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Let V(M) be the Lie algebra (infinite dimensional) of real analytic vector fields 
on the n-dimensional manifold M. Necessary conditions that a real analytic k- 
dimensional distibution on M have a local basis which generates a nilpotent 
subalgebra of V(M) are derived. Two methods for sufficient conditions are given, 
the first depending on the existence of a solution to a system of partial differential 
equations, the second using Darboux’s theorem to give a computable test for an 
(n - I)-dimensional distribution. A nonlinear control system in which the control 
variables appear linearly can be transformed into an orbit equivalent system whose 
describing vector fields generate a nilpotent algebra if the distribution generated by 
the original describing vector fields admits a nilpotent basis. When this is the case, 
local analysis of the control system is greatly simplified. 0 1984 Academic PI~S$ IIIC. 

0. INTRODUCTION 

Let M be a real analytic, n-dimensional manifold, V(M) denote the real 
vector space of real analytic vector fields on M considered as a Lie algebra 
(infinite dimensional) under the Lie product [X, Y], X, YE V(M). If 
Y’,..., Yk E V(A4) and are linearly independent at p E A4 then for x E M near 
p the map x+ span{ Y’(x),..., Y”(x)} defines a k-dimensional distribution 
denoted Dk having Y’,..., Yk as a basis. Our major concern is with the 
question of when Dk admits a basis which generates a nilpotent subalgebra. 

In Section 1 we first derive properties of a distribution which are basis 
invariant. If a distribution admits a nilpotent basis the local action of the 
associated nilpotent Lie group forces homogeneity for a nbd of p, i.e., the 
invariants of Dk(x) must be consistent with those of Dk(p) for x near p. By 
violating this homogeneity (Example 1.1) for any integers 2 < k < n we 
construct a distribution Dk on M” which locally admits no nilpotent basis. 

Section 2 obtains several positive results. The methods utilized are, briefly, 
as follows. First, given a distribution Dk(x) = span{ Y’(x),..., Y”(x)} locally 
on M we construct a distribution dk(s) = span{X’(s),..., X”(s)} on R” with 
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the Lie algebra generated by Xl,..., Xk, denoted L(X1,...,Xk), nilpotent and 
such that the invariants of Dk and fik are compatible. We next attempt to 
construct a diffeomorphism 4 from IR” to M such that the induced tangent 
space isomorphism #* carries B&(S) onto Dk(#(s)). This leads to a system of 
first-order partial differential equations which, if solvable, yield 4 and the 
nilpotent basis &Xl,..., &Xk for Dk. This is analogous to the usual method 
of proof of the Frobenius theorem, i.e., if Dk is an involutive distribution one 
can lift the standard abelian basis for IRk to a basis for Dk via I*. 

The second method is via the use of Darboux’s theorem and yields a 
computable condition (Theorem 3) that an n-dimensional distribution 
D”(x) = span{ Y’(x),..., Y’(x)} on Mntl admits a nilpotent basis. This is 
obtained by requiring that a nonzero one form w  “perpendicular” to the 
distribution have constant rank in an nbd of p, a condition which can be 
described in terms of a sufficient number (depending on the rank) of 
products [Y’, Y’](p) being independent of Y’@),..., Y”(p). We end this 
section with Example 2.3 of a two distribution on IR3 to which the Darboux 
method cannot be applied but the differential equations of the first method 
can be solved to show the existence of a nilpotent basis. 

The motivation for this work originated in feedback control problems for 
systems of the form 

i(t) = P(X(t)) + i Ui Y’(X(t))y x(0) = p (i = dx/dt) (O*l) 
i=l 

with Y”,..., Yk E V(M) and the control components ui having values in IR ‘. If 
L(P,..., Yk) is nilpotent, system (0.1) lends itself nicely to analysis. Indeed, 
general results for vector field systems are often obtained by tirst deriving 
these for systems which generate nilpotent Lie algebras; the general result 
then following from a “nilpotent approximation.” Examples occur in the 
study of a parametrix for hypoelliptic operators of the form CfZO (Yr)’ and 
in local controllability for scalar input, control linear, systems of the form 
(O-l), see [l; 21. 

Control systems which generate the same trajectories may have a variety 
of discriptions. One of the purposes of feedback is to obtain a “simple” 
description or representation. Specifically, let G(x) denote the n x k matrix 
with columns Y’(X),..., Y&(x) and u the column vector (ui,..., uk). Rewrite 
system (0.1) as 2 = p(x) + G(x)u. If one admits feedback control, 
specifically U(X) = h(x) + H( x V, ) where the column vector function h(x) = 
(h,,(x),..., h,,(x)) is arbitrary, H(x) = (h,(x))iJ,i,...,& is a k X k nonsingular 
matrix valued function and u a new control, the system (0.1) is transformed 
into 1= (Y”(x) + G(x) h(x)) + G(x) H( x t), ) i.e., a system again of the form 

It = P(x) + i vi P(x). (0.2) 
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Letting Y(x) be the n x (k + 1) matrix with columns Y”(x),..., Yk(x) and 
p(x) the it x (k + 1) matrix with columns p(x),..., fk(x), we find the 
relationship 

Y(x) A (x) = F(x), 

where A(x) is the (k + 1) X (k + 1) nonsingular matrix 

(O-3) 

. . . 

hlO(x) hll(x) “* hlk(X) . 

