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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volunle 295* Number 2, June 1986 

GENERIC DYNAMICS AND 
MONOTONE COMPLETE C*-ALGEBRAS 

DENNIS SULLIVAN, B. WEISS AND J. D. MAITLAND WRIGHT 

ABSTRACT. Let R be any ergodic, countable generic equivalence relation on a 
perfect Pol;sh space X. It follows from the main theorem of §1 that, modulo a 
meagre subset of X, R may be identified with the relation of orbit equivalence 
ensuing from a canonical action of Z. 

Answering a longstanding problem of Kaplansky, Takenouchi and Dyer 
independently gave crosFproduct constructions of Type III AW*-factors which 
were not von Neumann algebras. As a specialization of a much more general 
result, obtained in 3, we show that the Dyer factor is isomorphic to the 
Talcenouchi factor. 

Intrceduction. Our two main results are Theorems 1.8 and 3.4. The first result 
is concerned with a countable group G acting as homeomorphisms on a complete 
metric space. When there is a dense G-orbit, we show that the relation of orbit 
equivalence (with respect to G) can be identified, modulo meagre sets, with that 
arising from a canonical action of Z. 

The other main result is on the classification problem for AW*-cross-products. 
It follows as a corollary to Theorem 3.4 that the Takenouchi factor is isomorphic 
to the Dyer factor. 

The intimate relationship between classical dynamics and von Neumann algebras 
is paralleled by an equally close connection between generic dynamics and monotone 
complete AW*-algebras. However, the reader whose main interest is in the results 
on countable groups acting on complete separable metric spaces, may safely ignore 
all references to C*-algebras and all references to spaces which are not metric 
spaces. He could proceed straight to §1, referring to §0 for any unfamiliar notation 
or results. 

Let G be a countable discrete group acting as homeomorphisms of a perfect 
Polish space X (that is, X is homeomorphic to a complete separable metric space 
without isolated points). This action is said to be generically ergodic if, for some 
x0 G X, the orbit GXo is dense in X. Equivalently, each G-invariant Borel subset 
of X is either meagre or the complement of a meagre set. 

From the standpoint of topological dynamics, the action of G on X would be 
studied without throwing anything away. In classical dynamics, sets which are 
null with respect to some G-invariant (or quasi-invariant) measure are regarded as 
negligible. In generic dynamics we investigate the action of G on r modulo meagre 
sets. We prove, in Theorem 1.8, that if G acts (generically) ergodically then orbit 
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796 DENNIS SULLIVAN, B. WEISS AND J. D. M. WRIGHT 

equivalence on X is unique, modulo meagre sets. This is astonishingly different 
from what happens in classical dynamics. 

For, in classical dynamics, even when G = Z, different actions of Z give rise 
to a continuum of, essentially different, orbit equivalence relations. (They can be 
classified into Types II1, IIoo and IIIvi, with 0 < ) < 1.) On the other hand, any 
action of an amenable group [1] is orbit equivalent to an action of Z. But, in general, 
nonamenable groups give rise to orbit equivalence relations which do not arise from 
actions of Z. 

Let B be the algebra of bounded Borel functions on the unit interval and M 
the ideal of Borel functions f for which {x: f (x) + O} is meagre. Then B/M is a 
commutative AW*-algebra which is not a von Neumann algebra. 

When G is a countable group acting freely and ergodically on B/M, there 
is a corresponding monotone complete C*-algebra, the monotone cross-product 
M(B/M,G). This is an AW*-factor of Type III which is not a von Neumann 
algebra [11]. 

The existence of AW*-factors which are not von Neumann algebras was a ques- 
tion of Kaplansky which went unanswered for many years. Independently, Take- 
nouchi and Dyer gave examples, see [2, 11, 15], which were of the form M(B/M, G1) 
and M(B/M,G2) fordifferent abelian groups G1 and G2. By Corollary 3.5 the 
Takenouchi and Dyer algebras are isomorphic. But much more is true. In startling 
contrast to the situation for von Neumann algebras, we show in Theorem 3.4 that 
all AW*-factors of the form M(B/M, G) are isomorphic. 

Inspired by Feldman and Moore's [4, 5] construction of groupoid von Neumann 
algebras associated with measurable countable equivalence relations, we consider an 
analogous construction of a groupoid AW*-algebra associated with an equivalence 
relation modulo meagre sets in §2. It would be possible to go into considerable 
detail, but we confine ourselves to the fragment of this theory which we need in §3. 

0. Preliminaries and background information. Let X be a Polish space, 
that is, a topological space which is homeomorphic to a complete separable metric 
space. Let Bor(X) be the a-field of Borel subsets of X, and let Mg(X) be the ideal 
of all meagre Borel subsets of X. Then, by a theorem of Birkhoff and Ulam [13, p. 
75], Bor(X)/Mg(X) is isomorphic to the complete Boolean algebra of regular open 
subsets of X. 

Let (Uqv,) (n = 1, 2, . . .) be a sequence of nonempty open sets which form a base 
for the topology of X. For each n, let Vn be the interior of the closure of Un. 
Clearly each regular open subset of X contains Vn, for some n. 

We shall assume in all that follows, that the Polish space X is perfect, that is, has 
no isolated points. This is equivalent to the Boolean algebra Bor(X)/Mg(X) being 
nonatomic. It turns out that Bor(X)/Mg(X) is isomorphic to Bor(R)/Mg(R); see 
[13, p. 155]. 

Let S be the Stone structure space of Bor(X)/Mg(X). Then S is compact and 
extremally disconnected. By the remark above, there exists a sequence of nonempty 
clopen subsets of S, (Kn) (n = 1, 2, . . .), such that, given any nonempty clopen set 
K c S, there exists an n such that Kn C K. This clearly implies that S has a 
countable dense set, but, of course, S does not have a countable base. 

