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ON THE DYNAMICS OF RATIONAL MAPS

By R. MANE, P. SAD anp D. SULLIVAN

I. — Imtroduction

1. Itis a remarkable fact that each analytic (*) endomorphism f of the Riemann sphere €
exhibits highly non-trivial dynamical phenomena. In this paper we first deseribe classical
and recent results which give the basic dynamical picture of these mappings. Then we make
use of this picture to construct topological conjugacies or partial topological conjugacies
between certain nearby endomorphisms in analytic families of endomorphisms.

The partial or global conjugacies we will construct depend analytically on the parameters
of the family and these satisfy the interesting geometric property of quasi-conformality. One
corollary will be — there is an open dense set C of degree d polynomial mappings of C such that
all mappings in each connecied component of C are conjugate by quas:—conforml

- homeomorphisms.

Another corollary will be —an open dense set of polynomial mappings satisfies the Axiom A
expanding property iff there is an open dense set of polynomial mappings ibhere the Julia set has
Lebesgue measure zero. A precise statement of results comes later in .this introduction.

2. Our construction of conjugacies depends on a simple but at first surprising propos1t10n
concerning analytic perturbations of the inclusion of an arbitrary subset A of the sphere

A-LEMMA. — Let A be a subset of C, D the open unit disk of C and i, : A — C a family of
injections depending analytically on heD (i.e. the function ) —i,(z) is analytic for
all zeA). Suppose that i, is the inclusion map AS C.  Then every i, has a quasi-conformal
extension i, : A — C ivhich is a topological embedding depending analytically on )€ D and so
that the map D x A>(h, z) — i,(2)eC is continuous. ‘

Using the A-Lemma and the general picture of the dynamics of endomorphisms on C the

topological conjugacies between endomorphisms are built in two steps.  First, one builds
analytically varying partial conjugacies on some dynamically easy subset A of the sphere

(*) Without mention to the contrary anakytic here means complex analytic.
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194 - " R MARNE, P. SAD AND D. SULLIVAN

(like the countable set of expanding periodic points union the basins of attracting periodic
cycles). Second, one saturates by the mapping and applies the A-Lemma to extend this
partial conjugacy to the closure of A.

It is easy to see that from the above version of the A-Lemma it can be deduced the more
general statement obtained by replacing the unit disk in C by the unit ball in C”

After this paper was written, Sullivan and Thurston [14] proved an extension Lemma that
states that given a compact set A = C and afamily of injections #, depending analytically on A
and satisfying the hypothesis of the A-Lemma, then there exist a family of quasi-conformal

* homeomorphisms 7,: C < extending #,: A — C and depending analytically on A for A in a
disk Dy,=D, whose radins is.a universal constant independent of the original
family. Combining this Lemma with the techniques developed in this paper Sullivan
obtained in [13] a substantial improvement of the stability Theorem presented here
(Theorem D). ' ‘

3. We will work with analytic familiés f: W xC — C of endomorphisms where W is a
connected complex manifold and f=f(w, z) is analytic in two variables. For the global
family of all endomorphisms of degree d, End,(C), W is an open connected subset of the
complex projective space CP2?971 with the inherited topology equivalent to the C°topology
on End, (C). The three-dimensional Moebius group {A:z—>(az+b)/(cz+d)} acts by
conjugation f — A.f.A™! on the global family showing the space of analytically inequivalent
endomorphisms has dimension 2d—2. The number 2d—2 coincides with the number of
critical points {c{f’'(c)=0} of any endomorphism f of degree 4. Critical points have
topological dynamical meaning (f is not locally injective there) and the reader will observe in
the course of the discussion below a relationship between the structure of the orbits of critical
. points and the number of essential analytic parameters for perturbations of f.

Similarly, the analytic family of all polynomial mappings of degree d is parameterized by
an open connected dense subset of CP?* ! in which the similarity group { z — az+5 } acts by
conjugation. The quotient analytic space of analytically inequivalent polynomial
mappings has dimension d—~ 1 which coincides with the number of critical points of a
polynomial mapping of degree d.

'4. TuE JULIA SET AND THE STABLE REGIONS. — Now we describe the dynamical picture of an
analytic endomorphism f of C. Say that a point xeC is stable forf if on some
neighborhood of x the family of interates f, f2, f°,..., is an equicontinuous family of
mappings of a neighborhood into the sphere.  Note that when x is not stable i. e. unstable,
for any neighborhood the union of images of iterates must cover C except two points at

-most. Fatou [3] and Julia [6] showed the set of unstable points J{f} (now called the Julia
set) coincides with the closure of the expanding periodic points (sources).