Matrices of this form give a representation of the afline (or in systems 
theory, feedback) group. Two systems such as (O.l), (0.2) whose describing 
vector fields are related by (0.3) are called feedback equivalent. The problem 
of when the system (0.1) can be transformed into a linear system via state 
feedback has been studied in [3] while linearization via a diffeomorphism of 
M x Rk (Rk the control space) was studied in [4; 51. The notion of a linear 
system is not coordinate free, hence one must first answer the question of 
when, with proper choice of local coordinates, the system (0.1) is linear. This 
was accomplished in [6]. In [3], local coordinate changes are included in the 
definition of the feedback group. We are interested in when system (0.1) is 
“equivalent” to a nilpotent system, i.e., a system of the form (0.1) described 
by vector fields which generate a nilpotent Lie algebra. This is a coordinate- 
free concept. 

Assume that Y”(p),..., Y”(p) are linearly independent so x + Dk+ ‘(x) = 
span{ P(x),..., Yk(x)} locally defines a (k + 1)-dimensional distribution. 
Letting Y(x), f(x) be as above one easily sees that any other basis p,..., pk 
for Dk+ ’ has the form F(x) = ( ) Y x M x for M(x) E Gl(k + 1, R). From the ( ) 
special form of the matrix A(x) in (0.4) it follows that: a necessary condition 
for system (0.1) to be feedback equivalent to a nilpotent system is that both 
of the distributions x + Dk+‘(x) = span{ Y”(x),..., Yk(x)} and x -+ ok(x) = 
span{ Y’(x),..., Yk(x)} admit nilpotent bases. This is, however, not a sufficient 
condition. 

One may extend the feedback group by also allowing reparametrization of 
trajectories which is equivalent to introducing a scalar function x -+ y(x) > 0 
on the right side of (0.2). Since the h, are arbitrary, rename u(x) h,(x) as 
h,j(x) and one obtains that, via feedback and reparametrization, the systems 
(0.1) and (0.2) are related by (0.3) with the 1 which appears as the upper left 
entry of A(x) in (0.4) replaced by y(x). Such matrices again form a subgroup 
of Gl(k + 1, R) which we shall call the F/R group. F/R equivalent systems 
have the same orbit structure, i.e., are orbit equivalent. It is, however, still 
not the case that if x + Dk+ ‘(x) has a nilpotent basis X0,..., Xk then system 
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(0.1) is F/R equivalent to a system with X0,..., Xk as its describing vector 
fields, a property desirable for applications. 

State feedback was replaced by a local diffeomorphism of M x IRk in 
[4; 51, which led to a notion the authors called 87 equivalence of systems. 
These papers give sufficient conditions that system (0.1) be E? equivalent to 
a linear system. Our approach, here, will be related but more geometrical. 

For the sake of discussion, assume in (0.1) that the control values lie in 
the unit cube and let 

R(x)= 
I 
Y”(x) + i u(Y’(x), (uil < 1, i= l,..., k . 

i=l I 

The set valued function x + R(x) is often called the local direction cone (or 
vectogram) and carries the basic information of the system. If two systems, 
such as (O.l), (0.2), h ave the same direction cones they have the same trajec- 
tories, i.e., are trajectory equivalent. Now suppose x -+ D k+ ‘(x) = 
span{ Y”(x),..., Y”(x)} has a nilpotent basis X0,..., Xk. Then (locally near p) 
one can write 

R(x) = 
I 

i vi&(x): v = (vo,..., vk) E S(x) 1 
j=O 

(0.5 ) 

with the set S(x) readily determined. Indeed, if we write Y’(x) = 
Ci”=, mu(X)X’(x) th en vj = m,(x) + Cf= i m,(X) uj. Replacing X0 by -X0 
if necessary and choosing C,= {u E lRk: ]ui] GE, i = l,..., k}, where E > 0 
may depend on x, we may assume v. > 0. By a local reparametrization, 
which preserves orbits, we can achieve v. = 1, hence S(x) is the (convex) 
affme image of a small cube for each x. This yields 

PROPOSITION 0.1. Assume, in system (O.l), that Y”(J),..., Yk(p) are 
linearly independent so that the map x + span{ Y’(x),..., Yk(x)} defines a 
(k + I)-dimensional distribution Dk+ ‘. Then Dk+ ’ admits a nilpotent basis 
{X0,..., Xk} if and only if system (0.1) is orbit equivalent to a nilpotent system 
of the form 1 =X”(x),+ Cf= 1 v,X’(x), x(0) =p. 

In view of Proposition 0.1, we turn our attention to the problem of deter- 
mining when a distribution x -+ ok(x) admits a nilpotent basis locally. 
Notationally, M, will denote the tangent space to A4 at p, L(Y’,..., Y”) the 
Lie subalgebra of V(M) generated by Y’,..., Yk E V(M), and L(Y’,..., Y”)(p) 
the subspace of M,, obtained by evaluating the elements of L(Y’,..., Y”) at p. 
For X, Y E V(M) and 8 M + I? smooth we choose the convention [X, Y]f= 
Y(Xf) -X(Yf) which, in local coordinates xi ,..., x, on M, becomes 
[X, Y](x) = X,(x) Y(x) - Y,(x)X(x) the X,(x), Y,(x) being Jacobian 
matrices of partial derivatives. This is the negative of the Lie product often 
used by differential geometers but is the definition relative to which the 
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Campbell-Baker-‘Hausdorff formula is usually given. We also let [X, Y] = 
(ad A’, Y) and inductively (adm+l X, Y) = [X, (ad” X, Y)], and for 
WE V(M), (exp tW)(p) will denote the solution, at time t, of &/dt = W(x), 
x(0) = p. 