Let 0 be a bijection of X onto X. We shall call 0 a pseudo-homeomorphism of 
X if 0 is a Borel bijection of X onto X such that 0[E] is meagre if, and only if, E 
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GENERIC DYNAMICS AND C*-ALGEBRAS 797 

is meagre. Clearly all homeomorphisms are pseudo-homeomorphisms, but simple 
examples show that Borel bijections need not be pseudo-homeomorphisms. 

When 0 is a pseudo-homeomorphism of X, then there exists a dense Ga-subset 
XO such that the restriction of 0 to Xo is a homeomorphism of Xo onto Xo. This 
follows by applying a theorem of Kuratowski [9, p. 400] to 0 and 0-1. 

Let R be an equivalence relation on a Polish space Y; we identify R with its 
graph. When R is a Borel subset of Y x Y and each equivalence class is countable, 
then R is said to be a countable standard equivalence relation. For any A contained 
in Y the saturation of A (by R) is the set 

R[A] = {y E Y;there exists x E A such that xRy}. 

When R is a countable standard equivalence relation such that, for each meagre 
set M c Y, its saturation R[M] is also meagre, we shall call R a countable generic 
equivalence relation. 

PROPOSITION 0.1. Let R be a countable generic equivalence relation on a Pol- 
ish space Y. Then there exists a countable group, r, of pseudo-homeomorphisms of 
Y such that 

R = {(x,ax): x E Yand q E r}. 
Furthermore, there exists a dense Ga-set Yo C Y and a countable group, G, Of 
homeomorphisms of Yo such that R[Yo] = Yo and 

Rn(YO x YO) = {(x,ax): xeYO andqEG}. 

PROOF. Since R is a countable standard equivalence relation, there exists, by 
Theorem 1 of [3], a countable group, r, of Borel bijections of Y such that R = 
{(x,Ax): x E Y and q E r}. 

Let M be any meagre subset of Y. Then R[1V] is meagre. So, for each q E r, 
a[M] and q-1[M] are meagre. So r is a group of pseudo-homeomorphisms. It 
follows from the properties of pseudo-homeomorphisms and the countability of r, 
that there exists a r-invariant, dense, Ga-subset YO C Y such that each Y in r 
restricts to a homeomorphism of Yo onto itself. Let G be the countable group of 
such restrictions. 

It follows from the above proposition that the study of countable generic equiva- 
lence relations reduces to the study of countable groups of homeomorphisms. In the 
next section we shall investigate the latter but, of course, the main result, Theorem 
1.8, applies to ergodic generic equivalence relations. 

For any topological space T, let B(T) be the C*-algebra of all bounded (complex- 
valued) Borel functions on T, M(T) the ideal of all f in B(T) for which {t E 
T: f(t) 7& O} is meagre and let C(T) be the algebra of all bounded continuous 
functions on T. Then, whenever X is a Polish space with no isolated points, 

B(X)/M(X) C(S). 

Following [16] we shall call C(S) the Dismier algebra and will sometimes denote it 
by D. We remark that B(S)/M(S) is, again, C(S). The selfadjoint part of C(S) 
is a complete vector lattice. By the Baire Category Theorem the natural map j 

from C(X) into B(X)/M(X) C(S) is an injection. It is elementary, but useful, 

to observe that j[C(X)] is order-dense in C(S); that is, each selfadjoint b in C(S) 
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798 DENNIS SULLIVAN, B. WEISS AND J. D. M. WRIGHT 

is the supremum of {j(a): j(a) < b and a E C(X)}. In particular, this implies that 
if two *-automorphisms of C(S) coincide on j[C(X)], then they are identical. 

Let 0 be a pseudo-homeomorphism of X. Then 0 f o 0 is a *-automorphism 

of B(X) which maps M(X) onto M(X). This induces a *-automorphism of 

B(X)/M(X) C(S) 

which, in turn, induces a homeomorphism 0 of S. 
Conversely, by a theorem of Maharam and Stone [10] (see [14] for a noncom- 

mutative generalization) every *-automorphism of C(S) arises in this way from a 
pseudo-homeomorphism of X. 

1. Discrete group actions. Throughout this section X is either a perfect 
Polish space or S, the Stone structure space of Bor(R)/Mg(R), or a dense Ga- 
subset of S. 

LEMMA 1.1. Let G be a countable group of homeomorphisms of X. Then the 
following conditions are equivalent: 

(1) Each G-invariant Borel subset of X is meagre or comeagre. 
(2) Each G-invariant open subset of X is either empty or dense. 
(3) There exists a G-invariant, dense Ga-subset of X, Y, such that {gy: g E G} 

is dense for each y E Y. 
(4) There exists an xo in X such that Gxo is a dense orbit. 

PROOF. It is clear that (1) implies (2). 
There exists a sequence of nonempty open sets (Un) (n = 1, 2j . . .) such that each 

nonempty open set in X contains some Un. 
We now assume (2) and deduce (3). For each n, the set U9EG 9[Un] is G-invariant, 

nonempty, and open. So it is dense in X. 
Let Y be the dense, Ga-set nn=l U9EG 9[Un] Let y E Y. Let V be any nonempty 

open subset of X. For some n, Un C V. For some g E G, gy E Un. Hence, Gy is a 
dense orbit in X; that is, (2) implies (3). 

It is clear that (3) implies (4). We shall now show that (4) implies (2). Let U 
be any nonempty, G-invariant open subset of X. Then, by (4), gozo E U for some 
9o E G. Since U is G-invariant, it follows that Gxo C U, and so U is dense in X. 