The open set of stable points consists of countably many connected components, the stable
regions of f, which are transformed among themselves by . In Sullivan [9] it is shown that
under the iteration of feach stable region is eventually cyclic. The cycles of stable regions are
classified into five types (Sullivan [9]). The first two types attractive basins and parabolic
basins have fundamental domains for the equivalence relation x~y iff f"x=f"y for
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ON THE DYNAMICS OF RATIONAL MAPS ' 195

some n, m20. The third type, superattractive basirs do not, but they are foliated by the
closures of the classes of the equivalence relation, x~ y iff f"x=f"yfor some n>0. The last
two types are rotation domains, Siege! disks or Herman rings, which are foliated by the
closures of forward orbits.

(1) Anattractive basin D arises from an attractive periodic cycle y with non zero derivative
of modulus less than one, y={z f(z)..... " (2) }, f(2)=z O<{(f™Mz)| <1, and D
consists of the components of W (y)=) {y| lim distance (f"y, f "x)=0} containing

XEY n— +w

points of y. Fatou [3] showed that such a D must contain a critical point of f. Thus there
are no more than 2d—2 attractive basins for an endomorphism of degree d. |
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196 R MARE, P. SAD AND D. SULLIVAN

If we remove from D the inverse orbit of 1, { U f ="y}, the set of ~ equivalence classes

nz0
(x~yiff f"x=f™y} defines a torus with branch ;_)oints corresponding to the critical points
of f. Thisfollows easily from the local model of fnear y, where near a fixed point of a power
of fwe have z — Az, 0<|A|<1.

(i) A parabolic basin D arises from a non-hyperbolic periodic cycle ¥ with derivative a
root of unity, y={z, f(z),....f* (@}, 2=z, (f")'(=)"=1, v is contained in the
frontier of D, ‘and each compact in D converges toy under forward iteration of f
(Fatou [3]). Thelocal picture of the dynamics consists of parabolic sectors arranged around
the fixed point of a power of f'which in local coordinatesis z —» z+z'+ . . . and topologically
equivalent to z — z+z' (Fatou [3], Camacho [2]).

Local model Fundamental
domain

The local model produces a fundamental domainfor the global dynamics on D because ali
orbits in I tend to y. Looking at the local picture then shows the quotient of D by
the x ~ y equivalent classes is a union of twice punctured sphere with branched points coming
from the critical points of f lying in D (there must be at least one critical point in D,
Fatou [3]). o

(i) A superattractive basin D is defined just like an attractive basin but now the derivative
of the power of f having a fixed point is zero. Now points arbitrarily near the attracting
cycle are identified by f and there is no true fundamental domain for the ~ equivalence
classes. The more precise relation x = y iff f"x=f"y for some »n20 defines a foliation with
singularities of D’ =D —jnverse orbit of y by the closures of the &~ equivalence classes. The
leaves are 1-manifolds which are not necessarily compact and which have singularities at the
inverse orbit of other critical points in D. The local analytic “linearization” near a
superattractive fixed point or, more precisely, its analytical equivalence to z — z™ for
some m >0 shows the leaves near y are nearly concentric closed curves around the points
of y. The rest of the foliation of ID' is obtained by applying f ~* to this concentric foliation
near y. ' ]

{(iv) A Siegel disk is a stable region which is cyclic and on which the appropriate power of [
is analytically conjugate to a rotation of the standard unit disk. Siegel {1942] proved these
occur near a non-hyperbolic periodic point if the argument u of its derivative satisfies the
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ON THE DYNAMICS OF RATIONAL MAPS 197

following diophantine condition: there exists ¢>>0 and v=2 such that |4 —(p/q)| = c/q" for
every relatively prime integers p and 4.

Fatou and Julia showed that if such regions existed their frontiers were contained in the
union of the @-limit sets of critical points.

Siegel disks around the origin may occur already in the family z—Az+:z2,
|L|=1. However, they do not occur when u is sufficiently Liouville because then there are
periodic points tending to zero in this case (an easy calculation).

(v} A Hermanring is a stable region similar to a Siegel disk. Now we have a periodic cycle
of annuli and a power of fwhich restricted to any of these annuli is analytically equivalent to
an irrational rotation of the standard annulus.  Again thefrontier is contained in the o-limit
sets of critical points (Fatou [3]). Such regions were found by M. Herman for the map:

eﬂ) z—a 2
o g —
z \l—az )’

forappropriate @and a. Flerman uses Arnold’s theorem about real analytic conjugations of
real analytic diffeomorphisms of the circle to rigid rotations when the rotation number is like
a Siegel number. Note that both Siegel disks and Herman rings are foliated by the closures
of orbits and the leaves are closed real analytic curves.

5. MOREDYNAMICAL PROPERTIES. — (i) One knows there are only finitely many cyclic stable
regions described in 4 (Sullivan [9]). Butit is a problem to find the sharp upper bound for
the number of cycles in terms of the degree. Isit 2d—27

(ii) Also for polynomials one knows each bounded stable region is simply connected (apply
the maximum principle to f, f2,...). Thus polynomials do not have Herman rings.