Our concern is with the case when Dk is not involutive. If Dk(x) = 
span{ Y’(x),..., Yk(x)} and dim L(Y’,..., Yk)(p) = m < n, (we are in the 
analytic category) the Hermann-Nagano theorem [7; 81, yields the existence 
of an m-dimensional integral manifold for L(Y’,..., Yk) through p. For 
control systems, all solutions initiating from p would then remain on this 
integral manifold, i.e., one could as well replace the original manifold M by 
this integral manifold. For this reason we assume throughout that 
dim L(Y’,..., Yk)(p) = n. 

1. NECESSARY CONDITIONS THAT 
A DISTRIBUTION ADMIT A NILPOTENT BASIS 

Let Yl,..., Yk E V(M) be linearly independent at p and such that 
dim L(Y’,..., Yk)(p) = n. Then x--t ok(x) = span{ Y’(X),..., Yk(x)} locally 
(near p) defines a k-dimensional distribution. If Xl,..., Xk E V(M) is any 
other basis for Dk there exists a smooth k x k matrix valued function 
A = (a,), (A(x) E Gl(k, R)) such that Y’(x) = Cjzl Q(X)*(X). Let j?“(x) 
be the set {Y’(x),..., Yk(x)} and inductively y’“(x) is the set of products of Z- 
tuples of Y’,..., Yk evaluated at x with I< m. Similarly, sm(x) is the set of 
products of l-tuples of Xl,..., Xk evaluated at x with 1< m. 

PROPOSITION 1.1. The integer valued functions x + dim span j?‘“(x) are 
independent of the basis 9’ for Dk. 

To see this let 9” = {Y’,..., Yk} and A!?’ = {X1 ,..., Xk} be bases for Dk, as 
above. Clearly dim span F”(x) = dim span s’(x) = k. Next, if Y’ = 2 a# 
and ZE~m-lcspan.%m-l the formula [Y’, Z] = 2 ((Zaij) J@ + 
a,[X’, Z]) provides an inductive proof that p’“(x) c x”‘(x). Similarly 
2irrn(x) c 9’“(x). 

The next structure theorem for nilpotent Lie algebras of vector fields is 
necessary for our development. 

THEOREM 1. Let X ,...,Xk E V(M) with L = L(X’ Xk) nilpotent and 
dimL@)=n. De~ne~=~~~L:Y@)=OJ,~=(C;L:[Y,~]cdP”,} 
andinductiveZy&={VEL: [v,&-,]c&-,},i= 1,2,.... Theneachqis 
a subalgebra; q-, is an ideal in & and if ri = dim q(p), r,, < rl < -.- < 
r, = n for some m. 

ProoJ Clearly R0 is a subalgebra. (Indeed one may easily show that if L 
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has dimension 1 as a real Lie algebra then dim L(p) = n implies 
dim x0 = I- n.) Clearly I 0 = dimR0@) = 0. To see that &; is a subalgebra, 
suppose I”, V* E &;, H E Z0 is arbitrary and denote [V’, H] = H’ E RO, 
[V’,H] =zPE2& Then by the Jacobi identity [[I”, I”], H] = 
[V’, [V*,H]] + [V’, [V’,H]] = [V1,Hz] + [V’,H’] E&“. This shows 4 
is a subalgebra; R0 is an ideal in 4 by definition. Next, and here we use the 
fact that L is nilpotent, we show that rl > r0 = 0. L nilpotent implies there 
exists an integer s such that any product of (S + 1) elements of L is zero, and 
hence in x0. Define /i, = {integers 1: any product of (I + 1) elements of L is 
in &“}. Then /i, @ d since s ill,,. Also dimL(p)=n>O implies 0$/i,. 
Then A, has a least element l* > 0; i.e., there exist Vl,..., I”* E L such that 
V= [**.[V’, V’], I’“]...], V”] @&, but [V, W] EZ~ for any WE L, in 
particular [V, IV] E x0 for any W E 4. Thus V E &;, V & Z0 so V(p) # 0 
and r, = dim&;(p) > r,, = 0, 

The argument that 3 is a subalgebra proceeds via the Jacobi identity as 
for &;, while &- r is an ideal in & by definition. Define n i- r = {integers 
12 0: any product of (I + 1) elements of L is in q-i}. Since 4 cq-i we 
always have SEA,-, and if dim&-,(p) < n, 06$ni-, so A,-, has a least 
element 1* > 0. (If dim q-i@) = n the proof is complete.) Thus, as in the 
case i = 1, we obtain an element V E & with V 6Z &-, . Finally, if for any 
such V we were to have V(p) = 2 aj IV’@) with Wj E &-, (i.e., 
dim q(p) = dim &- i @)) then (V - C aJ W’) = H E RO c &- 1 hence 
V=H+Ca,W’E&-, since &-, is a subalgebra. This contradiction 
shows dim SQ) = ri > r,- , if rl- i < n, completing the proof. m 

Let x’ ,...,Xk E V(M) with L(X’ ,..., X”) nilpotent. Then the &, as defined 
in Theorem 1, are subalgebras of vector fields, hence, by the Hermann- 
Nagano theorem, each & has an integral manifold of dimension rl thru p. 

