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RELATED ASPECTS OF POSITIVITY
IN RIEMANNIAN GEOMETRY

DENNIS SULLIVAN

1. Introduction

There are several numerical functions which can be related in the geometric

context of Riemannian manifold, especially those which are complete and have

constant negative curvature. They are:

(i) The Hausdorff dimension D( X) of a closed set X in Euclidean space,

(ii) The point λ 0 of the ZΛspectrum nearest to zero for the Friedrich

extension of a semidefinite symmetric operator Δ.

(iii) The critical exponent δ(Γ) of the Poincare-Dirichlet series of a discrete

group Γ of Moebius transformations of Sd.

(iv) The parameter of the spherical complementary series of irreducible

representations of 0(«, 1), especially PS7(2, R) and PS7(2, C).

(v) The exponential rate of transience of a positivity preserving Markoff

operator P, equivalently the point nearest to zero in the 'positive spectrum' of

a Markoff operator P, i.e., λ-potential theory.

(vi) The entropy of an ergodic measure preserving flow.

A rich supply of examples is given by groups Γ of non-Euclidean motions of

Hd+1 having finite sided fundamental domains in Hd+ι whose Poincare limit

set in Sd has Hausdorff dimension D > \d. Then:

(1) The Hausdorff measure μ of the limit set is finite and positive (when the

ranks of any cusps are at most D).

(2) μ on the λ-Martin boundary Sd of Hd+ι defines a positive λ-

eigenfunction φμ for the Laplacian which is Γ-invariant, where λ = D(d - D).

(In the situation of (1), φμ(p) has the following nice geometrical interpreta-

tion: It is the total Hausdorff mass of the limit set as viewed from p.)

(3) Φμ belongs to L2(Hd+ι/Γ) and is the lowest eigenfunction or ground

state.
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(4) φμ determines an irreducible unitary representation for 0(d + 1,1) with

parameter Z>, which is also the critical exponent δ(Γ) of the Poincare series

of Γ.

(5) φμ is the unique positive λ-eigenfunction of Δ, Γ-invariant, and λ is the

value nearest to zero. The heat kernel pt(x, y) on Wd+ι/T decays as eλt.

(6) jit determines an invariant measure for a geodesic flow of total mass fφμ

whose measure theoretic entropy (and this is also the topological entropy when

there are no cusps) is D (see [25], [26], [27], and [28]).

In the first part of the paper we point out the general connections for

Riemannian manifolds between (ii) and (v). In the second part we specialize to

constant negative curvature and connect up (i), (iii), and (iv) with (ii) and (v).

For (vi) see [28]. Most of these results are individually known to separate

groups. It is our hope that the entire synthesis may have a certain general

interest. (Note, in this the operator Δ is < 0.)

2. Statement of results

2.1. Riemannian manifolds: Definition of λ o ( M ) . Let M be an open

connected Riemannian manifold without boundary. Define the real number λ 0

in (— oo, 0] as the negative of the infimum of j M |gradΦ\2/fM \Φ\2 over smooth

functions φ on M with compact support. First, we take the λ-potential theory

approach to λ o ( M ) . Say that a smooth function φ on M is λ-harmonic if

Δφ = λφ, where Δ is the Laplacian.

Theorem (2.1). For each λ ^ λ 0 there are positive λ-harmonic functions on

M. For each λ < λ 0 there are no positive λ-harmonic functions on M.

Compare [6], [10], and [19].

Second, we take the Hubert space approach to λ o ( M ) . There is a canonical

self-adjoint operator (also denoted Δ) on L2(M) extending the Laplacian on

smooth function with compact support. If M is complete, all self-adjoint

extensions agree and Δ is unique [12]. In the general case we take for Δ the

infinitesimal generator of the (minimal) heat semigroup, f(x, t) =

IM Pt(
χi y)f(y)dy. Here the symmetric positive kernel pt(x, y) is defined to

be the supremum (an increasing limit) over all smooth compact subregions

with boundary (Mα, 3Mα) of the fundamental solutions p?(x, y) for the heat

equation in Ma vanishing on the boundary 3Mα.

— - Δxjpt(x,y) = 0

(compare [7]).
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Theorem (2.2). The closed L2-spectrum of Δ contains λ 0 and is contained in

the negative ray (— oc, λ 0 ] .

Compare (Fukushima and Stroock [11]), where the minimal heat kernel Δ

construction above is shown to be equal to the Friedrich abstract minimal

self-adjoint extension of the Laplacian.

Corollary (2.3). For λ > λ 0, the symmetric kernel /o

α e~λtpt(x, y) dt defines

a bounded operator on L2, namely (Δ — λ ) " 1 .

Combining Theorems (2.1) and (2.2) we have the following spectral picture

for any open Riemannian manifold: λ 0 < 0 and λ 0 separates the L2-spectrum

from the "positive spectrum": {λ |3<#> < 0, Δφ = λφ}.

'ZAspectrum' of Δ 'positive spectrum' of Δ

FIGURE 1

Example (2.4). For M the real line (or Euclidean space) and λ 0 = 0, the

functions eax, a real, are α2-harmonic and {e~ιax} are virtual L2 eigenfunc-

tions belonging to -a2 as continuous spectrum.

Example (2.5). For M the hyperbolic plane and λ 0 = - \, the positive

λ-harmonic functions for - \ < λ < 0 are related to the complementary series

of 5/(2, R) (see §2.3), and the virtual L2 eigenfunctions, as continuous spec-

trum on (— oo, - \], are related to the principal series of 5/(2, R).

Thirdly, we have the Markoff process approach to λ 0 . We say that λ belongs

to Green9s region of M if for some pair (x, y), x Φ y.

I e~λtpt(x,y)dt < oo.1

A variant of a classical proposition (see §5) is that for λ in the Green's region

the integral converges for all pairs (x, y\ x Φ y, and defines the λ-Green's

function gλ(x, y) which is locally integrable and satisfies

( Δ x - λ)g λ(jc, y) = dirac mass at y.

So for each y, gλ(x, y) defines a positive λ-harmonic function on M \ { y}.

Theorem (2.6). For any open Riemannian manifold the Green's region

consists of either (i) the open ray (λ 0 , oo), or (ii) the closed ray [λ0, oo).

1 Note in this paper the Laplacian is a negative semi-definite operator because of the first figure.
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In case (i), f£ e~X()tpt(x, y)dt = oo, M is said to be λ^-recurrent. In case

(ii), /0°° e~X{)tpt(x, y)dt < oo, M is said to be λ^-transient.