(iii) An amusing corollary of the classification of stable regions in 4 is the following — if all

critical points of f are eventually periodic but none are periodic then the Julia set of fis all of C
(because each type of cyclic region besides the superatiractive basin requires a critical point
with an infinite forward orbit). Examples of this type are z — ((z — 2)/2)? and the quotient of
some higher degree endomorphism of a one-dimensional torus by the equivalence
relation x~ —x. See for instance the example due to Lattes [4].

(iv) Fatou and Julia showed that f on J(f) is topologically transitive. In fact, for any z
in J(f) the inverse orbit \J £ *(z) is dense in J(f). If no critical points tend to J(f) or

nz0
touch it, Fatou showed some power of fis expanding on J(f). He surmised the dynamical
Structure ibas continuous in the coefficients for such examples (now called Axiom A or
hyperbolic systems, see below} and guessed that this property should be true except for special
values of the paramelers.

Even when J(f) is contaminated by critical points one may think of J(f) as the hyperbolic
part (%) of the dynamics. The Siegel disks and Herman rings are in the efliptic part of the
dynamics. The attractive basins and the parabolic basins are the properly discontinuous
part of the dynamics.

(*) The wotds “hyperbolic” and “effiptic” are meant to suggest chaotic and rigid structure respectively in the
dynamies.
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198 R.-MANE, P. SAD AND D. SULLIVAN

6. Now we state our theorems about partial conjugacies between members of analytic
families f: WxC — C of endomorphisms. TFirst we shall introduce the concept of
persistently non-hyperbolic periodic point. We shall give first the definition in a particular
case where it is easier to understand. If z, is a periodic point of £, , say (£ (o) =20, and if
(fY (z5)#1, then when w moves in a small neighborhood W, of w, we can find z(w),
depending analytically on wand such that z{(w,) =z, and ( f3) (z(w)) = z(w) for every win the
neighborhood. We say that z, is a persistently non-hyperbolic periodic point of f, if
[(fZY{z(w))|=1 for every w in a neighborhood of w, i.e. if we cannot destroy the
non hyperbolicity of z, by moving the parameter. Observe that the condition
[(f2y (z(w))}|=1 for every w mearby w, implies that in fact (f2)' (z(w)) is constant in that
neighborhood. Unfortunately this definition is not sufficient because we shall need to
handle the case () (z,) =1, when it is not always possible to find z(w) as before. To state
the general definition we first introduce the analytic sets:

M, ={(w, 2)e W xT|f3(2)=2z, fi(2) #z, 05 j<n}.

Define the pr0]ect10n P,.: M, - W as P,(i¢, z)=1i> and the eigenvalue function A, M, — C
by:

An(w, 2)=(13)"(2)-

If P, isinjective when restricted to a neighborhood of a point (w,, z,) € M, then there exists a
neighborhood W, of w, and an analytic function ¢ : W, = C, with ¢ (w,) =z,, such that its
graph {(w, ¢ (iv)}|iwe W, } is a neighborhood of (w,, z,) in M,. We say that a periodic
point z, of Jo, is persistently non-hyperbolic if it is non-hyperbolic and:

(i) There exists a neighborhood W, of 1, and an analytic function ¢ : W, — C such that
& (wy)=2z, and its graph {(w, p(w))|we W, } is a neighborhood of (v, z,) in M,;

(ii} A, is constant in a neighborhood of (wg, z,) in M.

By the dnalicity of f we can reformulate (i) in a weaker form: P, is injective on a
neighborhood of (z,, w,). In fact, since f is analytic and the function Ja(z}—z is not
identically zero, we can find neighborhoods W, of wg and U, of z, such that on W, x U we
can factorize {1 (z) —z (assuming z,=0) as:

[2@)-2=E+ T ()2 glw, 2),

where the coefficients a; are analytic functions of w and g is analyticand #0in Wy xU,. If
P,/((Wy x Ug)n M,) is injective then for every we W, there exists a unique ¢ (w) € U, such
that (w, p(w))eM,. Then o¢(w) is the unique eclement of U, such that
SR pw))—@(wy=0. By Rouche’s Theorem, if W, is small enough, the order of @(w) as
zero of z — f2(z) — z must be the same of z,=0as root of z — f* (z) — z, that isk. But g#0
ina nelghborhood of (ivg, zo). Hence @(w) is a root of order & of z*+ Z a; (w) zf. Hence

j=0
thlS polynomial is (z— ¢ (w))*. This means that ¢(w)=ka,_;{(w) and then ¢ is analytic.
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ON THE DYNAMICS OF RATIONAL MAPS 199

Moreover observe that A, is analytic on the analytic set M, [since it is the restriction of
(w, 2) > (f2Y (2)]. Then, if &, is constant in a neighborhood of a point, itis constant on the
whole connected component of M, containing that point. Since every comnected
component of M, projects onto W, it follows that if for some w,, £, has a persistently non-
hyperbolic periodic point, thenf, has a non»hyperbohc periodic point for
every we W. Therefore, if for some w, e W, all the periodic points of ts, are hyperbolic,
then, for all we W, f,, has no persistently non-hyperbolic periodic points.

