DIVISION ALGEBRAS AND THE HAUSDORFF-BANACH-TARSKI PARADOX

by Pierre Deligne and Dennis Sullivan

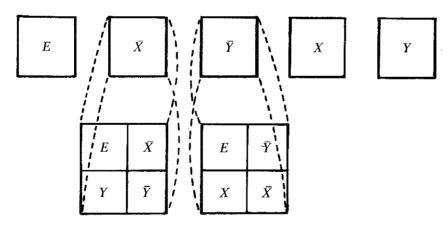
In this note we observe that a question raised by Dekker (1956) about rotations inspired by the Hausdorff-Banach-Tarski paradox can be answered using algebraic number theory. For motivation, we recall a form of the paradox.

Partition the free group in two generators F into the five sets E, X, \overline{X} , Y, \overline{Y} consisting respectively of the identity and of the elements which, when written in reduced form, begin with x, x^{-1} , y or y^{-1} . If F acts freely on a sphere S, by rigid rotations, and if, using the axiom of choice, we choose a transversal T, i.e. a set with exactly one point in each orbit, the five subsets T, XT, $\overline{X}T$, YT, $\overline{Y}T$ form a partition of S. For economy of notation, we will write again E, X, \overline{X} , Y, \overline{Y} for T, XT, $\overline{X}T$, $\overline{Y}T$. The rotation by x moves \overline{X} onto

$$S - X = E \cup \bar{X} \cup Y \cup \bar{Y}.$$

Similarly, γ moves \overline{Y} onto

$$S - Y = E \cup X \cup \bar{X} \cup \bar{Y}.$$



Thus we can reassemble from these 11 (actually 5) pieces 2 congruent spheres plus one congruent copy of the set E. This is a form of the Hausdorff-Banach-Tarski paradox which comes quickly from a free action of a free group

on two generators (see Appendix A for the more precise form). Thus we have the question of Dekker (communicated by Jan Mycielski): do such actions really exist? The sphere must be odd-dimensional for topological reasons: a fixed point free map $f: S^d \to S^d$ must have vanishing Lefschetz number

$$L(f) = \sum (-1)^{i} \operatorname{Trace}(f; H_{i}(S^{d})) = 1 + (-1)^{d} \operatorname{deg}(f)$$
.

For a free action of a free group, the square of a non-trivial element will act by a map of degree +1 and this forces d odd. The dimension must be >1. These are the only conditions.

THEOREM. For $n \ge 2$, there is a free non-abelian group of rigid rotations acting freely on the odd dimensional sphere S^{2n-1} .

Remark. The corresponding orthogonal matrices can be chosen to have algebraic entries, and the group of matrices corresponds to a subgroup of the non-zero elements in a division algebra over a number field.

Remark. The theorem was proved by Dekker for n even [D].

Remark. Let $u: O(p) \times O(q) \rightarrow O(p+q)$ be the natural embedding:

$$u(A, B) = \text{matrix} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

If $A \in O(p)$ and $B \in O(q)$ don't have any nonzero fixed vector, neither has u(A, B). If $\sigma_1 : F \to O(p)$ and $\sigma_2 : F \to O(q)$ define free actions on S^{p-1} and S^{q-1} , $u(\sigma_1, \sigma_2)$ hence defines a free action of F on S^{p+q-1} . Using this remark, one could reduce the theorem to the two particular cases n = 2 and n = 3.

Proof. Let $k \subset \mathbb{R}$ be a real algebraic number field, and $k' \subset \mathbb{C}$ be a quadratic extension of k. We assume that $k' \notin \mathbb{R}$, i.e. that $k' \otimes_k \mathbb{R} = \mathbb{C}$. Let D be a division algebra of dimension n^2 over its center k', equipped with an anti-involution * inducing on k' the complex conjugation. The \mathbb{R} -algebra $D \otimes_k \mathbb{R}$ is a simple algebra over its center $k' \otimes_k \mathbb{R} = \mathbb{C}$, hence isomorphic to $M(n, \mathbb{C})$. We assume that, for a suitable isomorphism between $D \otimes_k \mathbb{R}$ and $M(n, \mathbb{C})$, * becomes transpose conjugate.

In term of an isomorphism as above, the elements u of D satisfying $uu^* = 1$ become unitary matrices. They operate on the unit sphere in \mathbb{C}^n . Furthermore, if $u \neq 1$, u - 1 is invertible in D so that the corresponding matrix does not have 1 as an eigenvalue. It hence acts without fixed point on the sphere.