It remains to show that (2) implies (1). 
Let E be a nonmeagre G-invariant Borel subset of X. By the Baire Property, 

there exists a nonempty open set U and a meagre set Mo such that 

E=(U\Mo)U(Mo\U) 

Now Mo is contained in a G-invariant, meagre F-set M1. Since (2) implies (3), 
there exists a G-invariant, dense Ga-set, Y, such that Y c X\M1 and each G-orbit 
in Y is dense in X. 

We observe that E n Y = u n Y. Then, in the relative topology of Y, U n Y is 
a G-invariant open set. Since each G-orbit in Y is dense in Y, it follows from the 
equivalence of (2) and (3) that U n Y is dense in Y. Hence U is dense in X. So E 
is the complement of a meagre subset of X. 

DEFINITION. The action of a countable group, G, of homeomorphisms of X is 
said to be (generically) ergodic if each G-invariant open subset of X is either empty 
or meagre. 

This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 16:53:40 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


GENERIC DYNAMICS AND C*-ALGEBRAS 799 

COROLLARY 1.2. Let G and X be as above. Let Z be a G-invariant, dense, 
Ga-subset of X. Then the action of G on X is ergodic if, and only if, the action of 
G on Z is ergodic. 

PROOF. Suppose G acts ergodically on X. Then there is a dense Ga-subset Y, 
where Y is G-invariant, such that Gy is dense in X for each y E Y. Then Y n z is 
a dense Ga-subset of Z such that, for each y E Y n z, Gy is a dense orbit in Z. So 
G acts ergodically on Z. The converse is clear. 

COROLLARY 1.3. Let G be a countable group of pseudo-homeomorphisms of 
X. Suppose that each G-invariant Borel subset of X is either meagre or comeagre. 
Let Y be a G-invariant, dense Ga-subset of X such that each g in G restricts to a 
homeomorphism of Y onto Y. Then the action of G on Y is ergodic. 

When G is a countable group of pseudo-homeomorphisms of X, such that every 
G-invariant Borel set is either meagre or comeagre, the action of G is said to be 
(generically) ergodic. 

LEMMA 1. 4. Let G be a countable group of homeomorphisms of X. Then there 
exists a G-invariant, dense, Ga-subset Y such that, for each g E G, the set 

F(g) = {y E Y: g(y) = y} 

is clopen in the relative topology of Y. 

PROOF. Let F*(g) be the closed set {x E X: g(x) = x}. Let F°(g) be the 
interior of F*(g). Let M1 be the meagre F-set UgEG(F*(g) \ F(g)). Let M2 be 
the saturation of M1 by G; that is, 

M2= U g[Ml]. 

geG 
Let Y = X \ M2. Then, for each 9, 

F(g) = F*(g) n Y = F°(g) n r. 

So F(g) is both closed and open in the relative topology of Y. 
The following notion is important for some applications to C*-algebras. Let G 

be a group of homeomorphism acting on X. Let h be a pseudo-homeomorphisms of 
X onto itself. Then h is said to be G-decomposable over X if there exists a sequence 
of pairwise disjoint clopen sets (Kj) (j = 1, 2, . . .) and a sequence (9n) (n = 1, 2, . . .) 
in G such that UKj is dense in X and, for each x E Kj, h(x) = 9j(X). If UKj is 
the whole of X, then we say that h is strongly G-decomposable over X. When this 
occurs, h must be a homeomorphism. 

Let G and r be countable groups of homeomorphisms of X. If each q E r is 
strongly G-decomposable over X and each g E G is strongly r-decomposable over 
X, we say that the G and r actions are strongly equivalent. Clearly when G and r 
are strongly equivalent, GraphG = Graphr; that is, G and r are orbit equivalent. 

It is convenient to introduce a weaker notion of equivalence which is appli- 
cable when G and r act on different spaces. Let G be a countable group of 
pseudbhomeomorphisms acting on X1, and let r be a countable group of pseudb 
homeomorphisms acting on X2. We shall say that the G-action on X1 is equivalent 
to the r-action on X2 when the following conditions are satisfied. There exists a 
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800 DENNIS SULLIVAN, B. WEISS AND J. D. M. WRIGHT 

dense Ga-subset Yj c Xj (j = 1, 2), and there is a homeomorphism 7r from Y1 onto 
Y2. For each g E G, the restriction of g to Y1 is a homeomorphism of Y1 onto itself. 
For each q E r, the restriction of q to Y2 is a homeomorphism of Y2 onto itself. 
Further, the action of G on Y2 given by {7rg7r-1: 9 E G} is strongly equivalent to 
the action of r on Y2 

LEMMA 1. 5 . Let G and r be countable groups of homeomorphisms of X. Let 
each q E r be strongly G-decomposable over X. For each g E G, let {x E X: g(x) = 
x} be a clopen set. 

Let l\ be a countable dense subset of X, which is G-invariant and r-invariant, 
and such that /\ x /\ c GraphG and l\ x l\ c Graphr. 

Then there exists a dense Ga-set Y, with l\ c Y c X, which is G-invariant and 
r-invariant and such that G and r are strongly equivalent on Y. 

PROOF. Let g be any element of G. Fix xo E 1\. Then 

(XOv gxo) E I\ x l\ c Graph r. 