Now define the set H(f)=W as the set of values w, e W that have a neighborhood W,
such that for every we W every periodic point of £, is either hyperbolic or persistently non-
hyperbolic. Clearly this set is open. It is also dense:

TueorEM A. — For any analytic family f: W x C — €, H(f) is an open dense subset of W.

Thus we have an open dense set of parameters W for which the nature of each periodic
point of f, stays constant. We can show that in this open dense set of parameters the
dynamical structure of £, in its Julia set J(f) remains topologically unchanged.

Dermurions. — Two endomorphisms f, g in End C are J-equivalent if there exists a

homeomorphism k: J(f) — J(g) such that Af=gh. Given an analytic family f: WxC > C
we say that w, e W is J-siable if w, has a neighborhood W, such that £, is J-equivalent to S,

for all w in W, and J(f,) depends continuously on we W, in the sense of the Hausdorff

distance between two closed sets. Say that a map ¢ of a subset X =C into the sphere is
guasi-conformal if it is a topological embedding and:

1A

d(p(y), o(x)
ilélg lim sup oo,

FE8,(x}
O inf dle(), @ (x))
Y e8,(x) :

where S,(x)={yveX|d(y, x})=1}.
We ignore whether a quasi- conformal map ¢: X —C can be extended to a quasi-
conformal map of a neighborhood of X.

THEOREM B. — For every ana!ync Jamily of endomorphisms f: W xC - C, H(f)cW
coincides with the set of Y-stable values of the parameter. Moreover, if w, belongs to H(f)
there exists a neighborhood Wy in W of w, and a continuouu comjugacy fimction

h: Wy xI(f, )-»Cso that for all w in W;

(@) h, is a conjugacy between f, on J( Jo,) and f, on Y(f,) and h; is the zdentzty,

(ii) for each z, h(z) is analytic in w;

(iii} For each w, h, is quasi-conformal;

(1v) the set of Y-stable points coincide ibith the interior of the set of parameters ihere the
Judia set moves continuously.

7. Now we will enlarge our topological conjugacies beyond the Julia set using the
structure described in 4. 'We obtain almost the natural expected result. Whenever Siegel
disks or Herman rings are present there is, however, a glueing problem near their
frontiers. On this problem, see remark after the statement of Theorem D.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPFRIEURE
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200 R. MANE, P. SAD AND D. SULLIVAN

Now we discuss the orbit structure of critical points: we say a b if either a—b or gand b
lie in the same leaf of the dynamically defined foliations of superattractive basins, Siegel digks,
or Herman rings discussed in 4. We define a subset C(f)<= W for the analytic family
f: W xC - C by w, e C(f) ilf there is a neighborhood W, =W of w, and analytic functions
Ciye 0., ¢ O Wy so that:

() ¢, (w),. .., e (w) are all the critical points of f,;

(i) either fr'(c;(wNZfo{c,(w)) for some m=z0, nz0 and all weW, or

Saie(w)) Ef o (c;(w)) for all we Wy, m=0, n=0.

Remark. — Note that for win a component of H{f) the critical points in J(f) satisfy (ii) by
Theorem B.

TueoreM C. — For any analytic family f: W x C — C, C(f) is an open dense subset of H(f)
{which is open and dense in W). . ‘

Now we will state global or almost global stability results for endomorphisms
of C(f). Given an endomorphism flet A(f) denote the collection of completely invariant
compact sets A [i.e. f(A)=A=f ""(A)] which intersect each (open) Siegel disk or (open)
Herman ring in a compact set. For instance, the closure of all stable regions which are
eventually attractive, superattractive or parabolic basins belongs to A(f).

TusoreM D. — For any analytic family f: W x C — C; if w,, belongs to the open dense subset
C(fYy=W then for any choice of Ae A(J, ) there is a neighborhood W, of wq and a continuous
mapping h: Wy x A —C satisfying:

(D) h, is a conjugacy between Jo, on A and f,, on h(A); and h (A) belongs to A(f,);

(i) for each =z, h(2) is anglytic in w;

(i) For each w, h,, is quasi-conformai.

Conversely, if for any choice Ae A(f,) there exists a neighborhood W, of w, and a
continuous mapping h: Wy x A — C satisfying (i) then 1wy e C(f).