Now we discuss situations in which positive λ0-harmonic functions are

unique (up to constant multiples).

Theorem (2.7) (Recurrent case). If the Green's region is (λ 0 , oo), i.e.,

f£° e~X{)tpt(x, y)\dt = oo, then the positive X0-harmonic functions are constant

multiples of one another.

Theorem (2.8) (Square integrable case). Suppose the spectral measure of Δ

has an atom at λ 0. Then the λ 0 eigenspace of Δ is one-dimensional and is

generated by a (square integrable) positive λ0-harmonic function φ 0 .

Also, the integral /0°° e~X()tpt(x, y)dy diverges so M is λo-recurrent and any

positive λ0-harmonic function is square integrable and thus a multiple of φ0.

We note here the related statement: If any atom of the spectral measure of Δ

is represented by a (square integrable) positive λ-harmonic function, then

λ = λ 0 and this atom is situated at λ 0 . This follows directly from Theorems

(2.1) and (2.2).

Corollary (2.9). // a complete manifold M possess a positive square integrable

eigenfunction φ for Δ, then the eigenvalue is λQ(M) and φ is unique up to a

constant multiple.

2.2. Renormalization of random motion. Given any positive λ-harmonic

function φ we can add to the usual random motion on M a force field or drift

term gradlogφ. Then we have a biased random motion (the φ-process)

corresponding to the second order operator Δ + 2gradlogφ, which acts on

functions by (cf. §8)

/ -> Δ/ + 2 grad log φ grad / .

The transition probabilities for the φ-process are

{e-χtφ(y)/φ(x))Pt(x,y)dy.

When the φ-process preserves the constant function 1 we say that φ is

complete. This amounts to the reproducing formula

φ(x)= ί e-χtpt(x,y)φ(y)dy.

(The inequality ^ is always true.) When φ is complete the φ-process also

preserves the measure Φ2(y) dy (cf. §8 and [24]).

When there is only one positive λ-harmonic function up to a multiple we

refer to the φ-process as the λ-process.

Theorem (2.10). Suppose M is λo-recurrent (/0°° e~Xoίpt(x, y)dt = oo).

Then the λ ̂ -process associated to the second order operator Δ + grad log φ 0

preserves the function 1, the measure φl(y)dy, and is recurrent—almost every
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path of the λ0-process starting from any point in M enters every set of positive

measure infinitely often.

In the square integrable case (Theorem (2.8)) the X0-process preserves a finite

measure, Φ^(y)dy.

2.3. Hyperbolic manifolds. Let M be the unique connected complete simply

connected (d + l)-manifold of constant negative curvature Hd+ι. We recall

the two kinds of examples of positive λ-harmonic functions on H ^ + 1 .

First consider a Borel set A in H ί / + 1 ' s visual sphere at infinity Sd which has

finite positive Hausdorff measure in dimension a. Define a positive a(a - d)-

harmonic function φA on Hd+ι by the rule: φA(x) = Hausdorff α-measure of

A in the visual metric on Sd as viewed from x. (That φA is λ-harmonic follows

from the discussion below.)

Second, given £ in Sd choose stereographic projection of the ball model for

H ^ 1 to the upper half-space model for H ί / + 1 with ξ <-> oo. If y is the vertical

coordinate, then φ(x, aξ) = (y(x))a is a positive a(a — d)-harmonic function

on H ^ + 1 . (In these coordinates, Δ = y2 (Euclidean Δ) + (1 - d)yd/dy.)

Note that in these examples both a and d — a lead to the same eigenvalue

λ = α(α - d) = (d - a)((d - a) - d). Also λ is a minimum - \d2 for a

= u
Theorem (2.11). (i) For H*+ 1, λ 0 = - \d2, [17], [21].

(ii) Fix p G Hd+1. Then every positive λ-harmonic function φ is uniquely

expressible in terms oftheφ(-, α, ξ),

= f Φ(x,a,ξ)dμ(p,φ)(ξ),

where a = \d + (λ - λ o ) 1 / 2 , the φ( ,a,ξ) are normalized to be 1 at p, and

μ(p,φ) is a unique positive measure on Sd with total mass φ(p) [15].

The next two theorems concern the boundary measure μ(p,Φ) and its

measure class for any positive λ-harmonic function φ. Let μ(p,φ, R) be the

measure on the sphere S(p, R) of hyperbolic radius R centered at /?, i.e.,

μ(p,φ, R) = l/cR - (φ restricted to S( p, R)) spherical measure,

where

and a = \d + (λ + \d2)ι/2.
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Theorem (2.12). In the compactified space Hd+ι U Sd, the boundary mea-

sure μ(p,φ) of Theorem (2.11) is constructed from φ as a weak limit of the

μ(p,Φ,R).

lim μ(p,φ,R) = μ(p,φ).
R

Now we consider radial limits, along hyperbolic rays (R, ξ) emanating from

p, of a positive λ-harmonic function φ with φ(p) = 1.

Theorem (2.13). (a) For ξ, outside the closed support of μ(p,φ),

) ~ e a R asR-+ oo.

(b) For μ(p, φ)-almost all ξ,

(c) For a// ξ,

φ(ξ,R)^eaR as R^ oo.

α = W + (λ +
Now we give a generalization of Fatou's theorem. Suppose φλ and φ2

 a r e

positive λ-harmonic functions and μ(p,φx) is absolutely continuous with

respect to μ{p, φ2) with Radon-Nikodym derivative

Theorem (2.14). For μ(p, φ2)-almost all ξ

lim φ 1(Λ

//? particular if φλ < φ 2, /Ae« μ(p,Φ\) < μ(p^Φi) ty Theorem (2.12),

ί/ẑ  conclusion holds.

Define the exponential growth of φ along a hyperbolic ray (7?, £) from /? in

the direction ξ by

lim sup

By Theorem (2.13) this growth is always < a = \d + (λ + \d2)ι/1. Suppose

the growth is smaller, < σ, for a set of directions A c Sd of positive μ(/?, φ)

measure.

Theorem (2.15). (i) The Hausdorff dimension of A is at least

a-σ = (\d+(λ+ \d2)l/2)-o.

