
Quasiconformal homeomorphisms and dynamics 
Structural stability implies hyperbolicity 

for Kleinian groups 

b y  

DENNIS SULLIVAN 

I.H.E.S., Bures-sur-Yvette, France 

II: 

Contents 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243 
1. Subgroups of PSI(2, C) . . . . . . . . . . . . . . . . . . . . . . . .  246 
2. Holomorphic families of homeomorphisms of t~ . . . . . . . . . . .  247 
3. 2-1emma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  247 
4. Invariant line fields . . . . . . . . . . . . . . . . . . . . . . . . . .  248 
5. Holomorphic families of abstractly isomorphic groups . . . . . . .  250 
6. Holomorphic families of abstractly isomorphic groups--finitely gen- 

erated case . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 
7. Structural stability implies geometrically finite or rigid . . . . . . .  254 
8. Theorem A with parabolics . . . . . . . . . . . . . . . . . . . . . .  256 
9. Structural Stability in the sense of differentiable dynamics . . . . .  256 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  260 

Introduction 

Let  Foc{Z~--~(az+b)/(cz+d); a, b, c, d, in C, ad-bc= 1} =PSI(2, C) be a finitely generat- 

ed non-solvable subgroup of  the orientation-preserving conformal transformations of  

the Riemann sphere C. Say that F0 is structurally stable if all sufficiently near  

representations into PSI(2, C) are in ject ive-- there  are no new relat ions.  Say that Fo is 

non-rigid ff there are arbitrarily close representat ions which are not conjugate in 

PSI(2, C). Otherwise Fo is rigid. If Fo is discrete and the fundamental  domain in 

hyperbolic 3-space is finite sided one says Fo is geometrically finite. An element y in 

PSI(2, C) is parabolic iff t race y=a+d is +2.  For  torsion free groups we have, 

THEOREM A. A structurally stable FocPSI(2, C) is either rigid or it is a discrete 

geometrically finite group with no non-trivial parabolic elements. 

The condition geometrically f ini te  without parabolics is equivalent (w 9) in the 

context  of  discrete subgroups of  PSI(2, C) to an expanding proper ty  for  the action of  Fo 



244 DENNIS SULLIVAN 

in its Poincar6 limit set Ao:(2. Namely, for each xEAo there is a yEF0 so that [y'x[>l, 

in the spherical metric. This expanding property for F0 on its limit implies a strong form 

of structural stability in the sense of differentiable dynamics. Let F~ be the image of a 

representation of F0 into C~-diffeomorphisms of the sphere so that the generators of 1-" 1 

are sufficiently C ~ close to those of F0. We allow torsion in 

THEOREM B. The representation o f  Fo onto Fl is also bijective. Moreover there is 

a minimal compact invariant set A1c(2 for Fl so that the action o f  F 1 on A1 is 

topologically conjugate by a perturbation o f  the identity to the action o f  F0 on Ao, its 

Poincar~ limit set. 

The proof of Theorem A begins with a result about a holomorphic 1-parameter 

family of injective representations of an arbitrary non-solvable group F. One finds two 

possibilities: 

THEOREM 1. Either the 1-parameter family is 

(i) trivial--all representation are conjugate, or it is 

(ii) non trivial but all representations are discrete and canonically quasiconfor- 

mally conjugate on their limit sets. 

Acknowledgement. Theorem 1 without the quasi-conformal part was proved inde- 

pendently and earlier by Bob Riley [8]. 

In the finitely generated case of (ii) we extend the conjugacies to quasi-conformal 

conjugacies in the entire sphere (2. Combining this with the result, Sullivan [10], that 

with respect to quasi-conformal deformations the limit set of a finitely generated 

discrete group behaves as if it has measure zero, proves 

THEOREM 2. A non-trivial holomorphic 1-parameter family o f  injective represen- 

tations o f  a finitely generated non-solvable group consists o f  quasi-conformally conju- 

gate discrete groups with non-trivial domains o f  discontinuity on (2. 

Quasi-conformal conjugacies turn up because they are unique on the limit set and 

so depend holomorphically on the parameter. In w 2 we make the following observation 

which arose in conversations with Ricardo Marie, about the dynamics of rational maps 

of(2. 

THEOREM. A homeomorphism q~ o f  (2 is quasi conformal iff  q~ is contained with 

the identity in a holomorphic 1-parameter family cp~ o f  homeomorphisms of(2 (for each 

x in (3, opt(x) is holomorphic in ~). 
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A corollary of the proof of Theorem A in the torsion free case is the following. 

THEOREM C. A neighborhood o f  a non-rigid, structurally stable group 

FocPSl(2, C) in the variety o f  representations up to conjugation is non-singular, has 

dimension 3 (Euler characteristic F0), and consists o f  quasi-conformal conjugates o f  

r0. 