Observe that when tu, has no Siegel disks or Herman domains then Ce A(f,,), and this is
the best choice to which Theorem D applies. It always happens for the family of
polynomials of a given degree. As we explained in the introduction, in [13] Sullivan,
combined the extension Lemma in [14] with the results above to obtain an improvement of
Theorem D that states that it holds globally i. e. if we C (f) then we can find k: W, x_f -C
satisfying all the properties in Theorem D.  Therefore, the set of values w, € W such that f,

is stable in the family (i. e. topologically equivalent to any f, with w near to w,) is open and
dense.

8. Say that an endomorphism f'is expanding on, the Julia set if for each z in J(f) there is
an n so that |(f")'(z)|>1. An casy argument shows the expanding property is equivalent
to the Axiom A property: there exist ¢>1 and N> 0 such that {{(%)(z)}{>c*, lor all k>N
and zeJ(f).

The classtfication of 4 shows immediately the Axiom A expanding property implies all
critical points are contained in attractive or superattractive basins and these are the only
periodic stable regions. The converse as remarked above follows from Fatou[3].
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ON THE DYNAMICS OF RATIONAL MAPS 201

.Note that the Axiom A expanding property implies membership in H(f) for any
“family f. Thus we have an intrinsic property, Axiom A, which implies a property,
membership in H(f), determined by perturbations. For example we don’t know if
membership in H(f) for the global family fimplies the same is true for the
iterates. IHowever, it is obvious the Axiom A expanding property passes to iterates.

A second favorable feature of this property is that there is a powerful theory [Anosov, Sinai,
Smale, Bowen, ...] for treating the dynamics of these hyperbolic systems. Markov
partitions and symbolic dynamics can be used to describe f on J(f) (Jacobson [5]).

Also in the conformal case the Axiom A expanding property for fimplies J(f) is a quasi-
self similar fractal. It is not hard to show J(f) has finite positive Hausdorll measure in its
dimension which is strictly less than 2 (Sullivan [10], see also Bowen [1] and Ruelle [7]).

For all these reasons it is important to be able to verify the Axiom A expanding
property. It would be important to knotv ibhether or not the Axiom A expanding property is
true for an open dense set of endomorphisms (in reasonable families). The openess is known
(see Jacobson [5]). But the density has defied verification.

Say that an endomorphism [ has a invariant line field on Y(f} if there is a completely
invariant subset A < J(f) of positive Lebesgue measure, and a measurable family of tangent

 lines defined a.e. in A invariant by the tangent action of f.

Say that an analytic family of endomorphisms f: W xC — C is reduced if different
members cannot be analytically conjugate. Definer(w) for weW as the number of
equivalence classes of not eventually periodic eritical points in J( ) under the equivalence
relation ¢, Zc; iff 1, (¢} & f2(c;) for some n =0, m2 0 (where®is defined before the statement
of Theorem C) plus the number of critical points in J(f,)-

TugoreMm E. — Suppose : W x C — C is a reduced analytic family and w is a point of C(f)
where r(i) < dimension W.  Then f, satisfies the Axiom A expanding property iff:

(1) all periodic points of f,, are hyperbolic;
(ii) f,, has no Herman rings;
(iii) £, has no invariant line fields on the Julia set.

CoroLLARY. — The Axiom A expanding property is irue for an open dense set of polynomial
mappings of degree d iff the Lebesgue measure of the Julia set is zero for an open dense set of
-polynomial mappings of degree d.

H. — Proof of the 3-Lemma and Theorem A and B

The procf of the A-Lemma is based in the following: any analytic map of the unit A-disk
into the triply punctured sphere C—{0, 1, 00 } is distance non increasing for the complete
Poincaré metrics on the unit disk and punctured sphere (Schwarz’s Lemma). Choose three
points from A and renormalize i so their images by i, are constantly 0, 1, and cc.

For any three other distinct finite points x, y, z of A, consider the functions x(\) =4, (x),
YOI=50), z(W=i(2), A=GAQR)—x(W))/y(R). Let 0<R<l and O<m<M be

ANNALES SCIENTIFIQUES DE L’£COLE NORMALE SUPERIEURE




~

202 R. MANE, P. SAD AND D. SULLIVAN

. given. These functions avoid 0, 1 and o«o.  Applying the above to the second function we
se¢ that |y(0)|<M implies thaty(L) is not too large for |A[ER <1 (i.e. bounded by a
function of M). Applying the above to the fourth function we see that if
0<m=|y(0)| <M< oo and | x(0)—y(0)] is small then {(x(0)—v(0))/y(0)| is small, which
implies | (x(A) —v{A))/y (L) | is smallif | L} < R <1, which implies | x (1) —y (X} | is small by the
first remark.

Thus each i, is uniformly continuous on An{z|m=|z|SM}.

Such annuli cover the sphere (permuting the roles of 0, 1, o) so i, has a continuous
extension i, : A » C. Since 0 and any other particular A, play symmetric roles in the

hypothesis, the ¢, have continuous inverses. Foreachzin A, i, (z)is analyticin A because it
is a uniform limit of analytic functions on each disk |A| =R < 1.