(ii) In particular if φ is bounded, the Hausdorff dimension of any μ(p,φ)-

positive set is at least \d + (λ 4- \d1)x/1.
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We describe the behavior of the λ-Green's function g λ(x, y) =

/()

γ e~λtpt(x, y) dt on H J + 1 , which is finite for λ e [λ 0, oc) and only depends

on r = d(x, y) for r near oo. It is convenient to include a description of the

λ-spherical function Sλ(x, y) which is by definition the unique (up to a

multiple) positive λ-harmonic function of x in Hd+1, spherically symmetric

about y in H J + 1 . These two functions are solutions of the second order

differential equation in the radius R which has regular singular points at

R = Oand R = oo.

Theorem (2.16). For λ ^ λ 0, gλ(x, v) and Sλ(x, y) generate the two-

dimensional space of spherically symmetric solutions of ( Δ - λ ) / = 0 on

Hd+ι\{y). The λ-Green's function (/0°° e~λtpt(x,y) dt) is the small (or reces-

sive) solution near R = oo, and the λ-spherical function (JSJ φ(x', £, a)dθ(ξ))

is the small (or recessive) solution near R = 0.

Thus if a = \d + (λ + \d2)ι/1, then g λ ~ const e~aR near R = oo, while

Sλ - const e-(J-aλ>R

 n e a r R = oo, except when a = \d where Sλ - const

Re~(d/2)R near R = oo.

Now let Γ be any discrete group of hyperbolic isometries. If Γ has no

torsion, then Hd+ι/T is a complete Riemannian manifold with constant

negative curvature to which the generalities of §2.1 apply. We have the

generalized Elstrodt-Patterson theorem.

Theorem (2.17). For M = H J + 1 /Γ, λo(M) satisfies

\ 6 ( Γ ) ( δ ( Γ ) - d ) ,

where δ(Γ) is the critical exponent of Γ. (Compare [8], [29].)

Recall the critical exponent δ(T) is defined so that the Poincare series of Γ,

g(*,y,s)= Σ exp-(sd(x,yy)),

converges for s > δ(T) and diverges for s < δ(Γ), where (JC, y) is any pair of

points in H J + 1 and d(x, y) is the hyperbolic distance.

Corollary (2.18) (Of proof). If M = Hd+ι/T, M is λo-recurrent iff δ(Γ)

> \d and the Poincare series diverges at s = δ(Γ).

Now λ-harmonic functions on M are just Γ-invariant λ-harmonic functions

on H J + 1 . From the definition it follows that for any positive λ-harmonic

function φ on Hd+ι and for any isometry γ of Hd+ι.

<x

y * μ ( p , φ ) = | τ Ί μ>(p,Φ- Y ) ,

where |γ ' | is the linear distortion of the visual metric on Sd as viewed from /?,

a = \d + (λ + \d2)1/2 as before, and γ*ju(set) = /i(γ(set)).
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Thus if φ is invariant by Γ, then μ(p,φ) on Sd satisfies

(2.1) γ*μ=|γiV

where 8 = a and γ € Γ.

Thus Theorem (2.17) yields the existence of measures on Sd satisfying (2.1).

Curiously, a bit more can be said about this question than the λ-potential

theory implies. The following theorem generalizes earlier results of Patterson

[29] and the author [26].

Theorem (2.19). (i) // Γ is any discrete group of isometries of Hd+ι (except

for elementary parabolic or cocompact groups) there is a finite positive measure

on Sd satisfying y*μ = | γ ' | V Ύ e Γ, iff S e [δ(Γ), oo).

(ii) We may further suppose that μ is concentrated on the limit set of Γ unless

Γ is geometrically finite without cusps. In these latter cases (including cocompact

groups) the only such measure on the limit set is the Hausdorff measure in

dimension δ(Γ).

The limit set of Γ is by definition the set of cluster points in 5^ of any Γ

orbit in H r f + 1 . The condition geometrically finite without cusps means that Γ

has a finite sided fundamental domain in Hd+ι which does not touch the limit

set.

Remark (2.20). For the elementary parabolic groups there are point mea-

sures in Sd satisfying (2.1) for any 8 in [0, oo) even though δ(Γ) = £(rank of

parabolic subgroup) > 0.

We mention two more theorems relating the λ-potential theory of M =

Hd+ι/T and the Hausdorff geometry at infinity.

Theorem (2.21). (i) // Γ is geometrically finite and M = H J + 1 / Γ , then

\D(D-d), D>\d,

where D is the Hausdorff dimension of the limit set.

(ii) M has a square integrable positive λQ-harmonic function iff D > \d. M is

\ ^-recurrent iff D > \d.

Corollary (2.22). Let M = H J + 1 /Γ, where Γ is geometrically finite. Then

whether or not the Hausdorff dimension of the limit set belongs to (Q,\d) and if

not its exact value in [jd,d] is determined by the λ-potential theory of M.

Any discrete group of isometries of the hyperbolic plane H 2 is a union of

geometrically finite groups. This allows a general result from [26].

Theorem (2.23). For any complete connected hyperbolic surface S let D

denote the Hausdorff dimension of the set of those geodesies emanating from any

fixed point in S which returns infinitely often to any bounded neighborhood of that
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point. Then λo(S) satisfies

Recall G(d) denotes the group of proper motions of Hd+ι. Then G(l) =

P/(2, R) and G(2) = PSl(2, C).

Now Theorem (2.21) allows a canonical geometric interpretation of the

complementary series in terms of hyperbolic manifolds Hd+ι/T and the

Hausdorff geometry of the limit sets of the discrete groups Γ.

Theorem (2.24). Let φ 0 denote the square integrable positive \0-harmonic

function on M = Άd+ι/T, where Γ is geometrically finite and the Hausdorff

dimension of the limit set D = δ(Γ) > \d. Then the linear span of the G(d)-orbit

of φ 0 in L2(G(d)/T) generates the member of the complementary series labeled

For example, if Γ has no cusps {or all cusps have rank < D) then φo(p), the

K-invariant vector, is just the function on Hd+1 which assigns the Hausdorff

D-measure of the limit set of Γ calculated in the metric as viewed from p.

Remark (2.25). There are examples where deformations of one Γ make λ 0

cover the entire (spherically symmetric) complementary series [25], [3].

3. Preliminaries: Compact manifolds with smooth boundary

Let Ma be a compact manifold with smooth boundary. Let p?(x, y) be the

fundamental solution of the heat equation in Ma vanishing on dMa (cf. [22]).

