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THE DIRICHLET PROBLEM AT INFINITY
FOR A NEGATIVELY CURVED MANIFOLD

DENNIS SULLIVAN

We consider a complete Riemannian ^-manifold M which is connected and

simply connected, and has sectional curvatures k bounded between two finite

negative constants, i.e., -b2 < k < -a2. Such a manifold shares many features

with hyperbolic space, the carrier of non-Euclidean geometry. M is diffeomor-

phic to an open fl-ball and has a natural compactification M which adds a

topological (n — l)-sphere at infinity. The compactification M is homeomor-

phic to a closed «-ball. Since the ideal points of M are constructed by an

infinite dynamical process (asymptotic classes of geodesies), it is rare that one

may think of M as a differentiable object.

Probability theory provides a measure class on ΘΛΓ, which is the "harmonic

measure class". If m E M, and A C dM is a Borel set, then define vm(Λ) to be

the probability of a random path (see Appendix) starting at m tending to a

limit in A. One knows (Prat [10]) that almost all paths tend to limits on 3M,

and we shall give a quantitative discussion of the phenomenon below. One also

knows that m-^vm{A) defines a bounded harmonic function (possibly con-

stant) with values in [0,1]. By the maximum principle hΛ is either Ξ O , Ξ I ^ O Γ

takes values in (0,1). In any case, vm(A) > 0 for one m if and only if vm(A) > 0

for all m. Thus all the hitting measures vm on dM are absolutely equivalent and

define one measure class, the "harmonic measure class".

Showing that the harmonic measure class is nontrivial would solve the

following problem which the author learned from Yau and Malliavin.

Problem. Does a complete, simply connected, negatively curved manifold

(with curvatures bounded between two finite negative constants) have any

nonconstant bounded harmonic functions?

Conformal theory in dimension two implies the answer is affirmative there.

For the universal cover of a compact negatively curved manifold of any

dimension, the answer is also affirmative. More generally, a nonamenable

covering of any Riemannian manifold has nonconstant bounded harmonic

functions; Lyons-Sullivan (1982).
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The aim of this paper is to solve the problem affirmatively in general. In
fact, the Dirichlet problem relative to infinity can be solved. We use probabil-
ity on Riemannian manifolds; independently and simultaneously M. T. Ander-
son solved the Dirichlet problem at infinity for negatively curved manifolds.λ

Theorem 1. Each continuous function on the sphere at infinity dM has a

continuous harmonic extension to M U dM.

Of course, the harmonic extension is unique using continuity at infinity and
the maximum principle on the interior. Thus M has many nonconstant
harmonic functions which are bounded.

Theorem 1 is deduced from the following statement using "the Poisson
formula".

Theorem 2. The harmonic measure class on dM is positive on each nonvoid

open set. In fact if mt in M converges to m^ in ΘM, then the Poisson hitting

measures vm tend weakly to the Dirac mass at m^.

The proof is based on a quantitative study of how the negative curvature
pushes random paths out to infinity. The estimates, because of the variable
curvature, do not show the harmonic measure class is equivalent to the
geodesic measure class, and the author doubts that this is always so in high
dimensions, e.g., n > 4.

Now we state what properties of the metric are used to prove these theorems.
There are two, one corresponding to the upper bound and one to the lower
bound on curvature.x

(A) First, we use that the geodesies rays from any point give a polar
coordinate system for M and the geodesies diverge at least at a definite
exponential rate. The negative upper bound -a2 on curvature implies this.
Then a is a lower bound for the exponential rate of divergence.

(B) Second, let p(t, x, y\ B) be the fundamental solution of the heat
equation vanishing at the boundary of the unit ball centered at JC0 in M. We
need the existence of a time T > 0 and a positive member μ(τ) both indepen-
dent of JC0, so that the total mass of p(t, x, y\ B) is ^ μ(τ). This kind of
estimate is true in the presence of a lower bound on the Ricci curvature
(Cheeger, Yau (1980), Cheval-Feldman (1983)).

1. Notation and sketch of proof

Here we describe the structure of the proof of Theorem 2. The required
details are given in §2 and the Appendix. The basic idea is easy to state and to
understand. Consider a fixed point m in M and the distance d(x) as measured

1 In [12] Kifer describes his solution of the problem under a slightly stronger bounded curvature
condition.
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from m. The exponential divergence of geodesies from m means the level

spheres have a definite convexity towards m. Thus a randomly moving particle

has a definite tendency to move away from m.

We imagine this rate to be linear in time. But then the apparent angle swept

out by the particle is an exponentially decreasing function and so integrable.

Thus the particle converges in angle at infinity. Moreover, if the particle starts

at x0 far from m, this convergence tends to take place near the ray (xm0). Thus

the harmonic measure class on dM is nontrivial, and the idea of the proof is

complete.