The next proposition shows the homogeneity forced by nilpotency. This 
will be used to construct examples of distributions which do not admit 
nilpotent bases. 

PROPOSITION 1.2. For each i = 1,2,..., dim&i(x) is constant on the 
integral manifold of 4 through p. 

Proof. It is well known that for any subalgebra R c V(M), dim R(x) is 
constant on the integral manifold of Z through p. The interesting feature, 
here, is that dim q- ,(x) is constant on the integral manifold of & (which is 
larger than that of q-i) through p. 

Let M” denote the integral manifold, having dimension ri, of & through 
p. For any x E M” near p, there is a WE 4 and real s such that 
x = (exp SW)(P). Let V E &- 1 so (ad” W, V) E q-i for all v = 0, l,..., and 
(exp - SW),: M,+ Mp denote the tangent space isomorphism induced by 
the diffeomorphism x + (exp - SW)(X). Then (exp - SW), V((exp SW)(P)) = 



NILPOTENTBASESOFVECTORFIELDS 391 

CT=0 ((-s)“/v!)(ad” W, v)@) E q- r(p). One concludes (exp - SW), 
&- r(x) = &- ,(p) showing dim q- 1@) is constant, locally, on M’i. I 

The typical use of Proposition 1.2 to construct a distribution which does 
not admit a nilpotent basis proceeds as follows. Let x --t D*(x) = span{ Y’(x), 
Y’(x)} be a two-distribution such. that Y’(p), Y’(p) are independent, 
dim L(Y’, Y*)@) = n, [Y’, Y’](p) = 0 but Y’(x), Y’(x), [Y’, Y’](x) are 
independent if x # p. Then from Proposition 1.1, for any basis 
.X1 = {X*,X’} for D2, dim span Z’(x) = dim span jV1 (x) = 2 while 
dim span Z’(x) = dim span J?“(x) is 2 if x =p and 3 if x #p. Suppose 
5’ = {X1,X2} is a nilpotent basis, i.e., L(X1,X2) is nilpotent. Then 
[X1,X2](p)=cz,X1(p)+a2X2(p) or V=[X1,X2]-alX1-a2X2Eq, 
where the ,$ are defined as in Theorem 1 relative to the nilpotent algebra 
L(X’, X’). But then dim*(p) = rl > 1 and V must vanish on the integral 
manifold M’l of 3 through p, i.e., dim span s’(x) = 2 for x E M’l. This 
contradiction implies D2 could not admit a nilpotent basis. 

EXAMPLE 1.1. For any integer 2 ( k < n there exists a k-dimensional 
distribution Dk on M” which does not admit a nilpotent basis locally. 

Let A4 = R” and define Dk(x) = span{X1(x),...,Xk(x)}, where 

x’ = apxi ) l<i<k-1, 

Xk=~/~~k-x1(x~/6+x;/2+~~~+x~+1/2)~/~xk+l 
n-k+2 

+ c t(-l)‘x:/f! -xIxk+,-2)a/axk+,-2* 
1=4 

One calculates the relevant brackets for this example: 

[x1, xk] = (f)(x; + “’ + xi+ ,) a/&+ 1 
n-k+2 

+ ,z4 ((-1)‘~‘x:-‘/(1- 1)!+xk+,-2)a/axk+,-2, 

n-k+2 

[Xl, [X1,X”]] =-x1 a/axk+’ + x ((-1)‘-2x’-2/(1- 2)!)q?x,+,-,, 
I=4 

and for 3 < m < n - k + 2, 

n-k+2-m 

(admX’,Xk)=a/aXk+m-2+ 2 ((-1)‘x:/~!)~/~x,+,+,-,. 
I=1 

Clearly {X1 ,..., Xk, (ad3 X1,X”) ,..., (adn-k+2X1, X”)} span RG at all points 
p. The calculation of [X1,X”] shows that [X1, X”](xr,...,x,) = 0 if and only 
$x,=x,= . . . =x,=0. 
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2. THE CONSTRUCTION OF NILPOTENT BASES FOR DISTRIBUTIONS 

The first of two methods which we consider for the construction of 
nilpotent bases proceeds as follows. Given a distribution y+ ok(v) = 
span{ Y’(Y),..., Y’(u)} on M we construct a nilpotent basis 33-l = {X’,...,X”} 
for a distribution on R” such that dim span%‘(x) = dim span y”(v), 
i = 1, 2,... . We then attempt to construct a diffeomorphism 4: IF?” + M such 
that &Xl,..., $*X” is a basis (hence a nilpotent basis) for Dk. This 
construction leads to a system of first-order partial differential equations 
which, if solvable, produce $. The second method is the use of Darboux’s 
theorem to obtain a preferred local coordinate system. 

The approach of attempting to realize a nilpotent basis for Dk on A4 as the 
image of a nilpotent basis for a distribution on IF?” by the induced map of a 
diffeomorphism is general. Indeed, Sussmann [9] shows that if L(Y’,..., Y”) 
and ,5(X’,..., Xk) are isomorphic Lie algebras of real analytic vector 
fields on, respectively, A4 and R”, with dim L(Y’,..., Yk)@) = n = 
dim ,5(X’,..., Xk)(0) then the Lie algebra isomorphism can be realized as the 
induced map of a (local) diffeomorphism 4: IR” + A4 with 4(O) =p. 