The infinitesimal generator of the semigroup

/ ΐ)
JMa

defines a self-adjoint operator Δ on L2(Ma) extending the Laplacian acting on

smooth functions vanishing near the boundary [22].

By the compactness of Ma there is a discrete set of eigenvalues for Δ,

• <Xa

2<X«< λα

0 < 0,

and a complete basis of L2 consisting of eigenfunctions vanishing on the

boundary.

Since |λα

0| is the infimum of JM |gradφ|2//Λ/ IΦI2 o v e r smooth functions

vanishing near the boundary, any eigenfunction φ0 belonging to λ^ does not

change sign (see §8 for an alternative argument). It follows that λα

0 has

multiplicity 1 and φ 0 is unique up to a constant multiple.
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Since one may write an absolutely convergent eigenexpansion for p?(x, y),

(3 i ) pr(χ,y)=Σeκ'4ϊ(χ)ti(y)

[22], one has

(3.2) lim e-^p?(x,y) = φa

0(x)φa

0(y),

where φg is the unique positive normalized zeroth eigenfunction.

From the probabilistic interpretation [18] of p?{x, y)dy as the probability

density of endpoints of random paths starting at x which have not hit the

boundary before time ί, one has from (3.2) that the probability of starting

from x and hitting the boundary 9Mα by time t is asymptotically 1 like

(3.3) 1 - constέ?(λ°)r.

Now recall the Dirichlet problem for Ma. If / is a continuous function on

9Mα, then the harmonic extension of / inside Ma may be written

(3-4) /(*)= / fU)dμa(x,O,
JdMa

where μa(x, ξ) is the probability measure associated to hitting the boundary

with random paths starting from x.

Now weight the hitting probability by e~λτ, where T is the hitting time and

λ is any number > λα

0. By (3.3) the resulting measure μλ

a(x, ξ) is well defined

and finite. Again if / is a continuous function on the boundary, then

(3-5) /(*)= ί f(ξ)dμλ

a(x,ξ)
JdMa

defines a smooth λ-harmonic function in Ma with boundary values /. The

classical proof of (3.4) may be modified to give (3.5) replacing Δ by Δ - λ.

Now recall that the generalized Poisson measures μa(x, £) of (3.4) are

equivalent for various x and that for fixed x0 in Ma the ratio

dμa(x,ί;)/dμa(xθJξ) = ψα(x, ξ) is a positive harmonic function for £ fixed

(which is zero on dMa \ {£} and has a pole at £). Similarly

dμ\{x, ξ)/dμλ

a(xθJ ξ) = ψ^(x, ξ) is a positive λ-harmonic function on Ma for

£ fixed (which is zero on 3 M α \ { £ } and has a pole at £). (See §2.3 for

examples.)
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This shows the Harnack principle for positive harmonic functions is also

valid for positive λ-harmonic functions, λ > λα

0. Namely, write (3.5) as

(3-6)
W(*o.ί)

= j^f{i)tλ

a{χΛ)dμ\(χ0Λ),

showing that the values of / around x are fixed convex combinations

(/(£) dμλ

a(x0, £)) of values (ψ*(x, £)) which only vary in a bounded ratio.

4. Proof of Theorem (2.1)

Now consider the directed set of all compact connected regions Ma c M

with smooth boundary. Since λα

0 (of §3) is the negative of the infimum over

smooth functions supported on interior M of JM \grad φ\2/fM | φ | 2 , the num-

ber λ 0 defined in the introduction clearly satisfies

λ 0 = sup λα

0,
a

and λ 0 > λα

0 for all a.

Then by §3 there are positive λ-harmonic functions on Ma for any λ > λ 0

> λα

0. By the Harnack principle described in §3 we have compactness with

respect to uniform convergence on compact sets for those positive λ-harmonic

functions wjiich are < 1 at a fixed point x0. We can form convergent

subsequences of those defined for an exhaustion of M by Ma and thereby

prove the first part of Theorem (2.1).

The second part of Theorem (2.1) follows from the fact that a positive

λ-harmonic function / continuous on Ma satisfies

(4.1) f{x)= f e-χtp?(x,y)f(y)dy + ( e~λτ d (Wiener measure),
Ma P

where p is the set of paths which hit dMa at T < /. So

f(x)> f e-χ<p?(x,y)f(y)dy.
JMa

This shows λ ^ λα

0 using (3.2) and completes the proof of Theorem (2.1).
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5. The Green's region and λ-superharmonic functions

Consider the function gλ(x, y) = /0°° e~λtpt(x, y) dt and suppose gλ(x, y) is

finite for one pair x Φ y. From the definition, gλ(jc, y) is symmetric and as a

function of x it is

(1) the increasing limit of continuous functions (and so lower semicontinu-

ous,/(*)< l i m ^ ^ / ( * , ) ) ,

(2) decreased pointwise by at least the factor eλt by the heat semigroup,

f(x9t) = fM pt(x, y)f(y)dy. Namely, /(*, t) < e-χtf(x).
Functions of x satisfying (1) and (2) (and not identically + oc) are called

λ-superharmonic. So if λ belongs to the Green's region there is a λ-super-

harmonic function (gλ(x, y) for each y).

Conversely, suppose / is λ-superharmonic and let Pt

λ denote e~λt (heat

operator). We apply the operator equation

(5.D

to / and deduce using (1) and (2) that either

(5.2) Pt

λf = f for all JC,

or λ belongs to the Green's region.

Using the fact that for smooth functions of compact support φ

Ij _ />λ
(5.3) -φ -> - ( Δ - λ)φ,

t

uniformly on compact sets as t -> 0, one obtains by duality that a λ-super-

harmonic function (which is locally integrable by / ^ Pxf) satisfies

f — Pλf
(5.4) lim J—fJ- = - ( Δ - λ ) / ,

in the sense of distributions. Thus - (Δ - λ)/ is a positive Radon measure

approximated by ((/ - Pxf)/t) dy, whenever / is λ-superharmonic.

Calculating the latter for gλ(x, y) (as a function of JC for y fixed) yields

Id - Pt

λ 1 n _ λ /

t λ t Jo

 s

which approaches the Dirac mass at y as t -> 0. A corollary is that gλ(x, y) is

finite for all JC Φ y and defines a positive λ-harmonic function on M \ { y}.

Another corollary is that if λ belongs to the Green's region, then for every

compact K in M

(5.5) lim e-χtί pT(x,y)dy = 0.