So, for some q1 E r, g(xO) = q1(xo). Since q1 is strongly G-decomposable over X, 
there exists a clopen neighbourhood of xo) Ko) and 9o E G such that go(X) = q1(x) 
for all x E Ko. Since g-lgo(xo) = xo) there is a clopen neighbourhood of xo) K1 c 

Ko) such that g(x) = go(x) = al(x) for all x E K1. Since l\ is countable we can 
find a sequence of pairwise disjoint clopen sets (Kn) (n = 1, 2, . . .) and a sequence 

(tYn) (n = 1, 2, . . .) in r such that 

g(x) = An(x) for all x E Kn 

and l\ c Ul Kn 
Let 09 be the dense open set Ul Kn. Let Yo be the dense Ga-set ngEG 09. Let 

Y be the intersection of 

{p[Yo]: p is in the group generated by G and r}. 

Then Y is a dense Ga-set containing 1\. Also G and r are strongly equivalent on 
Y. 

The following technical lemma is crucial. 

LEMMA 1. 6. Let G be a countable group of homeomorphisms acting ergodically 
on X, and let X be totally disconnected. Let /\ = {tn: n = 0,1, 2, . . .} be a dense 
orbit of G. Let A and B be nonempty, disioint clopen subsets of X. Let a E A n l\ 
and b E B n 1\. Then there exists a G-invariant, dense Ga-set Y,. with l\ c Y, 
and a homeomorphism h from Y onto Y, with the following properties. First h 
interchanges A n Y and B n Y and h is constant on y \ (A U B) . Secondly, h(a) = b 
and h = h-1. Thirdly, h is strongly G-decomposable over Y. 

PROOF. Since a and b are in the same orbit, 1\, gza = b, for some 91 E G. Let 
A1 be a clopen neighbourhood of a, with A1 a proper subset of A and g1[Al] a 
proper subset of B. Let B1 = g1[Al]. 

Since X has no isolated points, A n l\ and B n l\ are countably infinite. We 
enumerate these sets. Let a2 be the first term in the enumeration of A n l\ which 
is not in A1. Let b2 be the first term in the enumeration of B n l\ which is not 
in B1. Then g2a2 = b2 for some 92 E G. Let A2 be a clopen neighbourhood 
of a2 such that A2 is a proper subset of A \ A1 and g2[A2] is a proper subset 
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of B \ B1. Let B2 = 92[A2]. Proceeding inductively (or more precisely, using 
the axiom of dependent choice) we generate pairwise disjoint sequences of clopen 
sets (Aj) (j = 1X2) . . .) and (Bj) (j = 1X2X. . .)) where 1\ n A C Ul Aj c A and 
l\ n B C Ul Bj c BX together with a sequence (9n) (n = 1, 2) . . .) in G such that 
9n [An] = Bn for each n. Let F be the G-saturation of (A U B) \ Ul (An U Bn) and 
let Y=X\F. 

For x E An n Y let h(x) = 9n(z) 
For x E Bn n Y let h(x) = 9n-1(z) 
For x E Y\ (AUB) let h(x) = x. 
Then h has all the required properties. 
The next lemma is cumbersome to state, but the essential idea is straightforward. 

We are manufacturing a copy of the dyadic group 3 Z2 from the action of G and 
at the same time splitting T into dyadic pieces. 

LEMMA 1.7. Let T be a totally disconnected, perfect Polish space. Let G be a 
countable group of homeomorphisms acting ergodically on T. Let l\ = {toX tl, . . .} be 
a dense orbit. Let (Sk) (k = 1, 2, . . .) be a monotone decreasing sequence of clopen 
neighbourhoods of to such that tn ¢ Sn for any n. Then the following statements 
hold. 

(1) There exists a monotone decreasing sequence of G-invariant, Ga-sets, (Tn) (n 
= 1, 2, . . .), where A c Tn for each n. 

(2) There is a sequence (hn) (n = 1, 2, . . .), where each hn is a homeomorphism 
of Tn onto Tn and hn = hn-1. For 1 < k < n the functions hklTn are mutually 
commutative. Each hn is strongly G-decomposable over Tn. 

(3) For each positive integer n, there exists a family of pairwise disioint, clopen 
subsets of Tn7 

{Kn(a1, CX!2, . . ., c!n): (a1, CE2, * * *, ctn) E {O, 1} }, 
whose union is Tn 

(4) 
Kn((tllv °g2, . . ., c!n) n Tn+l = Kn+l(c!l, CE2, . . .,0) 

U Kn+l(CX!l, CX!2, . . ., °en) 1). 
(5) Kn(O) C Sn n Tn and to E Kn(°) 
(6) Let cE E {o, l}n. Then the homeomorphism hllh2t2 hnn acting on Tn 

interchanges Kn (O) with Kn (a) . 
(7) For each n, 

{to, tl, * *, tn} c {h1 1 h2t2 hnn (to) ct E {O) 1}n} 
PROOF. We proceed inductively. Lemma 1.6 gives the first step. 
Let A = S1 and B = T \ S1. So to E A and t1 E B. By the preceding lemma, 

there exists a dense Ga-set T1 c T such that A c T1 and a homeomorphism hl 
from T1 onto T1 which is strongly G-decomposable over T1, interchanges An T1 and 
B n T1 and maps to to t1 . Also h1 = h1 1. Let K1 (O) = A n T1 and K1 ( 1) = B n T1 . 

Let us now suppose that we have constructed (T1, . . ., Tn) and (h1, . . ., hn) and 
the families {Kk(ce): ce E {O, l}k} for k = 1, 2, . . ., n. We wish to make the (n+l)th 
step of this inductive construction. 