The group Γ : = $\{u \in D \mid uu^* = 1\}$ is the group of k-rational points of a k-form of the real algebraic group U(n). For n > 1, the perfect subgroup SU(n)

of U(n) is not trivial, and U(n) is not solvable. The group Γ is dense in U(n): skew adjoints elements of D are dense in the skew adjoint matrices in $M(n, \mathbb{C})$, and the Cayley transform $t \mapsto \frac{t-1}{t+1}$ is an homeomorphism from the space of skew-adjoint matrices in $M(n, \mathbb{C})$ to an open dense subset of U(n), carrying skew adjoint elements of D into Γ . From this density, it results that, if n > 1, the linear group Γ is not solvable. By [Tits], it contains a non abelian free subgroup.

It remains to construct pairs (D, *). A division algebra D with center k' admits an anti-involution * inducing on k' the non trivial element Gal(k'/k), if and only if its class cl(D) in the Brauer group Br(k') of k' has a trivial image by the norm map $N_{k'/k}$: $Br(k') \to Br(k)$ —see Appendix B. Class field theory provides an explicit computation of Br(k), and of $N_{k'/k}$, and tells which elements of Br(k') come from division algebras. From the explicit description it provides, existence of such D follows. A direct construction is given in Appendix C. When we choose an isomorphism of $D \otimes_k \mathbf{R}$ with $M(n, \mathbf{C})$, the involution * becomes adjunction with respect to some hermitian form ϕ on \mathbf{C}^n , not necessarily positive definite: $\phi(ax, y) = \phi(x, a^*y)$. If h is self adjoint in D, $int(h^{-1}) \circ *$ is adjunction, with respect to the form $\phi_h(x, y) = \phi(hx, y)$. For suitable h, ϕ_h is positive definite and $(D, int(h^{-1}) \circ *)$ is of the type sought.

APPENDIX A

Consider $\phi: S' \cup S'' \to S - E$ as in the introduction, with S' and S'' two copies of the sphere S, and $\psi: S \to S'$ the obvious bijection. Consider as in the Schröder-Bernstein theorem the set S_e of points p in S with an even number of ancestors, namely for which there exists an integer $n \ge 0$ with $p \in \text{Im}(\phi \circ \psi)^n$ and $p \notin \text{Im}(\psi \circ (\phi \circ \psi)^n)$. Consider also the set S_0 of those p in S for which there exists $n \ge 0$ with $p \in \text{Im}(\psi \circ (\phi \circ \psi)^n)$ and $p \notin \text{Im}(\phi \circ \psi)^{n+1}$, and finally the set S_∞ of those p such that $p \in \text{Im}(\phi \circ \psi)^n$ for any $n \ge 0$. Consider similarly

$$S' \cup S'' = (S' \cup S'')_e \cup (S' \cup S'')_0 \cup (S' \cup S'')_{\infty}.$$

Then ψ induces a bijection from $S_e \cup S_{\infty}$ onto $(S' \cup S'')_0 \cup (S' \cup S'')_{\infty}$ and ϕ^{-1} from S_0 onto $(S' \cup S'')_e$. Combining these two we have a bijection $\chi \colon S \to S' \cup S''$ and a partition of S into finitely many pieces, the restriction of χ to each of these being a rotation.

APPENDIX B

Let K be a separable quadratic extension of a field k. We denote $x \mapsto \bar{x}$ the non trivial element $\operatorname{Gal}(K/k)$. Let D be a simple algebra with dimension n^2 over its center K. We will check the criterion of the text, for the existence of an involution of the second kind on D, i.e. of an anti-involution * of D, inducing $x \mapsto \bar{x}$ on K. The criterion is that $N_{K/K} \operatorname{cl}(D) = 0$ in $\operatorname{Br}(k)$.

Let us localize, for the étale topology, over $\operatorname{Spec}(k)$. This means making large enough étale extensions of scalars $\bigotimes_k k'$, and keeping track of the functoriality in k'. The field K becomes the separable quadratic extension $K' = K \bigotimes_k k'$ of k'. The algebra D becomes $D' = D \bigotimes_k k'$, and is of the form $D' = \operatorname{End}_{K'}(V')$, for V' a free module K'. The module V' is not determined uniquely by D', only up to homotheties (the corresponding projective space is uniquely determined).