There are versions of Theorems A and C (but not B) allowing parabolics and 

keeping these fixed during perturbations (w 8). 

COROLLARY. The geometrically finite torsion free Kleinian groups are precisely 

the quasi-conformally structurally stable groups in the sense o f  Bers [3]. 

The proof of Theorem B that we offer has two parts. In the first part we give an 

abstract expanding-hyperbolicity axiom for a group action which implies this kind of 

structural stability in the sense o f  differentiable dynamics. In the second part we verify 

that all geometrically finite discrete groups without parabolics verify this hyperbolicity 

axiom. 

In summary we have shown that either FocPSl(2, C) is geometrically rigid or that 

an algebraic structural stability for holomorphic perturbations implies a hyperbolicity 

property for the action of F0 on its limit set--which in turn implies structural stability in 

the sense of differentiable dynamics. Thus in a natural sense of these words we have 

shown structural stability is equivalent to hyperbolicity for finitely generated non- 

solvable-non rigid subgroups of PSI(2, C). 

Open problems. The analogous problem structural stability implies hyperbolicity in 

the iteration theory of rational maps of C to itself remains open and seems quite 

difficult. On the other hand for rational maps one knows the structurally stable systems 

form an open and dense set (see Marie, Sad, Sullivan [7], Sullivan [12], and Sullivan- 

Thurston [13]). In the context of Kleinian groups we have now the opposite situa- 

t i o n - w e  do not know structurally stable groups are dense (in discrete groups) but we 

do know by the paper here they must be hyperbolic. Here is the score card. 

Kleinian groups Rational maps of (~ 

Structural stability 
implies hyperbolicity 

Structural stability 
is open and dense 

Yes (this paper) 

? (main conjecture) 

? (verified numerically) 

Yes (Marie, Sad, Sullivan [7]) 
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w 1. Subgroups of {z~->(az+b)/(cz+d)}, a, b, c, d complex ad-bc=l }  

Let F be a subgroup of PSI(2, C). The following proposition and its elegant proof are 

certainly well known. 

PROPOSITION. After replacing F by a subgroup o f  index 2 if  necessary, there are 

three possibilities: 

(i) r' is discrete. 

(ii) F is solvable and conjugate to a subgroup of  {z~-,az+b}, 

(iii) 1" is (a) dense in PSI(2, C) or (b) conjugate to a dense subgroup o f  PSI(2, R) or 

(c) conjugate to a dense subgroup o f  S0(3,  R). 

Proof. Let G be the connected component of the identity of the topological closure 

[" of I'. Then G is a connected sub-Lie group of PSI(2, C) and G is normal in f'. If G is 

trivial or all of PSI(2, C) this is case (i) or case (iii) (a). Otherwise, G fixes a point in the 

hyperbolic space, a plane in the hyperbolic space, or a point at infinity of the hyperbol- 

ic space. Since G is normal in [', these objects are also fixed by F (or by a subgroup of 

index two). 

If one of the first two possibilities doesn't  yield (iii)(b) or (iii)(c) consideration of G 

shows that we are in case (ii). The third possibility is obviously (ii). Q.E.D. 

Remark. Of course the cases (i) and (ii), discrete or solvable are disjoint from those 

of (iii). The intersection of cases (i) and (ii) are most of the elementary discrete groups 

which are either solvable finite or solvable and contain Z or Z +Z  with small index. (As 

is not included.) 

Now let x and y be non-trivial conjugate elements of PSI(2, C) with y = z - i x z  and 

F(x, y) the group generated by x and y. As usual, we think of PSi(2, C) operating on the 

Riemann sphere. 

COROLLARY. (i) I f  x is hyperbolic, then F(x,y) is not solvable iff  x and y do not 

have a common fixed point. 

(ii) I f  x is elliptic, and not o f  order two, then F(x,y) is not solvable iff x and y do 

not have a common fixed point. 

Proof. Apply (ii) of the proposition for F=F(x, y) and note F(x 2, y2) is contained in 

the subgroup of index two. 

COROLLARY. I f  x is hyperbolic and F(x, y) is solvable then F(x, y) is also Abelian 

iff  x and y have the same fixed points. 
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Proof. By (ii) of proposition, we are reduced to considering a subgroup of 

{z~-->az+b}. And we verify by inspection. 

Conclusion. What z does to the fixed points of x (either elliptic or hyperbolic) is 

determined by the abstract group structure of F(x, y), y=z-lxz .  

w 2. Holomorphic families of homeomorphisms of 

For A in {z: Izl<l} let q0~ be a homeomorphism of the sphere I~ so that tpo=identity and 

for each x E t~ q0x(x) is complex analytic. We say that q9 is contained in a holomorphic 

family with the identity. 