To prove #(x) is quasiconformal apply the non-increasing property to the
functiong(A) =(x (L) —y (L)) /(x(X) —z(A)) when | x(0)—y(0)|=| x(0)—=z(0)} and conclude
that | g(A)| is bounded for |A|<R. To prove the continuity of i : D xA — C is sufficient to

show that the family of functions A — #,(x), x€A, is equicontinuous. Again this is a
consequence of the non-increasing property that grants |, (x)—i_(x)|=|x (A} —x (X,)| is
small uniformely in x if | &, —X, | is small.

To prove Theorem A take i, € W and any open neighborhood W, of ib,.  We shall show
that W, contains points of H(f). If e W, denotea(iv) the number of attractive and
superattractive periodic orbits of f,, and B(w) the number of non-hyperbolic periodic
orbits. By Fatou[3], a(@)+pu)=4(d—1). Choose iz, €W, such that a(i#,)=max
{a(w)|iweW, . Then, since attractive and superatiractive periodic orbits are persistent,
there exists an open neighborhood W, =W, of 1, such that «/W, is constant. Choose
wye W, such that B(wz):max‘{ B(w)|wEW1 . Denote py,..., p; the non-hyperbolic
periodic orbits of f, . We claim there exists a neighborhood W,cW, of w, and
neighborhoods U; of p;, 1=i<l, such that if #; is determined by (w,, p)eM,,, then
P,/(W, xU;}nM,) is injective and:

U ({io} xOn (W, xT)n M),

is the set of non-hyperbolic periodic points of f,,, for all ite W,. Since the attractive and
superattractive periodic points of f,, move analytically with iv and their number is constant in
W, it follows that we can find neighborhoods U; of p; and a neighborhood W, c W, of ii:,
such that for every wwe W, and 1<i=/, U, doesn’t contain attractive or superattractive
periodic points of f,,. Suppose W, and the U;’si=1, ..., Iso smallthat M, n (W, xU,)is
connected for every 1 <</ The absence of attractive or superattractive periodic points in
U, for all we W, means that the analytic function A, on the analytic set M, n(W, xU))
satisfies | A, (w, z}|=1. Hence X, ! is also an analytic function on this analytic set and
is bounded by 1. But I?L; Yg,, p) | =1. Hence it attains its maximum at
(w,, p). Therefore it is.constant in the connected analytic set (W, x U)n M, . Then, for

every we W,, the points of ({ w } x C)n((W, x U)nM, ) are non-hyperbolic periodic points
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of f,. Since B attains a maximum at w=1w, it is easy to see that the number of non-
hyperbolic periodic points of f,, also attains a maximum at w=w,. Then:

l B
_;1 # ({w} X C)m((wz XUi)m Mn,-)éB(WZ):L

forevery weW,. But £({w} xC)n{(W, xU)nM,)=1. Hence it must be cqual to one
for all iwe W,. This means that P, /(W, xU)nM,) is injective for all 1<i</ The
previous arguments also show that points in the set:

$6)= U ({0} xOn(W; xU)nM,),

are non-hyperbolic and that # S(w)={. Butsince as we observed above the number of mon-
hyperbolic periodic points of f,, attains a maximum / at w==1D,, it follows that number is
bounded by /. Hence S(iw) is exactly the set of @// the non-hyperboelic periodic points of £,
and this completes the Proof of the Claim. Now we claim that i, e H(f). it doesn’t,
there exists ivy € W, such that £, has a non-hyperbolic periodic point p that is not persistently
non-hyperbolic. But by the Claim, p must have the form
p=({ibs} xC)n (W, xU)n M,) for some 1=i=/ Then P, is injective in a
neighborhood of (i,, p) in M, [in fact, the neighborhood (W,n U~ M, satisfies this
property]. Hence(w,, p) satisfies condition(i) of the Definition of persistently non-
hyperbolic periodic point (in the equivalent formulation that we gave after the
Definition). But we proved that A, is constant in (W, x U)n M, . Then it also satisfies
part (ii) of the Definition and p is persistently non-hyperbolic.