For some ce E {O, l}nX tn+l E Kn((ull,(ul2, . . . ,an). Let c = hllh2t2 hnn(tn+l). 
Then c E Kn(O). If c 7& to, let b = c. If c = to, let b be any element of Kn(O) n l\ 
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other than to. Let A be a clopen subset of Kn(O) n Sn+l such that to E A and 

bfA. Let B =Kn(O...O)\A. 
We apply Lemma 1.6 to AUB. Let Y be a G-invariant, Gs-subset of Tnv with /\ c 

Y, and h a homeomorphism of Y onto Y, as in Lemma 1.6. In particular, h(to) = b, 

h interchanges A n Y and B n Y, h = h-l and h is strongly G-decomposable over 

Y. 
LetT -T nY n+l 
Let Kn+l(O) = AnTn+l and Kn+l(O,O,...,O,1) = BnTn+l. For each Ol E 

{O, l}n we define 
Kn+l (ot O) = hl 1 . . . hnn [Kn+l (Q)] 

and 
Kn+l(Ol 1) = hal .. htn[Kn+l(° ° o 1)] 

We define hn+l as follows. Let 

hn+l(x) = hl1 *hnnhhl1 * htnn(x) 

for x G Kn(xl) (R2X..)(Xn). Then it is straightforward to verify that hn+l com- 

mutes with hj for 1 < j < n and has all the other required properties. This 

completes the (n + l)th step of the construction. 
We remark that since we may replace each Tn by n°n°=l Tn) which is again a dense 

Ga-set, we may use the preceding lemma with the additional assumption that each 

Tn = T1. 
We shall identify the Cantor set C with the compact group n Z2 The natural 

action of i3 Z2 on rl Z2 iS defined by (h,x) x + h. Let r be the group of 

homeomorphisms of H Z2 arising in this way from @ Z2 

THEOREM 1. 8. Let T be a perfect Polish space, and let G be a countable group 

of homeomorphisms acting ergodically on T. Then the G-action on T is equivalent 

to the r-action on the Cantor set. 

PROOF. Since T has a countable base and G is countable, we can find a G- 

invariant, dense Ga-subset, which is totally disconnected. Since Ga-subsets of Polish 

spaces are Polish, it follows from Lemmas 1.4 and 1.1 that we may suppose, without 

loss of generality, that T is totally disconnected, Gt is a dense orbit for each t E T 

and {t E T: g(t) = t} is a clopen set for each g E G. 

Let p be a complete metric for T. 
Fix to E T and let A = Gto. Let (hn) (n = 1, 2, . . .) and {Kn(a): al E {OX l}n} 

(n = 1, 2, . . .) be constructed as in Lemma 1.7, where we may suppose that T = Tn 

for all n. We also demand that each Sn is contained in a sphere of radius l/n 

centred on to 
By construction 

oO 

{to } = n Kn (o) 
n=l 

and limnOOdiameter(Kn(O)) = O. For each al E {0,1}m, hllh22* ham is a 

homeomorphism. So 
oO 

{hl1 hmm(to)} = n Kn(otlx **,(XmxO,O,***,O) 
n=m 
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GENERIC DYNAMICS AND C*-ALGEBRAS 803 

and, if xn E Kn(0el ) . . . ) °em) 0) 0) . . . ) O) for n > m + 1 then 

lim xn = h11h2t2 hmm(to) 
noo 

We now define a map 7r from T into the Cantor set. Let ((R1,(R2, ) be any 
infinite sequence of zeros and ones. 

For x E nn=l Kn (c!l ) Ol2 ) . . . ) ()ln) let 7r(x) be (cv1, ()l2 ) . . .) . From the definition 
of the topology of the Cantor set it is clear that 7r is continuous. By Lemma 1.7, 
and because each hn is strongly G-decomposable over T, the orbit l\ coincides with 

{hl 1 hmm (to) ct E {O, l}m; m = 1, 2, . . .}. 
It follows from the preceding paragraph that the restriction of 7r to 1\ is a bijection 
onto 3 Z2) that is, those sequences which take only finitely many nonzero values. 

Let (dn) (n = 1, 2, . . .) be a sequence in 1\ and d E A such that lim 7r(dn) = lr(d). 
We shall show that lim dn = d. 

Let lr(d) = (a1, a2v * * * v CRmv 0v 0v . . .). From the definition of the topology of the 
Cantor set, given any q there exists an N such that, for all n > N, dn is in the set 

Kq(()ll, ()l2, * * * v ctmv Ov Ov v °) 
So h1 1 h2t2 hmm (dn) is in Kq (O) for n > N. Since Kq (_) is contained in a sphere of 
radius l/q centred on to) it follows that limnOO hl 1 h2t2 hmm (dn) exists and is to. 
Since h1lh2t2 hmm is an idempotent homeomorphism it follows that limnOOdn 
exists and is h1lh2t2 hmm(to). That is, limnoodn = d. Thus the restriction of 
7r to A is a homeomorphism onto 3 Z2) regarded as a dense subset Of rl Z2 

By Lavrentiev's Theorem [9, p. 429, Chapter II] there exists a dense Ga-set Y 
such that A c Y c T and 7rlY is a homeomorphism onto a dense Ga-subset of 
H Z2 We may suppose that Y is invariant under the action of G and of the group 
generated by (hn) (n = 1, 2, . . .). The theorem now follows by applying Lemma 1.5. 

COROLLARY 1.9. Let Gj be a countable group for j = 1 and j = 2. Let aj be 
a representation of Gj in the group of all homeomorphisms of S. Let cej[Gj] act 
ergodically on S. 

Then ol1[Gl] is equivalent to ol2[G2]. There exists a dense G,-subset of S, So, 
and there exists a homeomorphism of S, , such that 

{(s, cx1(s)): 9 E G1 and s E So} = {(s, +6x2h+-1(s)): h E G2and s E So} 

PROOF. Let X be any perfect Polish space. Then B(X)/M(X) C(S). As 
remarked in §0, the results of Maharam and Stone [10] show that each homeo- 
morphism of S is induced by a pseudo-homeomorphism of X. For each pseudo- 
homeomorphism 0 of X, let 0 be the unique homeomorphism of S which is induced 
by 0. Then, by [10] or see [14, Corollary 2.6], we can find a homomorphism dj of 
Gj into the group of pseudo-homeomorphisms of X such that dy(g) = cXj9 for each 
g E Gj. 