Given, locally, vector fields Y’,..., V” E V(M) and IV’,..., W” E V(lR”) 
which are linearly independent, respectively, at p E M and 0 E R” (these will 
later be related to the Y’,..., Yk and X’ ,...,Xk above) the first goal is to 
construct an arbitrary diffeomorphism 4: R” + M with Q(0) =p and such 
that (* W’ is expressed in terms of the Vi. Introduce local coordinates of the 
first kind on R” via the map 

s = (sl )...) s,) -+ g(s) = exp(s, W’ + -.a + s, W”)(O). (2.1) 

Our notation will be x = g(s); note that g-‘(x) exists locally. Let 
f = (fi ,...,fn): R” -9 R” with f(0) = 0 and Jacobian (&/&,(O)), denoted 
f,(O), nonsingular. Then if x = g(s), any diffeomorphism 4: R” + M with 
$(O) =p can be expressed as 

(2.2) 

for some f as above. Consider f free to be later chosen. In order to compute 
d* we first note that for any 1 < i < n there will exist a smooth function 
ryt, s) = (r#, s) )...) r#, s)) such that rj(O, s) = sj and 

(exp f W’) 0 exp(s, W’ + ..- + s, Wn)(0) 

= exp(r!(t, s) W’ + --a + rfi(t, s) W”)(O). 

The functions r’(t, s) are completely determined by the structure of 
L( W’,..., W”) and are quite computable if this algebra is nilpotent. In the 
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calculation to follow, terms such as the inner product i’(0, s) . af,(s)/as often 
appear. Our notation will be to associate an operator 

.3P = if(0, s) a/as, + * * * + igo, s) a/as, (2.3) 

with i’(0, s) and write the previous inner product as (9’&)(s). Thus 

ft&) W’(x) = (d/d) #((exp t IV) 0 (exp(s, IV’ + ..a + s, W’))(O)) llzO 

= d/d { (expfi(ri(t, s)) V’) 0 em- 0 tevf,(r’t~~ ~1) VW Lo 

= WtXs) JT$tx)) + t~!f&)tewAts) V* 

x Wexp -f,(s) W 0 W)> 

+ t~!Ots)b-UX4 v’)* tewf,W O* 

X V3((exp -fJs) V’) 0 (exp -fi(s) V’) 0 4(x)) + . . . 

= (@f,,>(s) V’@(x)) + (.LS’~~)(S) 2 q (ad”’ I/‘, V’)@(x)) 
u,=o Vl. 

+ (sif3)(s) g fy’y;(s) 

v,.u~=o 1’ 2’ 

x (ad”’ V’, (adv2 V2, V”))(~(X)) + a.. . (2.4) 

The basic idea in the use of this formula is as follows. Suppose {Y’,..., Y”} 
is a local basis for the distribution Dk on A4 and dim L(Y’,..., Yk)@) = n. 
Choose V’ = Y1 ,..., Vk = Yk and Vk+’ ,..., V” E V(M) so that V’(p) ,..., V”(p) 
are independent. Next select an appropriate nilpotent model Lie algebra on 
R”, say generated by X1 ,..., Xk. Let W’ = Xl,..., Wk = Xk and 
wk+ 1 

9***, W” E V(lR”) be such that W’(O),..., Wn(0) are independent. In 
applications it is often useful to choose Vktl,..., V” E L(Y’,..., Yk) and 
wk+l 

,*a*, W” E L(X’,..., Xk). The conditions I*(x) W’(x) E span{ V’(~(X)),..., 
Vk(#(x))}, i.e., that the coefficients of Vk”($(x)),..., V”@(x)) in Eq. (2.4) 
vanish, yield partial differential equations for thef,. In order to exhibit these 
coefficients we express the right side of Eq. (2.4) as a linear combination of 
V’(((x)),..., V”@(x)). To this purpose, let 

tad”’ C tad”* vz9 ~‘)Mtx>) = $, B,,,v,,lt~tgts))) ~‘t+W) 

(ad”’ V’, (...(ad”n-l V”-‘, V”)...)@(x))= $1 /I 
(2.5) 

“,,...,“,-,,r(~(g(s))) wtx))~ 
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Note that 

PO.1 = 1 if 1= 2, 

=o if 1#2; 

P -1 0,0,1- if 1=3, a-.; Po,o ,..., o,I= 1 if I= n, 

=o if lz3; =o if lfn. 

Substituting in the right side of (2.4) for 1 < I< n, the coefficient of V@(x)) 
is 

The goal is to choose f, subject to the condition f (0) = 0 and the Jacobian 
f,(O) nonsingular, to make the coefficients of Vkt l,..., V” zero for each 
i= 1 ,..., k. The process is best illustrated by its use in 

THEOREM 2. Let x+D*(x) = span{ Y’(x), Y’(x)} be a two-dimensional 
distribution on R 3 and suppose Y1(0), Y2(0), [Y’, Y’] (0) are independent. 
Then D2 admits a nilpotent basis which generates a three-dimensional 
nilpotent algebra. 