RELATED ASPECTS OF POSITIVITY 339

To see this choose εi -> 0 and 7] -> oo, write

g(x,y)= lim f ' e~λtpt{x,y)dί,
7;->oo,ε,->0 J

ε.

and use the heat equation to calculate (Δx - λ)(gλ(jc, y)). One gets two terms,
the one near zero converges to the right answer, the Dirac mass at y, so the
other one corresponding to oo must go to zero. Since the convergence is that of
radon measures, (5.5) results.

Besides the Green's function, positive λ-harmonic functions also provide
examples of λ-superharmonic functions. This follows using (4.1) repeatedly,

pt(x, y) = sup p?(x, y) and M = (J Ma.
a a

More precisely, (4.1) shows that (λ0, oo) is contained in the Green's region
because the second part (5.2) must hold for a positive λ0-harmonic function
whenever the λ of (4.1) belongs to (λ0, oo).

Now if λ < λ0, then λ < λα

0 for some a and if λ belongs to the Green's
region, (5.5) implies fκ e~χaotpt(x, y)dy -> 0 as / -> oo contradicting (3.3).
Thus the Green's region does not contain λ and must consist of either [λ, oo)
or (λ 0, oo). This proves Theorem (2.6).

6. The ZAspectrum of Δ and the proof of Theorem (2.2)

Using the spectral theorem and the positivity of pt(x, y) one sees im-
mediately that if the interval [λ, oo) does not intersect the L2-spectrum of Δ
(the infinitesimal generator of the semigroup f(x,ί)= fM pt(x, y)f(y)dy),
then the bounded operator on L2, (Δ - λ)~\ is represented by the positive
kernel /Q° e~λtpt(x, y)dy. Applying the operator to a positive function with
compact support shows that /0°° e~λtpt(x, y)dy is finite a.e. Thus [λ, oo) is
contained in the Green's region. So the entire component of the complement of
the spectrum containing the positive reals is contained in the Green's region.

For the other inequality required by Theorem (2.2) consider the ZAnorm of

?tf = SM Pt(χ> y)f(y) dy. This is the square root of

IM (/ Λ ( * ' yι)f{yι) dyιS A ( * ' Λ ) ' U ) dyi) dx.

Thus,

(6.1) [ί )ί 2,
\JMXM

by the semigroup equation for pt(x, y).
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Now consider a positive, bounded, measurable /, with support contained

in a compact K in the interior of M. By (5.5) for each y2,
e~λΐJ Pt(χ> y\)f(y\) <ty\ ~~> 0 as / -> oo if λ belongs to the Green's region. For

a set A of j>2's in K of almost full measure this convergence is uniform. Thus if

g is / times the characteristic function of A, we have, by (6.1), that the

ZΛnorrn of Ptg times e~λt goes to zero as t -> oo. The linear span of these g is

dense in L2. It follows the ZAspectrum of Δ cannot have points greater than

λ, for then there would be elements h in L2 so that the L2-norm of Pth would

not decrease as fast as eλt. This proves Theorem (2.2).

The corollary to Theorem (2.2) is explained by the first paragraph of this

section.

7. On the uniqueness of positive λ(Γharmonic functions

(Proofs of Theorems (2.7) and (2.8))

Suppose the convex cone of positive λ0-harmonic functions is not a single

ray. The base of this cone {φ\φ(x0) = 1} is convex, metrizable, and compact

in the topology of uniform convergence on compact sets by the Harnack

principle of §3. Let / and g be two different extreme points of this compact

convex set so that / < g and g < / are both false and form φ = min{ /, g}.

Let P,λ° be the operator of §5. From (4.8) it follows that Pt

λ°f < / and

Pr

λ°g < g. Thus by positivity of P,λ°, P*°φ < φ so φ is λ0-superharmonic (§5).

Since φ is not smooth φ cannot be λ0-harmonic. (There is a transversality

detail here which can be treated using multiples of / and g if necessary.) Thus,

Pt

λ°φ Φ φ for some / and the second case of (5.2) must hold. Thus λ 0 belongs

to the Green's region, i.e. /0°° e~λotpt(x, y) dt < oo. This proves Theorem (2.7).

Now suppose there is an atom at λ 0 for the spectral measure of Δ on L2.

Since Δ - λ 0 is the infinitesimal generator of P~λ° we must have Pt

λ°φ = Φ

for φ in the λ 0 eigenspace of Δ. In particular, H/^gH does not approach zero

as t -> oo for a dense set of L2. Thus by (5.5) λ 0 is not in the Green's region.

This proves the second part of Theorem (2.8).

Now we give a proof that any φ in L2 satisfying Pt

λ°φ = φ cannot change

sign. By Theorem (2.2), P,λ° is a contraction on L2, so HP^IΦI | | 2 < IIIΦIII2

where \φ\ is the absolute value of φ. On the other hand,

so (\Φ\(x))2 < (P,λ<'|φ|(;c))2. Combining these two gives |φ|(x) = P,λ°\φ\(x) a.e.
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If φ is not entirely negative, at a generic point where φ ( i ) > 0 w e have

φ(x)= ί e-λ°tpt(x,y)φ(y)dy,

φ(x)=\φ\(x)=ί e-λ»<Pΐ(x,y)\φ\(y)dy.

So φ = |φ| a.e. and φ must be entirely positive.

Since any φ does not change sign no two can be orthogonal in L2. This
completes the proof of Theorem (2.8).

8. The φ-process and completeness of λ-harmonic functions

(Proof of Theorem (2.10))

It is formal that the operator defined on functions by the kernel
e~λtφ(y)/φ(x)p((x, y) and on measures by duality preserves the function 1
and the measure Φ2(y)dy iff φ(x) = fM e~λtpt(x, y)Φ(y)dy (i.e. φ is com-
plete in the terminology of §2.2).

The differential operator or infinitesimal generator associated to this diffu-
sion operator is [φ]-1(Δ — λ)[φ], where [φ] denotes the multiplication opera-
tor by φ. Thus

[ φ ] - 1 ( Δ - λ ) [ φ ] / = φ - 1 ( Δ - λ ) φ /

= φ^dΔφ) •/ + Φ ' Δ/+ 2gradφ grad/- λφ/)

= Δ/+ 2 grad log φ grad/,

since Δφ = λφ.