By Theorem 1.8, :1[G1] is equivalent to p2[G2]. So there exists a pseudo- 
homeomorphism of X,^y, such that, for every g in G1, :1(9) is decomposable with 
respect to {?:2 (h)?- 1 h E G2 } 

Let X = ty so that + is a homeomorphism of S. Then al1 is decomposable with 
respect to {Xsx2h-1: h E G2}. Similarly, for each h in G2, cx2h-1 is decomposable 
with respect to {al1: 9 E G1}. 
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2. The C*-algebra of an equivalence relation. Throughout this section 
X is a Hausdorff topological space for which the Baire Category Theorem is true 
(e.g., a G^-subset of a compact Hausdorff space, or a complete metric space). Let 

be an equivalence relation on X such that there exists a countable group r of homeomorphisms of X such that x y X ty x = y for some ty E r. 

We shall first construct an algebra in terms of the equivalence relation , without 

explicit mention of r, but we shall make use of the fact that is generated by a 

countable family of homeomorphisms. In view of the remarks following Proposition 
0.1, this is a mild restriction. 

For each x E X, let [x] be the equivalence class generated by x; let [X] be the 
set of all equivalence classes, and let Gr be the graph of the relation ,v; let 12[x] 
be the Hilbert space of all square-summable complex valued functions (sequences) 
from [x] to C. For each y e [x], let by be the element of 12 [x] such that 

Ev(t) { 0 for t 7& y 

Then {by y E [x]} forms an orthonormal basis for 12[x] which we shall call the 
canonical orthonormal basis for 12 [x]. 

Let 
S= @ L(12[x]). 

[x] E [x] 

Here £(l2[x]) is the algebra of all bounded operators on 12[x]. Clearly S is a Type 
I von Neumann algebra (being the direct sum of such algebras) and is a subalgebra 
of the algebra of all bounded operators on the Hilbert space @[z]E[x] 12[x]. 

The algebra S is not, in itself, of interest, but we shall identify a subalgebra of S 
with an algebra of "Borel matrices" over Gr and then form a quotient of the latter 
algebra. 

The set Gr is the union of the pairwise disjoint sets [x] x [x]; i.e., 

Gr=U{[x]x[x]: [X]e[X]} 

To each operator M E S we can associate, canonically, a function m: Gr C 

as follows. We have 
M= @ M[z], 

[x] E [x] 

where M[z] is a bounded operator on 12[x]. So each M[z] has a unique matrix 
representation rn[z] with respect to the canonical orthonormal basis {by y E [x]} 
of 12[x]. Thus 

m[z] (y, z) = (M[z] 6z, bv) 

for all y, z E [x]. Let m: Gr C be the function such that 

m(x, y) = m[z] (x, y) for all (x, y) E Gr. 
It follows that there is a bijection between elements of S and those functions 

m: Gr C for which there exists a constant k such that, for each [x] E [X], the 

restriction of m to [x] x [x] is the matrix of a bounded operator on 12[x] of norm 
less than k. For such an m let L(m) denote the corresponding element of S. 
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Manipulation of matrices shows that 

L(f)L(g) = L(f O 9)v 
where 

f o g(x, z) = E f(x, y)g(8, z)v 
yE [x] 

and 
L(f)* = L(f*)v 

where f*(xX y) = f(yX x)) for all (x, y) E Gr. 
We see that, when f is a complex valued function on Gr, L(f) is a unitary in S 

if, and only if, 
f * o f (xX y) = f O f* (xx y) = { 0 for x 7& yX 

that is, if, and only if, 

f (zX x)f (zx y) = E f (xx z)f (Yx Z) { O for x + y. 

zE [x] zE [x] 

Since every element of a (unital) C*-algebra is a finite linear combination of 
unitaries, we see that a function f: Gr > C corresponds to an element of S, if, and 
only if, f is a finite linear combination of "unitary" functions. It follows by a slight 
refinement of the Russo-Dye Theorem that such an f corresponds to an element of 
the open unit ball of S if, and only if, f can be expressed in the form Eln A1u1, 
where each tsj is a "unitary" function and each A1 > O and Eln Aj < 1. 

Let (?n) (n = 1,2,...) be an enumeration of r. For each n, (x,y) (x:eyny) 

is a homeomorphism of X x X onto X x X. Since X is Hausdorff, the diagonal 
Z\ = {(x, x): x E X} is a closed subset of X x X. Hence Gr is the union of countably 
many closed subsets of X x X and so is a Borel subset of X x X. 

Let M(Gr) be the space of all Borel functions f: Gr C such that Lff) E S. 

LEMMA 2.1. {L(f): f E M(Gr)} is a C*-subalgebra Of S which is seqquentially 
closed with respect to the weak operator-topology Of S. 

PROOF. Let fX g be elements of M(Gr). Since (x, y) ) (y, x) is a homeomor- 
phism of X x X onto X x X we see that, since f E M(Gr), f* is also a Borel 
function on Gr and hence f* E M(Gr). 

