MM. les Auteurs sont priés de bien vouloir retourner un jeu d'épreuves corrigées et le manuscrit correspondant à M. le Pr Jacques TITS, Collège de France, 11, pl. Marcelin-Berthelot, 75231 PARIS, Cedex 05.

La fourniture de tirages à part est rigoureusement limitée aux 100 exemplaires fournis gratuitement aux Auteurs d'articles.

AN ANALYTIC PROOF OF NOVIKOV'S THEOREM ON RATIONAL PONTRIAGIN CLASSES

by D. SULLIVAN (1) and N. TELEMAN (7)

We give here an analytic proof for the following:

Theorem 1 (S. P. Novikov [3]). — The rational Pontrjagin classes of any simply-connected compact oriented smooth manifold are topological invariants.

This problem was previously posed by I. M. Singer [4] and D. Sullivan [5]. Theorem 1 is a direct consequence of the following Theorems 2 and 3.

Theorem 2 (D. Sullivan [5]). — Any topological manifold of dimension \neq 4 has a Lipschitz atlas of coordinates, and for any two such Lipschitz structures \mathcal{L}_i , i=1,2, there exists a Lipschitz homeomorphism $h: \mathcal{L}_1 \to \mathcal{L}_2$ close to the identity.

Remark 1. — The proof of theorem 2 in general uses Kirby's annulus theorem to know that topological manifolds are stable. The proof of Theorem 2 for stable manifolds is more elementary. Simply connected manifolds are stable and these are sufficient for proving Novikov's theorem.

Theorem 3 (N. Teleman [6]). — For any compact oriented boundary free Riemannian L_{1} psohitz L_{2} manifold $M^{2\mu}$, and for any Lipschitz complex vector bundle ξ over $M^{2\mu}$, there exists a signature operator D_{ξ}^{+} , which is Fredholm, and its index is a Lipschitz invariant.

Theorem 2 allows a strengthening of the statement of Theorem 3.

Theorem 4. — For any simply-connected compact, oriented, boundary free topological manifold $M^{2\mu}$ of dimension $2\mu \pm 4$, and for any complex continuous vector bundle ξ over M, there exists a class $\mathscr{C}(M,\xi)$ of signature operators D_{ξ}^+ which are Fredholm operators. The index of any of these operators is the same and is a topological invariant of the pair (M,ξ) . When M and ξ are smooth, the smooth signature operators D_{ξ}^+ (cf. [1]) belong to this class $\mathscr{C}(M,\xi)$.

⁽¹⁾ Partially supported by the NSF grant # MCS 8102758.
(2) See also P. Tukia and J. Väisälä [7] and [8].

Proof. — Pick a Lipschitz structure \mathcal{L}_1 on M by Theorem 2, and regularize the bundle ξ up to a Lipschitz vector bundle ξ_1 . Theorem 3 says that the class $\mathscr{C}(M, \xi)$ is not void, and because the Lipschitz signature operators generalize the smooth signature operators, the last part of the theorem follows.

Suppose now that \mathcal{L}_i , i=1,2, are two Lipschitz structures on M and that ξ_i are corresponding Lipschitz regularizations of ξ .

The Theorem 2 implies that there exists a Lipschitz homeomorphism $h: \mathcal{L}_1 \to \mathcal{L}_2$ close to the identity (isotopic to the identity). As h is isotopic to the identity, the bundle $h^*\xi_2$ is Lipschitz isomorphic to ξ_1 ; let $\overline{h}:\xi_1\to\xi_2$ be such an isomorphism. Take any Lipschitz Riemannian metric [6] Γ_i on M, i=1,2, and any connection Δ_i in ξ_i ; the signature operators $D_{\xi_i}^+$ are defined. From Theorem 3 we know that the index of $D_{\xi_i}^+$, i fixed, is independent of the Riemannian metric Γ_i and the connection Δ_i chosen. In order to compare Index $D_{\xi_1}^+$ and Index $D_{\xi_2}^+$ themselves, we chose Γ_2 and Δ_2 arbitrarily, but we take

$$\Gamma_1 = h^* \Gamma_2$$
, and $\Delta_1 = \overline{h}^* \Delta_2$.

From the very definition of the signature operators, we get that the homeomorphisms h, \bar{h} allow us to identify the corresponding domains and codomains of the operators $D_{\xi_1}^+$, $D_{\xi_2}^+$; with these natural identifications, $D_{\xi_1}^+$ and $D_{\xi_2}^+$ coincide, and therefore, they have the same index.

Proof of theorem 1. — Suppose that $M^{2\mu}$ is a smooth manifold, and ξ is a smooth complex vector bundle over M. The signature theorem due to F. Hirzebruch, and subsequently generalized by M. F. Atiyah and I. M. Singer [1], asserts that

Index
$$\mathbb{P}^{\frac{1}{4}} = \operatorname{ch} \xi. L(p_1, p_2, \ldots, p_{\mu/2})[M]$$

where L is the Hirzebruch polynomial and $p_1, p_2, \ldots, p_{\mu/2}$ are the Pontrjagin classes of M. Theorem 4 implies that the right hand side of this identity is a topological invariant of the pair (M, ξ) . By letting ξ to vary, ch ξ generates over the rationals the whole even-cohomology subring of $H^*(M, \mathbb{Q})$. From the Poincaré duality we deduce further that the cohomology class $L(p_1, \ldots, p_{\mu/2})$ is a topological invariant. It is known that the homogeneous cohomology part L_i of degree 4i of $L(p_1, \ldots, p_{\mu/2})$ is of the form (see e.g. [2])

$$\mathbf{L}_i = a_i.p_i + \text{polynomial in } p_1, p_2, \ldots, p_{i-1}, \quad a_i \in \mathbf{Q}, \quad a_i \neq \mathbf{0}.$$

Therefore $p_1, p_2, \ldots, p_{\mu/2}$ are polynomial combinations with rational coefficients of $L_1, L_2, \ldots, L_{\mu/2}$, which, as seen, are topological invariants.

Dt H