A technical problem arises because the motion of a random particle is not

locally rectifiable. To remedy this and to make the calculation simpler, we

replace each random path w(t) by a random sequence (xo,x,,-••). The

sequence is within distance 1 of every point of the path and has for our

purposes an equivalent probability structure. (Also this construction makes

sense on any complete Riemannian manifold; see Lyons-Sullivan (1982) for

refinements.)

Inductively, given a finite sequence x 0, xx,---,xn the next point xn+λ is

distributed by a probability measure μ(xn, T) in the unit ball BXn centered at

xn9 and so on. The measures μ(xn9τ) are defined in one way using random

paths, and a stopping time which directly implies the probability structure on

sequences will have our required properties.

The measure μ(xn, τ) is also defined by the heat kernel /?(τ, xn, y\ Bx) in

Bx plus a boundary measure P(T, xn) on dBx —the time τ harmonic measure

of dBXn relative to xn. This allows one to show for an appropriate ε > 0 the

expected value of e~εdM over Bx relative to μ(xn, r) is majorized by ce~εd{Xn)

for some c < 1. A trivial calculation then shows the expected value of

e-εd(x0) _|_ e-εd(xx) -|_ . . . -j-e~εd(xn) _|_ . . .

over all sequences starting at x0 is < Ce~εd(Xo) for C = 1 + c + c 2 + .

Thus the sum of the infinite series is finite for almost all sequences, and even

small for a definite fraction of sequences if d(x0) is large.

But because of the exponential divergence of geodesies determined by the

negative curvature -b2 ^k^ -a2, this sum, for ε smaller than a, majorizes the

total angle swept out by a sequence as viewed from m.

By construction the random path and its associated sequence have the same

limit at oo. The above estimates show definite proportions of sequences hit

infinity in small disks about the end point of any given ray. These estimates

prove Theorem 2, which in turn formally implies Theorem 1.
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2. The proof using the notation of §1

(1) The vector field grad(d(x)) is the unit outward normal field to spheres
concentric about m. From the Jacobi equation and property (A) of the metric
the field diverges apart at an exponential rate at least as quickly as in the space
of constant curvature -a2. This latter rate is a. Thus the divergence or volume
distortion of this field is > (n — l)α, where n = dimension M. In other words
ϋd{x) = div grad d(x) > (n - \)a.

Since | grad(έ/(jc)) | = 1 and Δe' = (| grad f\2 + Δf)ef

9 if 0 < e < (n - l)β,
then Δe~εd < c(ε)e"εί/ for some c(ε) < 0. (Putting/ = -εd, (| grad f\2 + Δ/) ̂
ε2 + ε(-(« - l) β ) = ε(ε - (n - l)α).)

(2) For each x in M let JU(Λ:, 0 be the probability measure in the unit ball B
about JC, which is defined by the formula

μ(t9 x) = p(t9 x, y\ B) dy + y(ί, x)

of Appendix (a). Here /?(/, x, ̂  B) is the heat kernel vanishing on 3#, and
*>(/, x) is the boundary measure so that

h(x)=fp(t9x9y)h(y)dy+jφdr

for all bounded harmonic functions in B with continuous boundary values φ.
In Appendix (d) one sees that all these measures are positive and that the

mass of p(t, x, y\ B)dy is monotone decreasing. Now let t = τ be the time
given by property (B) of the metric.

Proposition. For 0 <ε<(n — \)a there exists c < 1 so that

J -εd(X)
9 τ ) for any x0 in M.
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Proof. Write e~
ε{d{x)~d{Xo)) as a harmonic function H on 2?^ with the same

boundary values plus a function U vanishing at the boundary. By the defini-
tion of μ(x, T), /Hdμ(xθ91) — H(x0). Since U vanishes at the boundary, we
are left to calculate /p(τ, x0, y\ B)U(y) dy — V(x0, T).

Since ΔH = 0, we have Δt/ < c(ε) < 0 by (1). Thus2

(T, xo, y\ B) U(y) φ ) ( x 0 ) = fp(τ9 xθ9 y; B)ΔU(y) dy

< c(ε) - total mass/?(τ, xQ9 y\ B) dy.