THEOREM. A homeomorphism r (2-->(~ is contained in a holomorphic family with 
the identity iff cp is quasi-conformal. 

Proof. (i) (Marie, Sad, Sullivan [7].) If q~ is contained in a holomorphic family with 

the identity (and tp is normalized to fix oo) and x, y, z are three distinct points on the 

plane then 

q~(x)-~0~(y) 
(x, y, z) (A ) = .  

cp~(z)-cpa(y) 

is an analytic function on {A: 121<1} omitting 0, 1, ~.  By Schwarz's lemma (x, y, z)(A) is 

Lipschitz with constant ~< 1 between the Poincar6 metric on the A-disk and the Poincar6 

metric on the sphere triply punctured at (0, 1, ~). 

Since (x,y,z)(2) measures the shape of the triangle with vertices 

(q0a(x), q0~(y), q0~(z)) this control implies q~ is a quasi-conformal homeomorphism (defi- 

nition w 2). This proves the first part. 

(ii) (Ahlfors-Bers [2].) If q~ is a quasi-conformal homeomorphism of C (normalized 

to fix 0, 1, ~)  the conformal distortion can be regarded as a bounded by 1 measurable 

complex valued function/z. For each A in the unit disk of complex numbers, there is a 

unique normalized quasi-conformal homeomorphism ~0~ (depending holomorphically 

on A) whose conformal distortion is A ./z, Ahlfors-Bers [2]. By uniqueness q0o=identity 

and ~01=q0. This proves the second part. 

w 3. ~-Iemma for holomorphic motions in 

Let A be a subset of C. For each a EA suppose there is an analytic function cp(a, A): 

{A: [A[<I}--->C so that q~(a,O)=a and so that all the values tp(a,A) for aEA fixed are 

distinct. 
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If we regard tp as a function AxD~-~(2, the hypotheses above ("analytic",  "dis- 

tinct") imply surprisingly that ~ is uniformly continuous, namely, if A=closure A, we 

have the 

ties 

,~-LEMMA. There is a continuous map fi, xD--%~ C extending A xD~-~C which satis- 

(i) For fixed 2, tp(2, .) is a quasi-conformal embedding of  ill into (~. 

(ii) For fixed aEA,  qD(a, .) is analytic as a function on {2: I).l<l). 

Explanation. I fXc(~  and h:X--->(2 is a topological embedding, we say h is a quasi- 

conformal embedding if there is a constant K in (0, oo) so that for all x in X, 

lim sup (sup(h(x),h(y))'~ \ /</r 

where (. ,  ,) denotes spherical distance and y is also in X. 

If X is all of C, this definition yields the class of quasi-conformal homeomorphisms 

which have many equivalent characterizations (cf. Ahlfors book "Quasi-conformal 

homeomorphisms"). For general X the definition is not always strong enough. A 

correct and general definition of quasiconformal deformation of X will be given in 

Sullivan and Thurston "Holomorphic motions . . . "  to appear in Acta Math. 

Proof of  2-1emma. See Marie, Sad, Sullivan [7]. 

w 4. Invariant line fields 

A quasi-conformal homeomorphism ~0 of (2 which conjugates a set of elements 

FcPSI(2, C) to another set F ~ c 9  -1FqDcPSI(2, C) must satisfy the following condition, 

a.e.: the conformal distorsion of q0 is invariant by F. There is a converse--given by the 

measurable Riemann mapping theorem. 

The conformal distorsion of  qD is defined at almost all points of (: and at each of 

these is either zero or consists of a line in the tangent space at the point (the major axis 

of a homothetic family of ellipses) and a positive real number (the eccentricity of these 

ellipses). Invariance by y E F means 

(i) The zero set is a.e, invariant. 

(ii) The tangent lines of x and 7x correspond under the tangent map of y, a.e. 

(iii) The eccentricities at x and yx agree, a.e. 
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So we get from q~ a F-invariant line field and a F-invariant function. The measur- 

able Riemann mapping theorem provides a converse--a F-invariant line field and 

function determine a quasi-conformal conjugacy of F to another part q~-~Fq~ of 

PSI(2, C). See Ahlfors-Bers [2]. 

We can say precisely which F have such non-trivial invariant line fields (invariant 

functions always exist, e.g. the constant function). Recall the three possibilities of w 1 

for FcPSL(2, C) 

(i) discrete, 

(ii) solvable, 

(iii) "dense" .  

The following slightly generalizes Sullivan [10]. 

THEOREM. I f  I" is finitely generated and not solvable then F admits a non-trivial 

invariant line field only when F is discrete and has a non-trivial domain o f  discontinu- 

ity. Moreover, the invariant line fieM is supported on the domain o f  discontinuity. 