For any K-module M, let M^- be the module deduced from M by the extension of scalars $\bar{}: K \to K$, i.e. the module, unique up to unique isomorphism, provided with an anti-linear isomorphism $x \mapsto \bar{x}: M \cong M^-$. Similarly for K'-modules. If $D' = \operatorname{End}(V')$, then $D^{-'} = \operatorname{End}(V'^-)$, and

$$(D \otimes_K D^-)' = \operatorname{End}(V' \otimes V'^-).$$

Let W' be the fixed subspace of the anti-linear automorphism of $V' \otimes V'^-$ defined by $v \otimes \bar{w} \mapsto w \otimes \bar{v}$. It is the space of Hermitian forms on the dual of V'. One has $W' \otimes_{k'} K' = V' \otimes V'^-$. If $D_1 \subset D \otimes_K D^-$ is the fixed subspace of the anti-linear automorphism of $D \otimes_K D^-$ defined by $x \otimes \bar{y} \mapsto y \otimes \bar{x}$, then D'_1 is the k'-form of the K'-algebra $(D \otimes_K D^-)' = \operatorname{End}(V' \otimes V'^-)$ deduced from the k'-form W' of the K'-module $V' \otimes V'^-$: $D'_1 = \operatorname{End}_{k'}(W')$.

Involutions of the second kind on D' correspond one to one to non degenerate Hermitian forms on V', taken up to a factor (in k'^*). Those, in turn, by the "dual form" construction, correspond to "non degenerate" elements of W'. Again, one has to take them up to a factor. The projective space P(W') over k' is determined up to unique isomorphism by D'. It is hence (this is the point of localisation) defined over $k: P(W') = P \otimes_k k'$, functorially in k'. The k-points of P (rather, the non degenerate points) parametrize the involutions of the second kind on D.

The functorial isomorphism $D'_1 = \operatorname{End}_{k'}(W')$ shows that P is the form of projective space (Severi-Brauer variety) attached to D_1 . It has a rational point, and is then the ordinary projective space, if and only if D_1 is a matrix algebra.

This shows that D has involutions of the second kind if and only if the class of D_1 in Br(k) is trivial. This class is the required norm $N_{K/k}(cl(D))$. In the localization spirit, this can be deduced from the fact that the homothety by $\lambda \in K'^*$ of V' induces on W' the homothety by $N_{K'/k'}(\lambda) \in k'^*$.

APPENDIX C

For $n \ge 3$, examples can be obtained as follows: take $k' = \mathbb{Q}[\zeta]$, with $\zeta = \exp(2\pi i/n)$, and $k = k' \cap \mathbb{R}$. Fix $a, b \in k^*$ and let D be the k'-algebra generated by X, Y, subject to

$$X^n = a$$
, $Y^n = b$
 $XY = \zeta Y X$.

It admits the anti-involution *, inducing complex conjugation on k', defined by $\zeta^* = \zeta^{-1}$, $X^* = X$, $Y^* = Y$. The algebra D is of the type we require, provided it is a division algebra. This happens already with $a, b \in \mathbb{Z}$: take for a a prime congruent to $1 \mod n$, and for b an integer whose residue mod a has in the cyclic group of order $n (\mathbb{Z}/(a))^*/(\mathbb{Z}/(a))^{*n}$ an image of exact order n. For instance n = 3, a = 7, b = 2. For n = 2, one proceeds similarly with $k' = \mathbb{Q}[i]$, $\zeta = -1$, a congruent to $1 \mod 4$ and b not a square mod a. For instance, a = 5, and b = 2. In each case, the assumption on a ensures that k' embed in the a-adic completion \mathbb{Q}_a of \mathbb{Q}_n , and the fact that D is a division algebra can be seen locally at $a: D \otimes_{k'} \mathbb{Q}_a$ is a division algebra with center \mathbb{Q}_a .

BIBLIOGRAPHY

- ALBERT, A. Structure of algebras. A.M.S. Colloquium Publ. 24 (1939). [A]
- [Sch] SCHARLAU, W. Zur Existenz von Involutionen auf einfachen Algebren. Math. Zeitschr. 145 (1975), 29-32.
- [Myc] MYCIELKSKI, Jan. Can one solve equations in groups? Amer. Math. Monthly 84 (1977), 723-726.
- [Tits] Tits, J. Free subgroups in linear groups. *Journal of Algebra* 20 (1972), 250-270. [D] DEKKER, Th. J. Decomposition of sets and spaces I, II. *Indig. Math.* 18 (1956), 581-595, and 19 (1957), 104-107.

(Reçu le 8 mars 1982)

Pierre Deligne Dennis Sullivan

> Institut des Hautes Etudes Scientifiques 35, route de Chartres 91440 Bures-sur-Yvette France