If M is λ0-recurrent and φ0 is the unique positive λ0-harmonic function (up
to a multiple), then by (5.2) we must have φo(x) = fM e~λς)tpt(x, y)φo(y)dy,
namely the first of (5.2) holds. For otherwise, by the second of (5.2), λ 0

belongs to the Green's region. This proves all but the last part of Theorem
(2.10).

To prove recurrence we simply check the criterion for recurrence that the
Green's function of the process is identically + oo. For the φ-process the
Green's function is /0°° e~λotφ(y)/φ(x)pt(x, y) dt which equals + oo since the
Φ(y)/Φ(x) factor does not matter. This proves Theorem (2.10).

Now let us discuss the question of completeness for λ-harmonic functions.
We will give several arguments for the existence of complete λ-harmonic
functions which depend on auxiliary hypotheses.

Argument (8.1) (Fixed point property). Let ^ λ note the convex cone of
positive λ-superharmonic functions. The heat semigroup operates on # λ . Using
compactness of the base of ^ λ and continuity of Pt (if true simultaneously) we
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have, by the fixed point theorem, fixed rays in # λ . Taking the minimum λ,

namely λ 0 , the equation P ψ = cφ implies c = e~λot and we arrive at a

complete positive λ0-harmonic function. (I am indebted to Dan Stroock for

pointing out that a topology making # λ have a compact base and Pt

continuous for a general Riemannian manifold is not obvious.)

Argument (8.2) (Minimal λ-harmonic functions). Let J^x denote the convex

cone of nonnegative λ-harmonic functions. The base of JFλ is compact by the

Harnack principle of §3. Suppose the heat semigroup preserves J^λ or that

even J ^ = J^x Π Pt^x Φ 0 is a nontrivial convex cone with a compact base.

Let / lie in an extreme ray of 3tf and let /° = Pt

λf. Then / > /° by (4.1) and

f° belongs to 3/P. Now g = / - /° is nonnegative and λ-harmonic. If / = Pt

λh,

then g = Pt

λ(h - / ) so g belongs to Jf. Since / = g + / ° we must have

g = cxf and f° = c2f since / is extreme. But c2 < 1 is impossible for then f°

would not be λ-harmonic. Thus / = Pt

λf for any extreme ray. By linearity and

Choquet, h = Pt

λh for any h in JίT.

So if Jίf= Jfχ Π P'Jfχ is closed and nontrivial it consists entirely of complete

λ-harmonic functions.

Example (8.3). If M is the interior of a compact manifold with boundary, a

continuous positive λ-harmonic function φ is rarely complete. By (4.1) it is

necessary that φ vanishes on the boundary. Thus λ = λ 0 and φ must be

proportional to zeroth eigenfunction φ 0, which is complete.

Example (8.4) (Another argument). If M (or a covering space) has bounded

geometry, that is each point is centered in a neighborhood of fixed radius

which is a bounded distortion of the unit ball in Euclidean space, then every

positive λ-harmonic function is complete. This follows because the constants in

Harnack's principle are uniform (so a positive λ-harmonic function φ grows at

most exponentially) and the heat kernel satisfies an inequality pt(x, y) <

cea(d(x,y))2

 f o r t ^ ! a n d d^χ^ y)^\ ( s o pt(x^ y)φ(y)dy has little mass near

infinity). Now a straightforward estimate shows that a positive λ-harmonic

function is complete.

Problem (8.5) (Stroock and Sullivan). Which open connected manifolds have

complete positive λ0-harmonic functions? (See [24].)

We now turn to the proofs of the theorems in §2.3.

9. Proof of Theorems (2.11) and (2.16)

If for some λ there is a positive λ-harmonic function φ on Hd+ι, then we

can average φ over the compact group of isometries fixing some y in

Hd+1. We obtain a spherically symmetric positive λ-harmonic function
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φ(R) = sλ(x, y\ where R = d(x, y). Then φ(R) satisfies

where A(R) = the area of the sphere of radius R about y, and A\R) =

For /? near zero and infinity respectively, this equation becomes

( 9 2 )

The exponential solutions near oo are determined from the indicial equation
u2 + du — λ = 0. In other words if a = - w, λ = a(a — J). Real exponentials
result iff λ > - \d2. Thus there are spherically symmetric positive λ-harmonic
functions iff λ> - {d2. This proves Theorem (2.11)(i).

Before proving Theorem (2.11)(ii) we must prove Theorem (2.16) and
analyze the λ-Green's function, gλ(x, y) = /o°° e~λtpt(x, y)dt. Looking again
at the equations in the form (9.2) one sees:

(i) Near R = 0 there is a 1-dimensional subspace of bounded solutions, the
rest of the solutions have a standard Green's singularity, log(l/R) if d = 1 and
(l/R)d~ι if d> 1.

(ii) At R = oo there is a 1-dimensional space of solutions asymptotic to
const e~aR, where a = \d 4- (λ + \d2)ι/1. The rest are asymptotic to const
• e-

{d~a)R ύa> \d or const Re~(d/2)R if α = K

We know from Theorem (2.11) and Theorem (2.6) and the nonuniqueness of
positive λ0-harmonic functions that the Green's region is [λ0, oo). We know
from (Δλ. — λ)gλ(x, y) = dirac mass at y that gλ(x, y) has a standard Green's
singularity at x = >>, # = 0.

We have seen from the definition that Sλ(x, y) is bounded near /? = 0 and
therefore Sλ(x, y) is the small (or recessive) solution near R = 0. We want to
show that gλ(*, y) is the small (or recessive) solution at R = oo.

Claim (9.1). The recessive solution at R = oo for λ > λ0 is positive for all
R > 0 and has a Green's singularity at R = 0.

ZVtfo/ 0/ claim. The bounded solution at R = 0, Sλ(.x, >0, has the simple
formula

fφ(x',ξ,a)dθ,



344 DENNIS SULLIVAN

FIGURE 2

FIGURE 3

where dθ is the spherical measure on Sd with y the center of the unit ball

model and the φ( £, a) of §2.3 are normalized at y.

A special case of the calculation in the proposition of the proof of Theorem

(2.13) shows that Sλ is a large solution near R = oo. Thus g, the recessive

solution at R = oo, cannot also be recessive at R = 0 because it would then be

a multiple of Sλ (which is large at R = oo).

Thus g tends to oo as R -> 0 and must cross Sλ for some smallest R = Ro.