Proof. Take a density point p of a set P of positive measure where the line field is 

approximately parallel (work in C). In all cases of (iii) of w 1, we can suppose there is an 

approximate rotation ~, E F by --90 ~ say about a center arbitrarily near x. (In case (iii) (b) 

we can of course choose p not to lie on the invariant circle since density points have full 

2-dimensional Lebesgue measure.) Clearly, the element 7 does not preserve the field 

a.e. This proves there is no non-trivial invariant line field in this case. For discrete 

groups, case (i), we may suppose x belongs to the limit set of F. This case is more 

difficult and is treated in complete detail in Sullivan [10]. For the convenience of the 

interested reader, we sketch a more streamlined argument which was only indicated in 

a "note added to the proofs" there. Here are the steps 

(i) There is no set of positive measure in the limit set which wanders (IAI>0, 

~,A N A= ~,  y E F). Otherwise, there would be an infinite dimensional space of different 

quasi-conformal conjugates of F constructed from the obvious L~176 of invariant 

line fields. The conjugacies are constructed using the measurable Riemann mapping 

theorem. The new groups are distinct because any homeomorphism commuting with F 

is the identity on the limit set. 

(ii) By (i) there are elements ~'n in F of arbitrarily large norm in PSI(2, C) which 

map a good part of P back to P and have Iderivativel- 1. (This follows from discreteness 

of F, (i) and an abstract lemma from ergodic theory (K. Schmidt, "Cocycles in ergodic 

theory",  Warwick notes). 

17-858289 Acta Mathematica 155. Imprim6 le 20 Novembre 1985 
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(iii) Geometrically y,, is up to a Euclidean motion of C an inversion in a circle with 

radius rn--~0. 

The Euclidean motion maps an almost parallel field to an almost parallel field. By 

Lebesgue density considerations, a neighborhood of the inversion circle with r,, 

sufficiently small will intersect P nicely, (since b"l-1) and the inversion will destroy 

the almost parallel property. For the missing details, see Sullivan [10]. 

w 5. Holomorphic families of abstractly isomorphic subgroups (general case) 

For 2 in {z:lzl<l}=D suppose F ~ P S I ( 2 , C )  is a subgroup isomorphic to a given 

abstract group F. The dependence on 2 is holomorphic in the sense that for each y in F 

the corresponding yx varies holomorphically. We will construct all such families F~ if F 

is not solvable. 

First, suppose that for some 20, Fa0 is not a discrete subgroup which has a non- 

trivial domain of discontinuity on the sphere. In that case we have 

THEOREM 1. Either 

(i) all the F~ are conjugate by elements o f  PSl(2, C) or, 

(ii) all the Fx are infinitely generated discrete groups which are quasi-conformally 

conjugate on (2. The conjugations are canonical and depend holomorphically on 2. 

COROLLARY. I f  F is a finitely generated and the family Fx is non-trivial (the Fx 

are not all conjugate in PSI(2, C)) then each Fx is a discrete subgroup o f  PSI(2, C) with 

a non-trivial domain o f  discontinuity on (2. 

COROLLARY (of proof). I f  some Fx0 has a non-trivial domain o f  discontinuity, then 

all do and there are canonical conjugacies q0x: Aa0<--~A x between the actions on the limit 

sets depending holomorphically on 2. 

Proof  o f  Theorem 1. Suppose first for some 2o and x in F, X(2o) is hyperbolic. 

Consider the set Fa of fixed points of conjugates of x(2) as 2 varies near 20. Of  course 

x(2) stays hyperbolic on a disk neighborhood U of 20. Also the coincidence or not of 

fixed points of two conjugates xl and x2 is determined by the group structure of 

F(Xl, x2) (w 1). This group structure stays constant as 2 varies by our hypothesis. 

We are thus in a position to apply the 2-1emma of w 3 to F~. We obtain a 

holomorphic family of quasi-conformal homeomorphisms ~ :  C<--~C carrying Fx0 to Fa. 
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Note we have used the fact that f'~0 is all of (2, our hypotheses and w 1. Since each ~ is 

a conjugacy on F~0 (if 7EF,  y(fixed point of x)=fixed point of 7-1xy) then 904 is a 

topological conjugacy on all of C. 

The derivative of ~ determines a measurable line field invariant by F. These do 

not exist for non-discrete groups or on limit sets of finitely generated groups, w 4. So the 

~o~ are conformal unless F is an infinitely generated discrete group (with a wandering 

set of positive measure on its limit set [10]). 