To prove Theorem B suppose wy belongs to H(f)=W for the analytic family f:
WxC—-C. Let W, containing ib, be a simply connected neighberhood of i, in
H(f). We claim each expanding periodic point x, of f, defines an analytic function x,, :
W, — C such that x,(i0) is a periodic point of f,, of the same period of x,. The implict
function theorem tells us we can analytically continue a transyersal fixed point of / uniquely
for some neighborhood of parameters. Thus by following the periodic point determined by

X, (w,) we locally define x, (i) on an open set. At afrontier pointii; of such an open set, the

Limit of x,, () 1s still a periodic point which is hyperbolic if it has period n because W, H(f).
Actually, the period can not drop neither when x = lim x,(1) has period k<n
&) (x)not a root of unit (if m+ k is given there exists a neighborhood U of x so that no peint
in U—{x} has periodm) nor when (f%)'(x) is a root of unit [use the local model for the
~ dynamics and the fact that W, H(f)]. :
Thus x,,(w,) is a hyperbolic periodic point of order # which may be'analytica.lly continued
on a neighborhoed of w;,. This definition agrees with the. previous one by the
uniqueness. So we can define x,(w) on all of W, which is simply connected.
Since hyperbolic periodic points cannot collide, as we have already remarked, we may
apply the A-Lemma to the set A of expanding periodic points, We obtain h(iv, z) :

Wo xJ(f,)— C, analytic in w, quasi-conformal in z.
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Since the role of w, and any particular w, in W, may be reversed it is clear the x,, (1, ) must
be all of the expanding periodic points of f, . Thus for each w, h(w, z) defines a
homeomorphism between Julia sets. By definition z(w, z) is a conjugacy between sets of
expanding periodic points. By continuity z(w, z) is a conjugacy between Julia sets.

This proves the first part of Theorem B.

To prove the converse property, let w, be a J-stable value of W. Since the number of
periodic cycles of f, in J(f,) stays constant for w in a small neighborhood W, of 1, we see
that all periodic cycles of f, with derivative equal to one have an analytic continuation
through W,. Now observe that the function Wy3w — J{f,) is continuous with respect
to the Hausdorff metric.  We shall show thatwe H(f). Obviously this shows that J-stable
values of the parameter belong to H{f). If wy,£H(f), there exists w, € W, such that for
some n2=0, f» has a non hyperbolic fixed point’ z, that is not persistently non
hyperbolic. This implies that we can find w, near to w, such that f;; has a fixed point z,
(near to z,) such that{f} )'(z,) is a Siegel number and z, is not a persistently non hyperbolic
periodic point. Thenz, ¢ J(f, ).

But since z, is not persistently non hyperbolic, we can find w;, arbitrarily near to iz, and
fixed points z5 of f}, | arbitarily near to z,, such that | (f5) (z5)|=1. Hencez;eJ(f,). We
have thus proved that there exist arbitrarily small perturbations of w, € W, that make the
Julia set reach points (like z,) that are bounded away from J(f, ) [because z, is arbitrarily
near to z,, and z, ¢ J(f,)]. This concludes the proof of Theorem B.

HOI. — Proof of Theorem C

First we shall show that C(f)is contained in H(f). We shall use the following stdndard
Lemma:

LemMa III.1. — If W< W is an open simply connected set and ¢ © Wy — C is an analytic
Junction such that for every we W, the point ¢ (w) doesn’t belong 1o any forward f ~orbit of a
critical point of f,, then there exist analytic functions o, ;=W,— C, nz0, i<i<d,
satisfying (@, (w))=p(w) and ¢, ;(W)#e, ;(w)for all nz0, 1ZiZd", we W,

The A-Lemma now yields the following property:

Lemma 1.2, — Suppose that W and ¢ satisfy the hypothesis of Lemma II1.1.  Moreover
suppose that either ¢ (1) is not f -periodic for anywe W, or that for some N=0 we have
e @) =0¢0w) for all we Wy Then W, H(f).

Proof. — We shall prove the Lemma only in the case when ¢ {(w) is not f,-periodic for any
we W,. The other case reduces to this just by replacing ¢ by ¢, ;, where i is chosen taking
any wo € Wo and isuch thatf, (o, ,(1w,))# fu, ' (@ (w,)). Then the same relation holds for all
we W, because by II1.1 preimages of ¢(w,) don’t collide. Therefore ¢, ,(w) is not f-
periodic for any we W,. Now fix some w,e W, and set A=) [, " (p(w,)). Define & :

— r=0
Wox A C by:
hw (Z) = (pn, z(w)s
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ifz=gq, ;(iw,). Observe that since @{iv,) is not f;, -periodic, and ¢, ;1) # @, ;(t0,) for all
>0, 1Si<j=<d", the n and i satisfying z=¢,, ;(i,) are unique. This shows that A, (z) is
well defined and depends analytically in 1. Moreover, every ki, is injective. In fact if
z, #2, belong to A, then:

zy =@, ; (o), 2y =0, 1, (i0p), where either n #n, or ny =n, and i, #i,. Hn, #n,, the
equality & (z,)=h(z,) implies:

Py, i, ()= Qn,.i, ()

and then:

L@, 1, @) =0 (w)= fa (@, ;, (10)) = (@, ;, ().

Suppose nyzn,. Then:

(@)= £z (3@, 1, (@) = £3(@n,, 5, (1)) = 0 (),

thus contradicting that () is not f,-periodic. I n,=n, then:
h,(zy) = @, ., (1) # P, 4, (@)y=h,(z,).