Proof. Choose the model nilpotent algebra on IR3 generated by vector 
fields X1, X2 with structure: X’(O), X2(O), [X1,X2](O) are independent and 
all other products vanish. Let W’ =X1, W2 =X2, W3 = [X1, X2]. Then 

(exp tW’) 0 exp(s, W’ + s2 W2 + sj W3) 

=exp ((sl+I)W1+s2W2+(s,++) d) 

so r’(t, s) = (sl + t, s,, s3 + ts2/2), 3l(O, s) = (l,O, s2/2), and 9’ = a/as, + 
(s,/2) a/&, . A similar computation gives 5F2 = a/as, - (s,/2) a/&,. Next, 
choose V’ = Y’, Y2 = Y2, and V3 = [Y’, Y’]. Our goal is to have the coef- 
ficient of V3 in (2.4) to be zero for i = 1,2. Explicitly, from (2.6), this leads 
to the equations 
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[ 
1 + f f;‘(s)f;*(s) p 

v,! v,! Vl,Q.3 1 wfxs) 
u*tv~=l 

= -wf2N) f q,“,,3, 
II,=1 Vl. 

[ 

1 + 2 ft;‘@)f;‘(s) @ 1 
(2.7) 

u,! u,! Vl.UZ.3 wms) 
u,tu*=l 

= -@P&)(s) -f q&,,3. 
“I=1 VI. 

Choosef,(s) = sZ which gives 9”fi = 0, .@f* = 1 and the first of the above 
equations becomes S3f3 = 0, which has a solution f3(s) = s3 - s, s2/2. Then 
the first equation is satisfied. In the second equation, 9”f = -s,. Since 
V3 = [Y’, Y2] and /3V1,3 is the component of (ad”’ Y’, Y’) on V3, we have 
,dl ,3 = 1. The second becomes 

S,(s) + f qb”,,, + s, [ 1 + 
u,=2 VI. 

2 “1’“yy /&,,,.,I = 0. W-9 
v*tv*=1 1’ 2’ 

Letting y =fi, this has the form @(s, y) = 0, where @(O, 0) = 0 and 
a@/@(O, 0) = 1. By the implicit function theorem, a local solution y =fi(s) 
exists such that fi(0) = 0 and @(s,fi(s)) = 0. Furthermore we may now 
differentiate (2.8) with respect s, and find af,(O)/&, = -1. With f,(s) as 
above, f2(s) = s2 and f3(s) = s3 - s,s,/2, detf$(O) = -1 and $: R 3 --f R3 has 
been determined as a diffeomorphism such that #*X1, (*X2 is a nilpotent 
basis for D2. 1 

It is interesting to use this method to show the well-known fact that: If 
x -+ ok(x).= span{ Y’(x),..., Y’(x)} is an involutive distribution on M” (say 
k < n for interest) then Dk admits an abelian basis. 

To verify this, choose V’ = Y’,..., Vk = Yk and let Vkt ’ ,..., V” E V(M) be 
so that V’(p),..., V”(p) are linearly independent. Choose local coordinates 
(z l,..., zJ on R” 
wk+ 1 

and let W’ =X1 = a/az, ,..., Wk = Xk = a/az, while 
9***, W” are arbitrary but so that W’(O),..., W”(0) are independent. Then 

X1 ,..., Xk is an abelian basis for a k-dimensional distribution on I?“; the 
associated operators are 9’= a/&,, i= l,..., k. The distribution Dk 
involutive implies (see Eq. (2.5)) that j3 “,,, = 0, /I,, ,vZ,I = 0 ,..., /I,, ,...,““-, ,, = 0 
whenever I > k. Thus the coefficients of Vkf ‘,..., V” (see Eq. (2.6)) are zero 
for i= 1 ,..., k. We may choose f,(s) = s, ,..., f,(s) = s, and this determines a 
diffeomorphism 4: R” --t M with 4*(x) X’(x) E Dk(#(x)), i = l,..., k, giving an 
abelian basis for Dk. 
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The Use of Darboux’s Theorem 

Let M” = M be an n-dimensional manifold with M,, M,*, respectively, the 
tangent and cotangent spaces of A4 at x. Our notation is /i&f,), A(M,*) for, 
respectively, the exterior or Grassmann algebras over M,, M,*. We write 
fi(M,) =AO(Mx) @ *a’ @A”(M,.), where A”(M,)=lR, /i’@f,)=M,~lR~“, 
etc. The bilinear pairing of Ap(M.J with Ap(Mz) is denoted (a(x), r(x)), 
r(x) E AP(M,), a(x) E Ap(M,*). Recall that the dimension of Ap(M,) is the 
binomial coefficient (i); Ap(M,.) = 0 if p > n. We write dw A dw as (dw)‘, 
etc., for a l-form w, i.e., w(x) EM,*. 

DEFINITION. The rank of the l-form o at p is r if (u A (dw)‘)(p) # 0 but 
(w A (do)‘+‘)(p) = 0. (Note 2r + I ,< n.) Thus if w  A (du)“’ = 0 in an nbd 
of p while (w A (do)‘)(p) # 0, the l-form w  will have rank r in an nbd of p. 
The following form of Darboux’s theorem is as given in [lo]. 