This proves Theorem 1 for 2 in U. In case (i) x(2) stays hyperbolic up to a U  and we 

can continue the argument trivially to cover all of D. In case (ii) F;t stays discrete up to 

the boundary of U, Jorgensen [5]. Since F is not solvable there are hyperbolic elements 

and we can repeat the argument for a neighborhood of the boundary point. (In 

particular x(2) stayed hyperbolic up to the aU.) Continuing this way, we cover D and 

prove Theorem 2 under our initial assumption that for some ~.0 and some x in F, X(2o) 

was hyperbolic. 

If not we must have by w 1, all the F~ are conjugate to dense subgroups of S0(3, R). 

Now we choose x in r of order >2 and apply the same argument to Fx the set of fixed 

points of conjugates of x(A). Again F~ is dense, moves holomorphically without 

collision, and defines quasi-conformal conjugacies which are actually conformal by w 4. 

This proves Theorem 1 in all cases. 

w 6. Holomorphic families of abstractly isomorphic groups (finitely generated case) 

THEOREM 2. I f  r is finitely generated, non-solvable and F~ is a non-trivial holomor- 
phic family of abstractly isomorphic groups then all the F~ are quasi-conformally 

conjugate (on (2) discrete groups with non-trivial domains of  discontinuity (on (2). 

Proof of  Theorem 2. By the corollary to Theorem 1, w 5, all the F~ are discrete with 

a non-trivial domain of discontinuity Da. Also the proof of Theorem 1 shows there are 

partial conjugacies q0~:/r where Fa is the set of fixed points of conjugates of some 

hyperbolic element x(2). But any such F~ is just the limit set of F~. Thus we already 

have a canonical family of conjugacies between F~0 and the Fa on their respective limit 

sets Aa0 and Aa. 

Using the conjugacies tp,~ between limit sets (which start from the identity at 2=2o) 

we obtain a correspondence between the components of (2-A~0 and (2-A~. This 

correspondence is compatible with the action of F. By the Ahlfors finiteness theorem 
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there are finitely many F orbits of components and the quotient of each by the stabilizer 

subgroup is a finite type Riemann surface R~ (possibly branched). Ahlfors [1], 

Let us first discuss the pure case when there is only one R which is compact and 

has no branched points. A somewhat subtle point (considered by Poincar6) can be dealt 

with more clearly in this case. 

Let P~0 denote a finite sided polygon which serves as a fundamental domain for the 

action of r 0 on D~0 wtih side pairings YI .. . . .  Yn in F 0. Consider a small open neighbor- 

hood N of P~0 in (2 and the identifications on N induced by Y1(2) .. . . .  Yn(2). For 2 close 

to 2o, we obtain a family of Riemann surfaces S~ depending holomorphically on 2 and 

homeomorphic to R~0. This is so because the topological structure of R~0 is determined 

by a finite number of relations among the Y~(2o) .. . . .  ~'n(2o) on the neighborhood N. 

Exactly these relations persist among the yl(;t) . . . . .  yn(2) by our hypothesis. 

For 2 near20 we may choose diffeomorphisms S~-~R~o depending holomorphically 

on 2 (exercise). The cuts on R~0 defining P~0 may be carried back to S~ by q~ and lifted 

to D~. We obtain a polygon P~ varying holomorphically with side pairings 

~'1(2) .. . . .  ~,~(2) topologically equivalent on N to P~0 and yl(;t0) . . . . .  Yn(20). 

Now for the subtle point. We claim P~ is a fundamental domain for Fz acting on 

D~. It is enough to show this for the component /)4 of D~ containing P~ and the 

corresponding stabilizer f'~. Now for a general fundamental polygon perturbation as 

discussed above the result we want is not true,--the tiling generated by the perturbed 
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polygon could cover the sphere infinitely many times. We are saved here by the fact 

that y(P~)c/)a for each y in the stabilizer Fx of/)~t. 

Formally, we regard Px and yl(2) .. . . .  yn(2) as determining a complex projective 

structure on the Riemann surface Sx. There is an associated equivariant developing 

map d of some covering space ~r into C. (Intuitively the adjacent copies of Px spread 

out by words in y~ ... . .  Yn.) By the above fact, y(Px)c/)a for y in f'~t, the developing 

map d is a covering of its image, Gunning [4]. For an easy proof consider the Poincar6 

metric on/)x and the Poincar6 metric on ~r making the developing map d into a local 

isometry. This shows d is an isometric immersion between complete connected mani- 

folds ~qx and/Sx. Thus d is onto and a covering map. 

Since d is equivariant, we may pass to the quotient getting an isometric immersion 

of Sx ot Rx. These have the same topological type, so this quotient map is an 

isomorphism. This proves Px is a fundamental domain for the action of f'a on/gx. 

Now we can use r~ to extend the correspondence Rxo~Sx to an equivariant 

bijective correspondence Dxj-~Da depending holomorphically on 2. We can combine 

~ with the disjoint correspondence between limit sets Ax0~A x. By w these fit 

together to give a family of quasi conformal homeomorphisms. These are conjugations 

between Fx0 and F~ by construction. This proves Theorem 2 in this pure case for 2 near 

20. 

