.. greater than (I — an)/m,
where'm is the number of all cusps, cylinders and funnels). Denote
such a doubly connected surface by T. The assumptions of Lemma
3.3 are satisfied and it follows that ), = J'MIchlz 3 B. However )\,
was assumed to be smaller than n% For small n, this is a
contradiction, which proves that, if ) ¢ n?® and n is small, then the
eigenfunction ¢ has variation 3 cn on at least one cylinder.

~ We now suppose that ), < u? < n% where g is a small fraction,
of n (how small depends only on the number of cylinders and



ESTIMATING EIGENVALUES OF RIEMANN SURFACES 117

components of M, ). By the above discussion, sup M., is at
least c¢n, and the oscillation of ¢ on every bounded component of
M, 1S 3t most Ci In addition, ¢ € cu on the shells of funnels.
The argument uscd in the proof of Theorem 2.2 shows that there
exists a collection 7, Vg o Vi of short, disjoint, simple closed
geodesics whose removal disconnects M into two components such
that the variation of ¢ on each of the associated cylinders is at
least B > 0, where B depends on the topology only. Recall that the
union of all unbounded pieces of My is regarded as a single
component. Using Lemma 3.4 and Lemma 4.1 we obtain

1

the desired lower bound.

Now, if A(M) < =, M has no funnels. The normalized
eigenfunction ¢ corresponding to X, is orthogonal to constants and
changes sign. Lemma 5.1 is still valid and implies that ¢ is almost
constant on every component of M. .. As in the previous case, we
want to show that ¢ has a substantial variation on one of the
cylinders, provided X, < n? and n is a small constant depending on
the topology of M. We only sketch the argument. If the variation
on each cylinder is small, then ¢ is almost constant on all of M, ik
oMk & 3, its average. Either ¢ is very small, or it is substantial
and can thercfore be assumed positive. If it is small, then the
integral of ¢* over Mipick 18 small and Lemma 3.3 leads to a
contradiction, exactly as in the case of infinite area. If, on the
other hand, ¢ is large, then ¢ has a constant sign on M.
However ¢ changes sign on M. Therefore there cxists an open sct
D contained in a cusp or a cylinder such that ¢ < 0 on D, and ¢|3D
= 0. Thus ¢ is an cigenfunction for A on D with Dirichlet
boundary conditions and X, is the first cigenvalue. By Green’s
‘formula and by Lemma 3.1

h [et = [ vl 2 i— [9*
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so that ), 3 1/4. Thisis a contradiction.

We have thus proved that, for a surface with finite area and
small ), the first eigenfunction is almost constant on every
component of M., and has a substantial variation on at least one -
cylinder. The proof is completed now exactly as in the case of

infinite area.

It remains to prove the lower bounds for higher eigenvalues.
The argument is very similar to the proof of the analogous result
in Section 1. We cut M into pieces by removing a number of
geodesic loops and relate the Neumann eigenvalues of the pieces to
the eigenvalues of M. Thus, suppose M is decomposed into j + I
components M;, M, ... Mj+1 by removing disjoint geodesics Y Vg -
7m Of length < 2e. Recall that the union of all funnels (if present)

is regarded as a single component.

Lemma 5.3. If M is noncompact assume that xj < 1/4. Let
2 (M) be the first positive eigenvalue of A on M, with Neumann
boundary conditions on dM;, then '

).j 3 min)\ (M)

This follows from the mini-max characterization of the
eigenvalues which remains valid in the noncompact case below the
bottom of the essential spectrum, cf. [Ch].

To relate ) (M) to the geometry define L,(M,) the same way as
L,(M) was defined, allowing only geodesics contained in the interior
of M,.* Note that if K is the graph of Mand K, K, .. Kj+1 are suitably
numbered graphs obtained by removing the edges Yy Vg - Vg then
L,(K)=L,(M). '

Lemma 54. There exists a constant B, depending only on the
topology of M, such that

2, (M) ? BL,(M,).
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Proof: Let ¢ be the eigenfunction on M belonging to X (M)
Since ¢ satisfics the Neumann boundary conditions on 8Mi and
since M, consists of geodesics, ¢ extends by reflection to a
function ¢* on the double M* of M; Repeating the argument in
the proof of the lower bound for M, we see that if Xl(Mi) 1s small
then ¢* must have a substantial variation on one of the cylinders
of M*. By symmetry, such a cylinder cannot correspond to a
boundary geodesic of M; and we can assume that it is contained in
M. Hence ¢ has a substantial variation of one of the cylinders of
M, The proof is completed exactly as in the case of the first
eigenvalue of M. A

We proved in Section 1 that L,(M) = L (K;) > oL,(K). Since
Lj(K) = Lj(M) the desired inequality follows from Lemma 5.3 and
Lemma 5.4. ’ ,

Finally, we outline the argument proving that X _,(M) is
bounded below by a constant depending only on the topology.
Again this is very similar to the proof of the lower bound for ),
Thus suppose that X _, ¢ n%. We will get a contradiction if 7 is
very small. Notc that Lemma 5.1 and Lemma 5.2 remain valid for .
lincar combinations of eigenfunctions. The lincar span of the
eigenfunctions ¢;, Qg = Ppyg belonging to M, Xg o M 4y contains a
function ¢ whose mean value on every bounded component of
M}k IS 2zero because the number of these components is n. We can
assume that IM¢2 = 1. As in the proof of the lower bound for ),
we conclude that a) ¢ and V¢ are small in a suitable sense on
Mn;ick’ b) the L2 norm of ¢ is substantial on at lecast one funncl,
cylinder or cusp, and c) the energy of ¢ is substantial on that set.

However,

J‘MW«M’ <n?.

For sufficiently small n this is a contradiction, which concludes the

proof.
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