For each (x, z) E Gr, 

f o g(x, z) = E f(x, y)g(8, z) 
yE [x] 

Let i\n = {(XxynX) X E X}. Because r is not assumed to act freely, we cannot 
assume that the sets (/\n) (n = 1, 2, . . .) are pairwise disjoint. So we define Dn+l = 
i\n+l \ i\nx for n > 1, and D1 = /\1. Let fn be the Borel function on Gr defined 
by 

fn = tDnf 

so that fn coincides with f on Dn and vanishes outside this set. Then 
00 

f O g(cx z) = E fn(z: Ynx)9(8nx: Z) 
n=l 
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In order to show that f o g is a Borel function on Gr, it suffices to show that, for 

each n, (x, z) fn(xX ynx) and (x, z) ) g(ynx, z) are Borel functions. This follows 

from the observation that (x, z) ) (x, ynx) is continuous, being the composition of 

the continuous maps (x, z) ) x and x ) (x, ynx), and that (x, z) (ynx, z) is also 

continuous. 
Let (bn) (n-1, 2, . . .) be a sequence in M(Gr) such that L(bn) ) L(b) in the 

weak operator-topology of S. Then, for each (x, y) E Gr, 

(L(bn)6z, by) (L(b)6xx by)e 

Thus bn(y,x) ) b(y,x). So b is a Borel function and hence in M(Gr). This 
completes the proof of the lemma. 

For each f E M(Gr) let Ef be the function on Gr which vanishes off the diagonal 
Z\, and such that, for all x E X, 

(Ef ) (zx x) = f (zx x) . 
Clearly E is an idempotent map from M(Gr) onto an abelian subalgebra which we 
may, and shall, identify with B(X). Let J be the set of all f in M(Gr) for which 
E(f Of*) vanishes offa meagre subset of X. Then it can be proved, by adapting 
the methods of Feldman and Moore [4], that J is a two-sided ideal of M(Gr) which 
is sequentially closed in the strong operator-topology of S. The quotient algebra 
M(Gr)/J we shall call the monotone C*-algebra of (X, ). However Lemma 2.1 
will suffice for the applications in the next section. It will follow immediately from 
Lemma 3.3 that J is a v-ideal of M(Gr), where Gr is the graph of a countable 
group of homeomorphisms of S. 

3. The canonical monotone cross-product C*-algebra. As before, C(S) 
shall be the Dixmier algebra B(R)/M(R). When G is a countable group of *- 
automorphisms of C(S) which acts freely and ergodically, there is a corresponding 
monotone cross-product C*-algebra, M(C(S),C). This algebra is a Type III AW*- 
factor which contains the Dixmier algebra as a maximal abelian subalgebra and 
hence is not a von Neumann algebra [11]. Our goal is t-o show that this algebra is 
unique. Every free, ergodic action of a countable group on C(S) gives rise to the 
same AW*-factor. 

We shall begin with some remarks on the Hamana tensor product. More detailed 
information can be found in [6, 7, 12]. 

From now on, H is a separable Hilbert space and H1 an arbitrary Hilbert space. 
Let us fix an orthonormal basis for H. Then, with respect to this basis, every x 
in L(H1)@L(H) has a unique representation as a matrix [xij], where each xij is 
in L(H1). Let M be a von Neumann subalgebra of L(H1). Then the elements of 
M@L(H) are those elements of L(H1)@L(H) represented by matrices [mij] where 
each mij is in M. 

Let T be any set and Bnd(T) the commutative von Neumann algebra of all 
bounded complex functions on T. Let T be given the discrete topology, and 
let pT be its Stone-tech compactification. Then dT is extremally disconnected 
and Bnd(T) C(:T). By Lemma 1.1 [7] Bnd(T)@L(H) can be identified with 
CW(:T, L(H)), the space of continuous functions from dT to L(H) equipped with 
the weak operator-topology. Let F: T ) L(H) have (norm) bounded range. Then, 
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since the unit ball of £(H) is compact in the weak-operator topology, the Stonb 
tech Theorem [8, p. 153] implies that F has a unique extension to a continuous 

map F: dT L(H). So we may identify Bnd(T)XC(H) with the algebra of all 

matrices [mij] over Bnd(T) for which t > [mij(t)] is a bounded function on T. 
From now on, X is a topological space which is either Polish or homeomorphic to 

a GS-subset of a compact HausdorS space. We recall that B(X) is the commutative 
algebra of bounded Borel functions on X. The product B(X)i$£(H) may be defined 
as the Borel *-envelope of B(X) 8)m;n £(H) inside Bnd(X)X£(H) (see [11]). The 
elements of B(X)@L(H) correspond to the matrices [bij] where each bij is in B(X) 

and the map x Il[btj(x)]ll is bounded on X. 

When G is a countable group of homeomorphisms of X, then Ma(B(X),G) 
is defined to be the subalgebra of B(X)@(12(G)) consisting of those elements of 
the tensor product which have a matrix representation over B(X) of the form 
[aq,a] (? E G, ff e G), where a,a(x) = aq,a(rx) for all x E X and all r E G. 

LEMMA 3.1. Assume that each ey E G has no fixed points in x unless ty is 
the identity. Let Gr be the graph of G. Then M(Gr) is naturally *-isomorphic to 
Ma(B(X), G). 

PROOF. Let f e M(Gr). For each ?, ff in G let aq,a(X) = f (^tx, vx)¢ Then ar,a 
is in B(X). Also the norm of [ar,a(x)] is uniformly bounded for x in X. Hence 
[ar,<,] is in B(X)@£(12(G)). Moreover, for all ty,a, in G and all x e X, 

aTaf (Z) = f (7f X, fff X) = aa (f X)* 

Thus [ara] is in Ma(B(X) G). 
Conversely, let [aq,a] be in Ma(B(X), G). Because of our hypothesis on the 

action of G, we may define a function f: Gr C by 

f(x, tx) = ae8T(x) for all q E G for all x E X. 