At #0 the Wronskian gS{ - Sλg' = g(R0)(S{ - g') is negative since g(R0)

= Sλ(R0) > 0, and S{(R0) < g'(R0). Since the Wronskian does not change

sign and S{ < 0, each of the behaviors depicted in Figure 2 is ruled out. So

g > 0 and we have Figure 3 which proves the claim and a bit more, q.e.d.

To finish the proof that g = const gλ(x, y) write gλ(x, y) as the

supagχ(x, y), where Da is an exhaustion of Hd+1 by balls centered at y, and
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g\(x, y) is the λ-Green's function for Da. Now cλg - c2Sλ is zero on dDa and
has the same weight singularity at R = 0, where cx and c2 are positive
constants. So cλg - c2Sλ = gχ(x, y). Thus g"(x, y) < const g. The constant
is fixed, so gλ(*, y) = supαg£(.x, j ) < const g. It follows that gλ(x, y) is
small (or recessive) at R = oo and must be a constant times g. This completes
the proof of Theorem (2.16).

Now we are in a position to prove Theorem (2.11)(ii) by Martin's construc-
tion (1941). We sketch the steps of this famous argument.

Choose a reference point x0 in Hd+1 and consider the quotient kλ(x, y) =
g\(x> y)/gχ(xo> y)- As a function of y (x fixed), kλ(x, y) is continuous on
H^ + 1 U Sd with kλ(x,ξ) = φ(jc,ξ,α) (normalized at JC0) for ξ in Sd. This
follows from Theorem (2.16), a = \d(\ + \d2)ι/1.

Let φ be a positive λ-harmonic function which is a limit of λ-potentials

ΦΛχ) = f g\(χ,y)diin(y)
y

of Radon-measures μn on H ί / + 1 (all are as we shall see). The measures
M w ^ 8x(xo> >;)MW have total mass ^ Φn(x) ( < Φ(^) + 1 for w large). So let μ
be a weak limit measure in Hd+ι U S*. Since (Δ - λ)φn = μn and (Δ - λ)φ
= 0, μ must be supported on Sd. We calculate

φ ( x ) = Umφ l f(jc)= lim ί gλ(x, y) dμn(y) = lim ί kλ(x, y) dμ'n{y)
n n Jγ n Jγ

= / kλ(x, y) dμ (because kλ(x, y) is a continuous function of y)
y

= ίφ(x,ξ,a)dμ(ξ),

since ju lives on Sd. This proves the existence part of Theorem (2.11)(ii) for a
limit of potentials.

We now give the classical argument to see that any λ-superharmonic
function / is an increasing limit of potentials. Form fn = min{/, nGλχn},
where χn is the characteristic function of the ball of radius n about some fixed
point and Gλχn(x) = fM χn(y)gλ(x, y)dy. Then fn is nonnegative bounded,
λ-superharmonic, fn increases to /, and fn satisfies miτ_^^Pjfn = 0 (the
latter, since this is true for nGλχn and inf{P£/, P$g) > P$ inf{/, g}).

Now apply (5.1) to fn and let Γ -^ oo to obtain

P,λfn)) = 1/tζ
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The right-hand side is increasing to fn as t -> 0 since fn is λ-superharmonic.
Thus fn is the increasing limit of potentials Gλμt where μt = l/t(fn - Pt

λfn).
This implies that / is the increasing union of potentials and completes the
proof of the existence part of Theorem (2.11)(ii).

The uniqueness follows from Theorem (2.12) (which only uses the existence
part of Theorem (2.11)(ii) in its proof).

10. Proof of Theorems (2.12), (2.13), (2.14), and (2.15)

To prove Theorem (2.12) we must first calculate the normalizing factor for
μ(/?, φ, R) = \/cR (φ/S{p, R)) - spherical measure. We want

= l/cj φ/S(p,R)dβR(x),

where dθR is the unit spherical measure on S(p, R). Write φ as an integral of

φ{x)= jφ(x9ξ9a)dμ(p9y)(ξ)9

where μ(p, φ) has total mass φ(p). Substituting gives

Φ(P)CR= f f' Φ(x,ξ,cL)dμ(p9φ)(ξ)dθR(x)

= f[fχφ(x,ξ,a)dθR(xήdμ(p9φ)(ξ).

Thus cR is the function of R, Sλ(R) = fx φ(x, £, a) dθR(x) where x = (R, ξ),
which we have seen in §9 to be of the order e-(d-a)R for α > \d and
βe-(j/2)R j o r a __ i j with the indicated choice of cR the total mass of
μ(p,φ, R)isφ(p).

Now let / be a continuous function on the compactification of HJ+1 by
H ί / + 1 U SJ and let fl ̂  oo. Then

= 7~ f fi f φ(x,ξ,<x)dμ(p,φ)(ϊ))dθR(x)
CR J.x \ Jί I

= f {1- [ f(x) φ(x,ξ,a)dθκ(x))dμ(p,φ)ti).
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Outside a disk of radius ε > 0 (fixed so that / is near /(£) on this region) in

polar coordinates ( Λ , | ) , Φ(x, ξ, a) is of the order e~aR. On the other hand,

the integral / φ(x,ξ,a)dθR is larger, e~
{d~a)R or Re~^/2)R as indicated

above.

Thus the inner integral is concentrated near £ and converges to f(ξ) on

R -> oo. Thus

lim ff'dμ(p,φ,R)= f fdμ(p,φ),

proving Theorem (2.12).

Remark (10.1). This proof of Theorem (2.12) for a > \d was shown to me

by Mary Rees who offered it as an alternative to the sketch of part (ii) for a

> \d in [26]. The questions of Mary Rees were part of the motivation for the

exposition here.

Now we prove Theorem (2.13). First we have a proposition asserting that no

finite measure μ on Sd is more diffuse than Lebesgue measure.

Proposition (10.2). Let μ be a finite positive measure on Sd. Then for

μ-almost all ξ in Sd,

where μ(ξ, r) is the μ-measure of a disk of radius r centered at ξ.

Proof. Let A be the set of ξ in Sd so that for every δ > 0 and ξ in A there is

a sequence η -> 0 with μ(£, η) < εrf. By the covering lemma [9, Theorem

2.8.14] there are (arbitrarily fine) coverings of A using disks of these radii (and

centers on A) which fall into K = K(d) collections consisting of disjoint disks.

One of these collections C must contain at least \/K μ(A) of the mass of

μ. Thus

C

d< ε Lebesgue measure of Sd.