For any 2 in D choose an arc in D to 2o. Compactness of the arc and the argument 

above now shows rx and F~0 are quasi-conformally conjugate. This completes the 

proof in the pure case. 

A finite number of cocompact torsion free components is treated in the same way. 

Now consider adding branch points and cusps to Rx0. A subgroup of finite index F t 

in F can be chosen to be normal and torsion free (Selberg lemma). A proof for F t 

respecting the finite symmetries r/rt will be a proof for F. In this way, we suppress 

branch points. 

Considering I" now to be torsion free, a puncture in Rx0 corresponds to an infinite 

cyclic parabolic subgroup {y0(20)}cr'~0. Consider trace 70(2). This analytic function 

must be constantly 2, for otherwise elliptics of finite order would be created for 2 near 

2o contradicting our hypothesis. Thus, yo(2) stays parabolic for 2 near 2o. 

Now we consider a fundamental domain Px0 for f'a0 with cusps, a neighborhood N 

as in the figure and the perturbed fundamental domain Px defined as above. 

The proof in the cocompact case can be said now in exactly the same way to treat 
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the case with punctures. The point is that the cusps move nicely because 70(2) stays 

parabolic. If a finite symmetry group is present, we make the constructions compatible 

with that symmetry. Q.E.D. 

w 7. Structural stability implies geometrically finite or rigid 

Say that a finitely generated non-solvable subgroup FocPSl(2, C) is 

non rigid if these are arbitrarily near non conjugate representations. Otherwise, it 

is rigid, 

structurally stable if all sufficiently nearby representations are faithful i.e. injec- 

tive, 

convex cocompact if Fo is discrete, has no parabolics, and has a finite sided 

fundamental domain in hyperbolic space. 

Note.  Convex cocompact for discrete groups is equivalent to an expanding or 

hyperbolicity property for the action of F0 on the limit set AcC.  For all x in A there is 

7 E Fo so that ly'xl>l (spherical metric). It is also equivalent to the compactness of the 

intersection of a fundamental domain in hyperbolic space with the convex hull of the 

limit set. Sullivan [11] w 2, or w 9 of this paper. 

THEOREM A. A structurally stable FocPSl(2, C) is either rigid or convex cocom- 

pact. 
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Proof. Suppose Fo is not rigid. Then the algebraic variety of representations into 

PSI(2, C) modulo conjugation has positive dimension at Fo. We can then have a non- 

trivial holomorphic family of subgroups F~, 2 E {z: Izl=l} passing through F0 and any 

nearby point (Bruhat, Cartan). These are all isomorphic (by structural stability). By 

Theorem 2, w 6, all the F~ are discrete, quasi-conformally conjugate, with non-trivial 

domains of discontinuity on I~. 

Suppose for now that Fo is torsion free. Let Mo be the hyperbolic three-manifold 

H3/Fo where H a is hyperbolic 3-space. By Scott [9] F0 is not only finitely presented but 

Mo has a compact submanifold CocMo of the same homotopy type as Mo. Denote the 

components of (Mo-interior Co)=E by El .... , E,. By excision and Mayer-Vietoris, 

(~H,(E i, aEi) = H,(E,  aE) = H,(Mo, Co) = O. 
i 

Thus each of the Ei are homologically like cylinders on their boundaries aEi--which 

are thus connected. We refer to the Ei as the ends of 2140. 

Let di be 1 if aEi is a torus and 3g -3  if the genus g of aE~>l. Then Thurston (14, 

chapter 5] shows the dimenison D of the variety of representations modulo conjugacy 

at F0~>Eidi. (The proof if there are no torii is just a matter of counting generators and 

relations. The proof for torii is also simple but ingenious.) 

Now we derive an upper bound for the dimension D. Let S be the quotient of the 

domain of discontinuity by F0. Then by the Ahlfors finiteness theorem [1], S is a finite 

union of compact Riemann surfaces with at most finitely many punctures. Each 

component Si of S is hyperbolic in the sense that its Euler characteristic is negative, 

- X i = - E u l e r  characteristic of Si=(2gi-2)+pi where gi is the genus and Pi is the 

number of punctures. (This is true because some covering space of Si is a region of (~ 

with infinitely many frontier points.) 

The quasiconformal deformations of F0 all arise from deformations of S by 

Sullivan [10]. The deformations of Si has dimension (3gi-3)+pi for gi=O, 1,2, 3 . . . . .  

Thus we have D=Ei(3gi-3+pi).  

Recently Kulkarni and Shalen [6] have derived a purely topological result that 

implies the negative Euler characteristic of S is at most twice the negative Euler 

characteristic of F0 (or M0), i.e. 