For t <τ the second factor being decreasing is > total mass p(τ9 x09 y\ B) dy
which is > μ(τ) by our basic assumption (B) on the metric. Using the heat
equation we have

Thus

V(x0, T) < V(xo,O) + c(e) μ(r) • τ = U(x0) + c(β) μ(τ) T,

where c(ε) < 0, μ > 0, T > 0.
Putting all this together,

fe-'dMdμ{x0, r) = e-^x°)fe-«d^-«x< )>dμ(x0, r)

ix) dμ(x0, T) + fu(x) dμ(x0,

o) + fu(x)p(r,x,y;B)dy]j

o) + φ ) . μ ( τ ) . τ)

So c = 1 + c(ε)μ(τ) T < 1 works for the statement of the proposition.
(3) Now for each x0 in M consider the space {(x0, xx, ,xn)} of sequences

x0, x,, ,xn in M where distance (x m + 1 , xm) < 1. Put a probability measure
P£° on these so that inductively Pf° = μ(x0, T) and inductively

where the formula makes sense using the fibration

( ( X o , Xχ, , X n ) j -* { ( X Q I
 x l > '

2 The heat operator e Δ ' and Δ commute, and U is in the domain of Δ.
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Namely, P*±λ is defined on the base {(x0, xl9- -9xn-\)} by induction; on each

fibre {x: dist(x, xn-\) ^ 1} we have the measure μ(xn-x, T), and we add these

up using Pxl} to get Px° on the total space {(x0, x,, ,xπ)}.

(4) We calculate the expected or average value relative to Px° of the function

on sequences

where dn — d i s t a n c e ^ , m). By the proposition

je-εd"dμ(xn_^τ)^ce-€d»* for c < 1.

Thus

and the average value of the sum is majorized by

e " ε d i s t ( > m ) ( l + c 2 + + c π ) .

(5) The measures P*° determine a probability measure P*° on the compact

space Sx° of all sequences (JC0, JC19 JC2, ) with fixed x 0 and dist(xm, ^ m +1) < 1

which is uniquely defined by the equations: nth projection Px° = P*°. (These

equations define a decreasing family of compact convex sets in the space of

probability measures on Sx°. The intersection of these is nonempty. This

proves existence. Uniqueness follows because a continuous function on Sx° is

approximately constant on fibres of this nth projection for n sufficiently large.)

(6) By the monotone convergence theorem and (4) above the integral of

hmn(e~ed° + +e~εdn) over Sx° with respect to Px° is majorized by

Thus again by monotone convergence, e~εd° + e~εdχ + is finite for Px°

almost all sequences (x 0 , xl9 ).

The size of the angle between xm and xm+, is majorized by e~εdm if ε < a by

our other basic assumption on the metric. Thus for Px° almost all sequences,

the total angle from m swept out is finite. Moreover, measuring angular

distance θ between an arbitrary ray from m and the one through xQ we have

shown

probability (total angle of(x0,xl9- — )>θ)
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Total angle

(7) Now consider (3)x°, the space of continuous paths starting at x0. Denote

by μXo the Wiener measure on the paths. The Wiener measure is characterized

by the Markoff property and the property that it projects to the heat density

p(t, x9 y) dy under the map which sends every path to its position at time t.

(See the book of Stroock and Varadhan [11] and the Appendix for more

details.)

For a path ω(t) starting at ω(0) define Tj(co) E (0, oo) to be the minimum of

T (as in (2)) and inf{7: distance(ω(ί),(0)) = 1 } . Define rn(ω) inductively as the

minimum of τ/ ϊ_1(ω) + T and inf{t: distance(ω(τw_j), ω(t)) = 1}. Note that

τn(ω) = τπ_,(ω) + τx(ω(τn_x(ω))).

Define a map (continuous paths starting at x0] to (sequences starting at x0}

by

ω(t) ^ ( ω ( 0 ) 9 ω ( τ x ) 9 ω ( τ 2 ) 9 - ' ) ,

where ω(0) = JC0.

Proposition, (i) The map π projects Wiener measure μ on the measure Px°

constructed in (5).

(ii) For almost all paths lim τn{ w) — oo.

Proof (1) To prove (i) we need only to show

ω -*(ω(0)9 ω(τλ),- - ,ω(τn))

projects Wiener measure ontcrthe measure μXo constructed in (3). This is true

for n = 0; the heat kernel at time 0 gives the Dirac mass at xQ. If true for

n — 1, it will be true for n if and only if the conditional distribution of ω(τn)

given ω(rn_x) = xn_λ say is μ{xn-λ, T). But μ(xn-λ, T) is defined by random

motion started at xn_λ and stopped at T or at the first hit on boundary of the

unit ball around JCΠ_ X (Appendix). By the Markov property this measure agrees

with the conditional measure on ω(τπ) for a path stopped at time τn_λ at xn_x

and restarted up and run until τn. (In fewer words μ(x0, τ) = (π^JY*0 and

by definition.)
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So by the Markov property the conditional of ω(τn(ω)) g ivenωί^.^ω)) is

μx where x = ω(τn_x(ω)).) This proves (1).