So μ(A) < ε K measure of Sd for any ε > 0. This proves the proposition.

Fix £ 0 and calculate for x = (R, ξQ)

φ(x)= fφ(x,ξ,*)dμ(p,φ)(ξ).

Divide the integral into three parts: (i) d(ξ, £ 0) < e~R> ( u ) e~R < d(ζ> !o) < ε '

and (iii) d(ξ,ξ0) > ε. Here ε > 0 is a parameter and d is the spherical or

Euclidean distance in the unit ball model.



348 DENNIS SULLIVAN

An elementary calculation (see [27, §1]) shows that for x = (ξ0, R) in these
three regions φ(x, i , a) is comparable to

(i) e+aR, (ii) e-aR/s2a, (iii) e~aR,

where s = d(ί , ξ0). Thus

φ(jc) = φ ( ί , Λ ) = ί eaRdμ + [ e'aR/s2adμΛ- ί e~aRdμ.
J(i) •'(ii) •'(iii)

The first term is comparable to eaRμ(ζo,e~R). The third term is at most
e~aR. We treat the second term by partial integration to obtain (ignoring
constants)

**[ ί μ(ξo,s)/s2^ds - μ(ξo,e-R)/e-^R + C(β)

= e~aR f μ(ζo,s)/s2a + ιds -(const first term) + const(ε).
•'e~Λ<j<ε

. So, II = e-°Rfe-*<s<eμ(ξ0,s)/s2a+ιώ is
Now by the previous proposition for μ-almost all ξ0, μ(ξo,s) is eventually

00.1)

It follows that for R large either the first term (i) is at least as large as II or
the second term (ii) is of the order of II. Thus (i) + (ii) is at least as large as II
which is much bigger than (iii). This proves Theorem (2.13)(b). The others are
easier.

We have also derived the fact that the essential contribution to φ(x) =
φ(R, ξ0) for R large (> R(ε)) and μ-almost all £0 comes from the part of the
integral with d(ξ, £0) < ε for any ε > 0. This is useful for Theorem (2.14).

We now write out

= fl φ(x,ξ,a)dμ,

where μ = μ(p,φ2) and χ(ξ) = dμ(p,φι)/dμ(p,φ2)(ξ). By the above for
/x-almost all ξ0 and for R large we only need consider the integrals for

Now consider a set A of ξ of positive μ-measure where χ(£) is approxi-
mately a. For x = (R,ζ0), φ(x9ξ,a) only depends on d(ξ,ξ0), as indicated
above. Moreover, φ(x, £, a) only varies up to a constant near 1 in ratio on
annuli of a definite shape around £0 (again, from the above).
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For each ξ0 in a subset B c A of full μ-measure we can choose ε so that if

we divide the ε-disk about £0 into concentric annuli of (relative) constancy for

φ(x, £, α) (x = (Λ,£ o), # > #(ε)) each of these annuli will be mostly filled

(relative to μ) by points of A, and the μ-integral of χ on each is approximately

a. This follows from Lebesgue density and differentiation. Then we see that

φλ(x) and Φ2(.x) are sums of terms in approximate ratio a which is approxi-

mately χ ( £ 0 ) These sets A fill up μ. This proves Theorem (2.14).

Now we turn to the proof of Theorem (2.15). Let A be a set of positive

jit-measure so that φ(R, £) < e

(σ+ε)R for ε > 0 and R > R(ξ, ε). Fixing ε we

can make /?(£, ε) independent of £ by reducing A a little to B. Write

δ = σ + ε and r = e~R. Referring to the decomposition of the integral for

φ(x) above, we deduce that the first term is < eδR. Thus μ(£ 0, r) ^ ra~δ for

any ξ0 in B.

For any covering of B by balls of radius η centered at £, in i? we have

Thus the Hausdorff (a - δ)-measure of B is positive. So the Hausdorff

dimension of A ^> B is > α - δ = α - σ + ε f o r every ε > 0. This proves

Theorem (2.15).

11. Proof of Theorems (2.17), (2.19), (2.21), (2.23), and (2.24)

If M = H ^ / Γ , then p™(x, y) is just ΣyGTpt(x0,yy°l where x°, j ° lie in

H^ + 1 over x, y. Thus gf(x, 7) = Σ γ e Γg λ(jc°,γj°). So if x° is not on the Γ

orbit of j>°, then gjίfix, y) has the order of the Poincare series

Στexp(-ad(x°,yy0)) by Theorem (2.16), a = \d + (λ + \d2)ι/1. Thus

Sifί*. 7) < 00 for x ^ ^ if α > δ(Γ) and g f (x, j ) = 00 for α < δ(Γ) when

δ(Γ) > W. This means λ o ( M ) = δ(Γ)(δ(Γ) - d) if δ(Γ) > \d by Theorem

(2.6). Otherwise λ o ( M ) = - iί/2, since λ o ( M ) > - | J 2 by Theorem (2.1)

and Theorem (2.11). This proves Theorem (2.17).

Theorem (2.19) is partially proved in [26] generalizing [20], namely δ(Γ) is

the minimum power (which is achieved) for a measure satisfying (2.1) [26, §2].

If δ > δ(Γ), put a Dirac mass at each point of the orbit y(y) of a point y in

the open ball model BdJrl of Hd+ι with weight \y'y\δ. A measure of finite

mass results because the Poincare series converges at δ > δ(Γ). This measure

satisfies (2.1) but is not supported on Sd. The set of measures of bounded mass

satisfying (10.1) supported in the closed ball is a closed set. Thus let y

approach infinity in a fundamental domain and take a limit to prove Theorem
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To prove Theorem (2.19)(ii) we merely let y approach a limit point staying
in one fundamental domain (then all the mass approaches the limit set) and
this is possible unless Γ is geometrically finite without cusps.

In that case there is only a measure of exponent δ(Γ), i.e. (2.1) for S = δ(Γ),
and this is Hausdorff measure by [26, §3]. This completes the proof of
Theorem (2.19).

To prove Theorem (2.21)(i) we merely quote [28], which proves δ(Γ) = the
Hausdorff dimension of the limit set for geometrically finite groups, and apply
Theorem (2.17). Part (ii) also follows from [28]. Thus Theorem (2.21) is proved.
The corollary is a local consequence.

Theorem (2.23) follows from Theorem (2.17) and [26, Corollary 27]. Theo-
rem (2.24) follows from Theorem (2.21) and the definitions (see [14]).
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