From the definition of M(B(X), G) for any qX (r in G and any x in X, 

aq,a (z) = ae,aq - 1 (tYx) = f (?X, ¢z) * 

It is now easy to see that f is in M(Gr). Matrix manipulations show that this 
bijection is a *-isomorphism of M(Gr) onto Ma(B(X), G). 

Let A be any commutative AW*-algebra. Let G be a countable group of *- 
automorphisms of A. Then A z C(Y), where Y is compact and extremally discon- 
nected. We shall abuse our notation and also regard G as a group of homeomor- 
phisms of Y. 

We recall that a *-automorphism, h, of A is said to be properly outer if there 
does not exist a nonzero projection e in A such that the restriction of h to eA is the 
identity map. The action of G on A is said to be free if every element of G, othex 
than the identity, is a properly outer automorphism. 

We shall now suppose that the action of G on A is free. 
Let ? be any element of G other than the identity. Let Fr be the closed set 

{t E Y: tyt = t}. Since Y is extremally disconnected, the interior of Fr is clopen. It 
now follows from the freeness of the action of G that the interior of F? is empty; that 
is F? is nowhere dense. Since G is countable, the G-saturation of U{F: ? e G and 
ty is not the identity} is a meagre F-set. So there is a G-invariant dense Ga-subset, 
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YoX of Y, such that, whenever g E G and g is not the identity, then g has no fixed 
points in YO. 

Let 7r be the quotient homomorphism from B(Yo) onto C(Y) whose kernel is 
Mg(Yo). Each element of the Hamana tensor product C(Y)@£(12(G)) has a repre- 
sentation as a matrix over C(Y). (Warning: The multiplication in C(Y)X£(12(G)) 
is not straightforward.) By Theorem 2.5 [12] there exists a canonical v-normal 
*-homomorphism II from B(Yo)c9£(12(G)) onto C(Y)X:(12(G)) such that 

([ar])= [T(ar)]* 
The monotone cross-product of C(Y) by G, M(C(Y), G), is the subalgebra of 

C(Y)X£(12(G)) corresponding to those matrices [aa,] over C(Y) which satisfy the 
identities a<Tt,T(s) = a<,,(rs) for all a, , r in G and all s E Y. 

Saito [11] gives a very lucid account of monotone cross-products and also of 
the results of Takenouchi and Dyer. He only discusses cross-products by abelian 
groups, but everything extends to nonabelian groups without difficulty. 

LEMMA 3.2. The homomorphism n maps M(B(Yo), G) onto M(C(Y), G). 

This is straightforward. 
The diagonal algebra of amonotonecross-product M(C(Y), G) consistsofthose 

elements whose matrix is of the form [ar,<r], where ar, = O for ey 7& . This is 
clearly isomorphic to C(Y). Let Gr be the graph of the orbit equivalence relation 
on Yo given by the action of G. Then the diagonal algebra of M(Gr) consists of 
those f in M(Gr) which vanish off the diagonal of Gr. The operator E maps M(Gr) 
onto its diagonal algebra. Clearly the diagonal algebra of M(Gr) may be identified 
with B(Yo). 

LEMMA 3.3. Let Gr be the graph of the relation of orbit equivalence given by G 
acting on YO. Then there exists a a-normal *-homomorphism p from M(Gr) onto 
M(C(Y), G). The kernel of p is 

J = {z e M(Gr): E(zz*) vanishes off a meagre subset of Yo}. 

Furthermore, p maps the diagonal subalgebra of M(Gr) onto the diagonal algebra 
of M(C(Y), G) 

PROOF. The existence and cr-normality of p follows immediately from Lemmas 
3.1 and 3.2. Let Jo be the kernel of p. 

Then f will be in Jo if, and only if, the function x ErEG if(X,TX)|2 vanishes 

off a meagre subset of Yo. That is, f is in J if, and only if, E(f o f *) vanishes off 
a meagre subset of Yo. Thus Jo = J, as required. 

We come now to the main theorem. 

THEOREM 3.4. Let D be the Dizmier algebra. Let G1 and G2 be countable 
groups of *-a?ltomorphisms of D which both act freely and ergodtcally. Then there 
exists an isomorphism of M(D, G1) onto M(D, G2) which maps the diagonal algebra 
of M(D, G1) onto the diagonal algebra of M(D, G2) 

We may regard G1 and G2 as groups of homeomorphisms of S. Because the 
actions are free, there exists a dense Gs-subset 50) which is invariant under G1 and 
G2, such that only the identity elements of G1 and G2 have a fixed point in So. 

This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 16:53:40 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


GENERIC DYNAMICS AND C*-ALGEBRAS 809 

Since 01 and 02 act ergodically, it follows from Corollary 1.9 that we can suppose 
that there exists a *-automorphism 0 of D such that the graph of 01 acting on So 
coincides with the graph of 0020-1 acting on So. Let Gr be this graph. Since 
M(D, 02) iS naturally isomorphic to M(D, 0020- 1) we shall suppose that 0 is the 
identity. (For 0@id is a *-automorphism of D@L(p2(G)) which induces the required 
natural isomorphism.) Then, by Lemma 3.3, there exists an isomorphism py from 
M(Gr)/J onto M(C(S), Gj) for j = 1, 2. Then P2P1 1 is the required isomorphism 
from M(D, 01 ) onto M(D, 02 )- 

COROLLARY 3.5. The Takenouchi factor is isomorphic to the Dyer factor. 
PROOF. The Takenouchi factor is of the form M(D, C1), where 01 is generated 

by an irrational rotation of the circle. The Dyer factor is M(D, 2), where 2 iS 
the group of dyadic rationals acting on R modulo 1. 
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