THEOREM (Darboux). If the l-form o has constant rank r in an nbd of 
p, there exist local coordinates x, ,..., x, such that 

w=dx,+x,dx3+...+xZrdxzr+,. (2.9) 

The general use of Darboux’s theorem to obtain a nilpotent basis for a 
distribution is illustrated in 

EXAMPLE 2.1. Let Y’,..., Yn-’ be vector fields on M” which are linearly 
independent at p, so x + D”-‘(x) = span{ Y’(x),..., Y”-‘(x)} is an (n - l)- 
distribution. Suppose w  # 0 is a l-form such that (w(x), Y’(x)) = 0 for x in 
an nbd of p. If w  has constant rank r in an nbd of p, (2.9) holds and (for 
r ) 1) the vector ftelds X’(x) = -x2 8/8x, + 8/8x, ,..., X’ = -xl,, a/ax, + 
afax 2r+ 1) xr+l=a/ax,, ~r+~=aja~~,...,x~r=a~a~,,, ~~r+l=a/a~~~+~, 
x2r+2 =a/ax,,+,,..., X”-’ = a/ax, also satisfy (w, Xi) c 0, i = l,..., n - 1, 
hence X1 ,..., X”-’ is again a basis for D”-’ and, in fact, a nilpotent basis 
with dimL(X’,..., X,-l) = n. (If r = 0, the distribution D”-’ is involutive.) 
Notice that if w  has rank r, the above nilpotent basis shows D”-’ contains 
an involutive subdistribution of dimension (n - r - 1). 

Remark. Note that the vector fields X’ ,..., X”-’ obtained by the method 
of Example 2.1 are tine in the local coordinates. This leads to a linear- 
bilinear representation of a control system. 

EXAMPLE 2.2. The purpose, here, is to stress the importance of the rank 
of w  being constant in an nbd of p. Let M = F? 3; Y’, Y2 be two vector fields 
(as in Example 1 .l) which are linearly independent at p while [Y’, Y’](X) is 
linearly independent of Y’(x), Y’(x) if x # p, [Y’, Y’](g) = 0. Let w # 0 be 
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a l-form such that (w, Y’) = 0, i = 1,2. Then from dimensional 
considerations w  A (do)* = 0. Also (CU A dw, [Y’, Y’] A Y’ A Y’) = 
2(w, [Y’, Y*])(dw, Y’ A Y’). But from the standard “local Stokes’ formula” 

(do, Y’ A Y’) = Y’((o, Y’)) - Y’((w, Y’)) + (co, [Y’, Y*]). (2.10) 

Thus 

((at A dw)(x), [Y’, Y’](x) A Y’(x) A Y’(x)) = 2(4x), [Y’, Y’](x))‘. (2.11) 

This shows 

rank U(X) = 0 if x=p, 

= 1 if xfp. 

Darboux’s theorem does not apply; indeed the distribution x-+ D*(x) = 
span{ Y’(x), Y*(x)} does not admit a nilpotent basis. 

LEMMA. Let V be vector space with basis { V, ,..., V,} and let 0 E A “( V*) 
be a skew-symmetric 2-farm on V. Then 8’ # 0 and Brtl = 0 if and only if 
the skew-symmetric matrix 0 = (e(V,, Vj)) has rank 2r. 

Proof. Let {VI,..., p } be a basis for V* dual to { vi ,..., V,}. According 
to Sternberg [I 1, p. 241 there is a basis { wl,..., IV”} for V* so that 
8=ji;‘A W’+ . . . + $j?- ’ A w2r and r depends only on 8. Indeed, r is 
characterized by 0’ = r! w’ A w2 A +. . A p*’ # 0 and 8” ’ = 0. Let 
A = (aij) be the nonsingular matrix such that p = C aij p. Then 

eG C @(Vi, V,) PA F=t C S(Vl, Vj) PA p 
id 

=$C )J a,,8(Vt, Vj)aj,G’A wk 
ij h,k 

= zk (c aihe(vi9 vj)“jk) ‘h A vk 

i,/ 

= w’ A w’ + . . . + @2r-1 A wzr, 

Thus there is a nonsingular matrix A such that AOAT has r blocks ( T1 A) 
down the diagonal and zeros elsewhere, showing 0 is of rank 2r. 

If 0 is skew-symmetric of rank 2r, there is an orthogonal matrix Q and a 
nonsingular diagonal matrix D such that DQ 0 Q-lD = (DQ) 8 (DQ)T has 
2 x 2 blocks ( -ol ; ) d own the diagonal and zeros elsewhere. If we let 
A = DQ and change basis in V* by A, the equations above show 
e= pl A F* f . . . + p*r--1 A W*r SO erfo and W1 =O. m 
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THEOREM 3. Let M be an (n + l)-manifold, let y = {Y’,..., Y”} be a 
local basis for an n-distribution D” in a neighborhood ofp E M, and let o be 
a l-form such that (co, Yi) = 0 near p for i = 1,2,..., n. If the rank of the 
n x n skew-symmetric matrix S = ((w(p), [Y’, Y’](p))) is 2r > 0, then the 
rank of w is r at p, hence w is of rank )r in a neighborhood of p. 

If in addition r is such that w A (dw)‘+’ (x) = 0, or equivalently 
rank S(x) = 2r in a neighborhood of p, then w is of rank r in a neighborhood 
of p and DR has a nilpotent basis near p which generates an (n + l)- 
dimensional algebra. 

Proof: By formula (2.10) (do, Y’ A Yj) = (o, [ Y’Yj]) and since the rank 
of S is positive at p we can choose i, j so (w(p), [Y’, Y’](p)) # 0. By the 
lemma, (do)’ @) # 0 and (dw)‘+’ @) = 0. Thus we can choose Yil,..., YiZr 
so that ((dw)’ (p), Yfl A ... A Y”l(p)) # 0. But then 

(co A (dco)’ (p), [Y’, Y’] A Y’, A . . . A Y”Q)) 

= (w(p), [Y’, Y’]@))((do)’ (p), Y” A -.. A Ylzr(p)) # 0. 