~ (2gi-2)+Pi <~ -2(Euler  characteristic M). 
i 

Combining all these relations we conclude no di can be 1 (i.e. no component of 

aM0 is a torus) and all Pi are zero. Thus each component of S is compact and it also 
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follows the Euler characteristics of aMo and S are equal. The homological product 

structure of the ends and the collar structure associated to cocompact domains of 

discontinuity then implies that each end of M=H3/F defines one component of aMo and 

one component of S of the same genus. 

It now follows that F0 is geometrically finite without parabolics because after 

removing from M neighborhoods of the geometrically finite part the result is compact. 

Acknowledgement. David Epstein kindly pointed out my earlier argument had a 

gap because of parabolics. This gap is neatly filled by the Kulkarni-Shalen inequality. 

w 8. Theorem A with fixed parabolics 

There is also a relative version of Theorem A. Suppose Fo is still non-rigid after fixing 

the traces of a finite number of elements to be 2. Because of non-rigidity by Theorem 2 

F 0 is a discrete group. Assume now the above parabolic elements correspond to fixing 

a certain number of cusps of rank 2 and a certain number of rank one which are 

associated to punctures of the Riemann surface (domain of discontinuity of Fo)/Fo. 

Suppose finally that all sufficiently close representations with these fixed traces are 

injective. 

THEOREM A'. Then Fo must be geometrically finite with no cusps other than the 

prescribed ones. 

Proof. The proof is the same as that of Theorem A. 

w 9. Structural stability in the sense of differentiable dynamics 

We describe a structural stability theorem for group actions which applies to all convex 

cocompact discrete hyperbolic groups (=geometrically finite without parabolics). Let 

G be a finite symmetric set of generators for F (g E Go}g- 1 E G) acting smoothly on a 

manifold with a compact invariant set A. We suppose first that the action is expanding 

near A: 

(i) For each g in G there is an open set Ug on which g expands the length of all 

tangent vectors by a factor ;t> 1. The Ug for g E G cover A. 

The expanding property will allow us to code points of A by infinite sequences of 

elements of G. Our second assumption will imply this coding is essentially unique. Say 

two sequences {gi}, {fm} in G are ~<N apart if for all n there is an m (and vice versa) so 

that the minimal word length (in letters of G) of the element 

( fm. . . fE f l ) (g  . . . .  g2gl) - l  
is ~<N. 
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(ii) Now for any x in A consider  any sequence go, g~ . . . .  f rom G so that if Xo=X, 

x~=goxo . . . . .  X~+l=gnxn . . . .  we have xn belongs to the expanding domain of  g~+l for  

n= 1,2 . . . . .  (Note n = 0  is not included.) We say the action of  17 is hyperbolic if besides 

(i) we have there is an N so that for  each x in A any two such sequences are ~<N apart. 

THEOREM I. The action o f  any convex cocompact group is hyperbolic on its limit 
set in (2. 

Now suppose we perturb the generators G slightly near  A in the C 1 topology so 

that all the relations of  F are still satisfied. 

THEOREM II. For any sufficiently small perturbation F 1 o f  a hyperbolic group 

action F there is a compact invariant set AI near A and a topological conjugacy 

between the action o f  F on A and Fl on Al .  

COROLLARY. The group generated by the perturbed generators is abstractly 

isomorphic to F. That is, there are no new relations. 

Proof  o f  Theorem II. (i) Le t  B(x, r) denote  the ball of  center  x and radius r. Le t  e>0  

be smaller than the 1/2 Lebesgue number  6 of  the cover Ug of  A. For  each sequence 

(g0,gl . . . .  ) and (Xo, Xl . . . .  ) as above in (ii) with the additional assumption that B(x i, 6)<  

Ug i, i=0,  1,2 . . . .  consider  the sequence of  balls Bi=B(xz, e). Let  the generators G be C ~ 

perturbed (to ~ by small amounts  to be determined below. 

We will want first that if hi=g7 ! (/~i=~-~) then/~i compresses Bi+ 1 well into the 

interior of  Bz by a factor  <1.  This follows for sufficiently small C~-perturbations 

because hi compresses  B~+~ concentrical ly into Bi by a definite factor  less than one. 

(ii) It follows that for  n large zbn(B,,+l) is an exponentially small ball about x 

(where wn=hl.h2. . . . .hn) .  We will define our conjugacy cp by qg(x)=Nnt~n(Bn+l) 

where tb.=l~l. 1~2" ... " I~n. 

(iii) q0 is well defined. 