(2) The probability τ](ω)>τ is the total mass of /?(τ, x, y\ B) where

ω(0) = x. This is ^ μ(τ). Consider those paths for which τn+] — τn<τ for k

values of n = nλ, n2, -,nk. The measure of this set is < (1 — μ(τ))k by the

Markov property. Thus the measure of the set of paths with τn+ι — τn< τ

eventually is zero. In other words for almost all paths, τπ+, is τ more than τn

infinitely often. This proves lim τn = oo for Wx° almost all paths. This com-

pletes the proof of the proposition.

(3) On each path ω we have selected a sequence (x 0 , Λ;,, ) and shown the

sequence converges in angle almost surely because the total angle swept out is

finite almost surely. Note that dn -» oo almost surely because e~εdn -> 0 almost

surely.

We conclude almost all paths converge in angle at infinity and by (7), part

(i), and (6) we have a lower bound (*) on the proportion of paths which

converge near a given ray (mx0). This estimate gives the second statement of

Theorem 2 which of course implies the first statement. Theorem 1 now follows

formally using the "Poisson formula" to solve the Dirichlet problem. If φ on M

is continuous, then

hφ(m) =fφ(y)dvm(y)

is a harmonic function (Appendix) continuous on M U dM by Theorem 2.

Appendix ( potential theory and probability theory on M)

(a) Potential theory on M. For each compact connected region B C M with

smooth boundary let/?(ί, x, y\ B) denote the fundamental solution of the heat

equation vanishing on the boundary of B. For each continuous function φ on

32? let φ be the harmonic extension to B.

Define a measure v(t, x; dB) — v on dB for x in B so that

φ(x) = / p(t, x, y; B)φ(y) dy + ί φ(ξ) dv.

The minimal heat kernel on M is defined to be

p(t9 x, y\ M) = sup/?(ί, x, y\ Ba),
a

where Ba varies over all compact connected smooth sub regions. The minimal

heat kernel of interior B for B compact isp(t, x, y, B).
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(b) Probabilistic completeness of M. A Riemannian manifold is said to be
complete in the sense of probability if the minimal heat kernel satisfies
/p(t, x, y\ M) dy — 1 for all x in M.

One knows that a metrically complete Riemannian manifold is complete in
the sense of probability if the Ricci curvature is bounded from below (Yau).
From now on assume that M is complete in the sense of probability.

(c) Continuous paths in M. A path in M is a continuous map ω of [0, oo)
into M. Let Ω be the set of all paths with the compact open topology and the
corresponding Borel sets.

(d) The Wiener measure on paths. For each x in M there is the Wiener
probability3 measure μx on Ωx C Ω, the paths starting at x (Ωx = (ω G Ω |
ω(0) = x}). Just one of the measures μx determines all the others μy as well as
all of the potential theory {/?(/, x, y\ B)}9 the bounded harmonic functions on
M, etc.

(1) Namely, if Ta denotes the time a shift map on paths Taω(t) = ω(t + a),
then

)*μx = f(p(<*> χ>

i.e., μx shifted by Ta is the convex combination of the other μy averaged by the
heat density. In particular, if we map Ωx to M by evaluating at time a we get
the heat densityp(a, x, y) dy.

(2) If t > 0, x belongs to B as in (a) and we map Ώx to B by ω -> ω(t) if
ω(s) G B for 0 < s < / (otherwise ω -* ω(τ) where 0 < r < t and T is the
maximum time so that ω(s) E. B for 0 ^ s < T), then μx maps to μ(x, t) =
p(t, x, y\ B) + v(x, t) defined in (a).

(3) Finally, there is a bijective correspondence between bounded harmonic
functions on M and the shift invariant elements of L°°(Ω). The measure class
on Ω is that defined by dy on M and the collection μ . A representation
formula is h(x) — /φ(ω) dμx, where φ is a shift invariant bounded measurable
function on Ω, and h is bounded harmonic on M. If h is given, then φ(ω) is
defined by Mm^^^ω^)) which exists by the Martingale convergence theo-
rem (Furstenberg).

Conclusion. Let M be as in the first part of the paper—complete, simply
connected, with sectional curvatures between two negative constants; -b2 < k
< -a2. Then M is probabilistically complete (Yau) and the above discussion is
valid. We have shown using the random sequences that almost all paths

3 Assuming the completeness in the sense of probability, f p(t, x, y) dy = 1 for all t >0, x in

M.
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converge in angle—namely to a point on the sphere at infinity 3M. If φ is any
continuous function (or even any bounded Borel function), define φ on Ω
almost everywhere by φ(ω) = φί l im,^ ω(t)). Then φ is a shift invariant, and
the representation formula becomes the Poisson formula. This is so because the
hitting measure vx on ΘM is by definition the image of μx by the map

For (3) see Dynkin & Yushkevich (1968), Doob (1953), and Furstenberg
(1971). For the analytical constructions of (1) and (2) of μx see Malliavin
(1975), McKean (1969) and the elegant Martingale formulation of Stroock-
Varadhan(1975).
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