This shows that w  A (do)’ (p) # 0 and clearly o A (dw)I+’ (p) = 0 since 
(do)r+l (p) = 0, which means o is of rank r at p and of rank >r near p. 

The assumption w  A (do)rt ’ = 0 in a neighborhood means o is of rank r 
near p and Darboux’s theorem applies as in Example 2.1 to give the 
result. I 

Remark. In the case of maximal rank one can reduce computations to a 
point. Specifically, with D” and w  as above, we have 

COROLLARY. If the rank of the skew-symmetric matrix S = ((o(p), 

[Y’T U’KP))) f is n or n even or n - 1 for n odd then D” has a nilpotent basis. 

Proof. For n even o A (do)““+’ is an (n + 2)-form and for n odd 
w A (du)n’2+ “* is an (n + 2)-form. Since M is an (n + 1)-manifold both are 
zero. This is tantamount to rank S@) being maximal. [ 

EXAMPLE 2.2. Let Y’, Y’, Y3 be a basis for a 3-dimensional distribution 
D3 on M4. Then w  A (dw)* = 0 while if D3 is not involutive, w  A do f 0 
and r = 1. If some [Y’, Y’](p) is linearly independent of Y’(p), Y*(p), Y”(p), 
it follows that the 3 x 3 skew-symmetric matrix S has rank 2 and D3 admits 
a nilpotent basis. (A similar argument gives an alternative proof of Theorem 
2.1 

EXAMPLE 2.3. This is an example of a 2-dimensional distribution 
x -+ D*(x) = span{ Y’(X), Y’(x)} on R3 for which [Y’, Y*](x) E D*(x) for x 
on a 2-manifold through p. The Darboux approach cannot be used but the 
first method of this section gives the existence of a nilpotent basis for D*. 
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Let Y’(x) = 8/8x, + x1 a/ax, + x:x2 8/8x,, Y’(x) = 8/8x, + x: a/ax,, and 
p = 0. Then (adY’, Y’)(x) = a/ax, + (x: - 2x,) a/ax,, (ad” Y’, Y’)(x) = 
a/ax, + <x: - 2x’ + 2) a/ax, if v> 2, so L(Y’, Y’) is not nilpotent; 
dim L(Y’, Y*)(O) = 3 and [Y’, Y*](x) = a/8x2 if x, = 0. We choose V’ = Y’, 
V* = Y*, and V3 = 8/8x,. 

For the model nilpotent basis, choose X1 = a/ax,, X2 = a/ax, + xi a/ax, 
so L(X’, X2) is nilpotent of dimension 4, [X1, X’](x) = -2x, a/ax,, hence 
also vanishes for x, = 0; (ad* X1, X2) = 2 a/ax,. Choose W’ =X1, W* = X2, 
W3 = 2 a/ax,. Explicitly, 

( 
2 

(exp(sr W’ + s2 W* + sj W3))(0) = s,, s2, F + 2s, 
) 

= g(s). (2.15) 

It is now easiest to compute (exp t W’) g(s), for i = 1, 2 and write this as 
(exp(r{(t, s) W’ + ri(t, s) W* + I:@, s) W3))(0). Explicitly, r’(t, s) = (t + s,, 
s2, s3 - (tS,S2)/3 + t*s3/6), r*(t, S) = (s,, s2 + t, (sfC/3) + s3), hence 

9’ = a/as, - (s1s2/3) a/as,, .9?* = a/as, + @i/3) a/as,. 

The basic formulae to insure $*(x) W’(x) E span{ Y’@(x)), Y’@(x))} for 
i = 1,2, i.e., for a 2-distribution on R 3, are Eqs. (2.7). To compute the coef- 
ficients p we use Eq. (2.5); here 

(ad V’, V’)(x) = V’(x) - 2x, V3(x) or Pl,3W = -% y 

(ad” V’, V’)(x) = V’(x) - (2x, - 2) V”(x) or /3,,3(x) = --2x, + 2 if v > 2. 

Also 

(ad V*, V”) = 0, (ad V’, V”) = 0 or /?v,,vl,3 = 0, v, + v, > 1. 

A major difficulty is that pv,3 should be evaluated at )(g(s)) in Eqs. (2.7) 
but 4 is to be determined. If we make the a priori choicef,(s) = s,, since the 
first component of g (see (2.15)) is s,, then we will have the first component 
of 4, call it $i , such that lr(x) = xi. Then Bl,3MdsN) = -2~~ 9 
/I,,3(#(g(s))) = -2s, + 2 if v > 2 and Eqs. (2.7) become 

S”f(s) = -L@“fi(s)[(-2s, + 2)(eS1 - 1) - 2s,] 

9*f3(s) = -22f(s)[(-2s1 + 2)(eS1 - 1) - 2s,]. 

A solution, with Jacobian at zero nonsingular, is 

f'(S) = Sl 

f*(s) = s2ees1 

f,(s) = 2s, - (2s:s,/3) + 2s,e+ - 2s, + 2s,s,. 



400 HERMES, LUNDELL, AND SULLIVAN 

This actually gives # as the identity map relative to coordinates of the first 
kind generated by W’, W2, W3 on the domain and cobrdinates of the second 
kind generated by V’, V2, V3 on the range. 
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