Proof. I f  (fo, f l  . . . .  ) is another  sequence starting at x by our  second assumption (ii) 

it is no more that N from (go, gl . . . .  ). There  are only finitely many elements in F of  

minimal word length ~<N so there is an upper  and lower bound on the distorsion of  any 

tangent vector  in A for  them. If  Bi,  B~ . . . .  denotes  the balls corresponding to (fo, f~ . . . .  ) 

and n is given there is an m and an e l e m e n t f f r o m  the finite set above carrying a central 
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part of B" into a central part of  Bm with bounded distorsion (and vica versa). The 

perturbed generators satisfy the same relations which means fw i l l  also carry part of B" 

into B,,, with bounded distortion for small enough perturbations. Thus 

Nn~n-1 B'n=f'lm O-)m--1 Bin, and these two choices determine the same tp(x). 

(ii) q0 is continuous. 

Proof. If  x varies slightly, the balls Bi up to a fixed point n+  1 (for a given code) 

only vary slightly. Thus q0(x) in t3n(Bn+l) only varies slightly. 

(iii) q0 is a conjugacy. 

Proof. If  x is A and go E G, let y=gox. Choose a code gl,  g2 . . . .  for y defining q0(y). 

Choose a code f0, f l  . . . .  for x defining 9(x). By our second assumption go, gl . . . .  is ~<N 

from fo, f l  . . . . .  (Note. This is why we omitted n=0 in the definition.) By the argument 

of (iii), golqg(y)=9(x). Thus 9 is a conjugacy. 

(iv) q0 is injective. 

Proof(classic). cp(x) is within e o f x  because 9(x) belongs to B1 =B(x, e). The action 

of F on A is expansive. I f  two points are closer than 6, their distance apart can be 

expanded by the factor 2>1.  If  q0(x0=q0(x2) we deduce distance (xl,xE)<~2e<6 and 

r xl)=cp(Tx2) for all ~. This is a contradiction. This proves Theorem II. 

Proof of Theorem I. I f  F is a discrete group of hyperbolic isometries a fundamental 

domain in hyperbolic space may be constructed by removing those half spaces where 

b,'xl>l (in the Euclidean metric on the ball) for all ~ in F. This is the Dirichlet 

construction reinterpreted in the Euclidean metric. For  F convex cocompact a finite 
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number of these suffice and the resulting fundamental domain does not adhere to the 

limit set of F. Thus F is expanding on the limit set. The g in G correspond to the faces of 

the fundamental domain on the limit set. The Ug are the open disks on the sphere at 

infinity defined by the faces, cut down slightly. 

For the second property, consider x in A and a sequence of group elements 

go, gl . . . .  so that if Xo=X, xl=goxo . . . . .  Xn+l=gnXo . . . .  then x,, belongs to Ugh (cut 

down slightly by the Lebesgue number). Consider wn=hlhE. . .h  n where hi-l=gi. 

Each w~ (n>n0) squeezes a ball of definite size B(x~+l, 1/26) down around x by 

exponentially increasing with n faster. 

Claim. This implies the sequence of points Zo, Zl .. . .  in hyperbolic space lies within 

a bounded distance of a geodesic heading towards x at infinity (zi = wi (center of ball 

model)). To see this claim let ~i be the point at infinity behind zi (as viewed from the 

center). Since wi (center)=zi, wi consists of a rotation about the center followed by the 

hyperbolic element hi with fixed point at ~i (and its antipode) which squeezes down 

around ~i the right amount to send the center to zi. A look at the derivative of hi shows 

how close ~i must be to x. This proves first that ~i-~x. This implies zi--~x since zi does 

converge to infinity. 

On the other hand if di=hyperbolic distance (center, zi) then di~<constant i because 

distance (zi, Zi+l)~<constant. Also di~>constant i because of the statement above about 

wi squeezing a ball down around x (exponentially). 

Thus i-~zi is a discrete quasi-geodesic in hyperbolic space (the distance between 

any pair n, m of its points is comparable in ratio to [n-m I) and thus lies a bounded 

distance from a geodesic (for a reference see Thurston's discussion of Mostow rigidity 

[14, chapter 5]. This geodesic must converge to x because zi does. 

As a corollary, we deduce any two such sequences zi, ~i are a bounded distance 

apart (the bounds are uniform in terms of the constants above) in hyperbolic space. 

If we assume the center lies in the convex hull C of the limit set all the above 

discussion takes place in C. Since C/F is a compact manifold with boundary, an orbit of 

F in C has an induced metric equivalent in ratio to the minimal word length metric on F 

(observation of Milnor). Thus we have proven the uniqueness property for hyperboli- 

city. This proves Theorem I. 

Remark. (Generalization of Theorem 1 to metric spaces.) The proof and formula- 

tion of the assertion hyperbolicity implies structural stability go through for expanding 

group actions on metric spaces. A sufficiently small perturbation means C o close but 

still expanding. 
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