Now we can apply the A-Lemma to extend every map #,, : A — A, (A) to a homeomorphism
h, A >k (A) that obviously satisfies:

(%) Julh (@)= h ([ fo, (2)),

forevery ze f YA). But A contains J( f.,) because it contains the full backward orbit of a
point. Therefore, if we show that £, (J(f; ) =J(f,) we shallbe done. IfzeJ(f ),itisthe
limit of a sequence z, off, -periodic points differentfrom z. Then 4,,(z,) is a sequence of f,,-
periodic points different from 4 ,(z) and converging to A, {z). Hence h,(z)eJ(f,) thus
proving b, J(f, N<I(f,). Toprove J(f,)=h, (J(f,)) we just observe that interchanging
the roles of 1 and i, we obtain /" instead of 4. Then 2,* (J(f ) =J(f, ) and J(f,)=h,
(ot TSN <h, (J(f,)) thus concluding the Proof of Lemma II1.2.

To prove C(f)c H(f) we start observing than any endomorphism g : C onot satisfying

Axiom A, has a critical point z, such that \J g~ "(z,) doesn’t contain critical points. In
nz0
fact, if such a critical point doesn’t exist, it is easy to see that every critical point must be

periodic. Therefore g satisfies Axiom A. Now suppose that i, C(f). Then either Ja,
satisfies Axiom A (and then 1w, e H(f)) or it doesn’t, in which case we can take z, with the
above property. The definition of C(f) grants the existence of a neighborhood W, of u,
and an analytic function ¥ : W, — C such that {(i,)=2, and (f,) (y(@))=0 for all
weW,. Alsofrom the definition of C(f) we know that § (i) doesn’t belong to the forward
Jf-orbit of any critical point because z, =\ (1,) is not in the Jo,forward orbit of any critical
points. Applying Lemma III.2 to § : W, — C it follows that W, H(f).
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The openness of C(f) is trivial. To prove its density we shall produce a dense set
ScH(f) whose elements can be aproximated by elements in C(f). First define the critical
set:

C,={Gw, 2)|(f.) @)=0}.

If © : W xC — W is the projection, let S, be the set of regular values of ©/C,. Then S, is
open and dense in W. Moreover given any ib, € S, there exist a neighborhood Wy <5, of
1, and analytic functions ¢; : Wy — C, 1 <i<k, such that { ¢, (it), ..., ¢, () } is the set of
critical points for all we W,. Define S(i, j, n, m) as the set of values w, €S, H(f) such
that either £2, (c,(2))&/% (c,(ibg) ot f% (¢,(i8) &/ (c;(w)) holds for every w in a
neighborhood of i,. Now we set:

SG )= NSGj,nm)

We claim that each S(,j, n, m) is open and demse and that if w,€S(, j), it has a
neighborhood W, such that for all 220, m>0 either f7(c;(@))= filc;(w)) or
(e, () Ffm(c;(w)) holds for every e W,. It follows from the claim that the residual

(thus dense) set S= " S(, j, #, m) is contained in C(f). The Proof of the Claim requires a
iJ
series of Lemmas that describe how cyclic domains vary with the parameter.

Lemma I1.3. — Let z, be an attractive periodic point of fu, With period m.  Then there
exist neighborhoods V, and W, of z, and ib, and analytic functions b - Wy xV, - C, ¢ :
W, =V, such that:

(@) (Vo) =V for all we W;

(B) fL(e() =) for all ive W;
(0) (@ (i) =0, e W,;

(d) (S0 (o (_w))ﬁw(Z)Zﬁw (fel2)) for all we W, zeV,. =
Lemwma 111.4. — Suppose that for some § and m>0, f'(c, (1)) =c; (i) for every v in a

neighborhood of some wy,e8,. Then there exist neighborhoods Vo and W, of z, and i,
respectively and an analytic function b 1 Wy xV, - C such that:

(a) RV V, for all ibeW,;
@) Al ) =0, ie W;
(©) hy(2)"=h, (f™(2)) for all we W, zeV,,
where n is the multiplicity of ¢,(,) as a critical point of f; .
LemuMa 111.5. — Suppose that woe H(f) and z, is a parabolic periodic point of f, of

period m. Then there exist neighborhoods V, and W, of z, and w, respectively and a
continuous map b : Wy xV, — C such that:

(@) h,()=h(w, .) is continuous and injective for all ive W y; =
(b) for all z&V, the map w — h,(2) is analytic; :
(©) Fuhu(2)=h, £, (2) for every we Wy and 2V fu,' (Vo). L=
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Lemma 1.6, — Suppose that i, H(f) and A is @ Herman ring or Siegel disk satisfying
FMA)=A. LetUcAbean openf™invariant (i. e. [M{(U)=U) disk or annulus whose closure
is contained in A and whose boundary consisis in one or two f ™-invariant analytic curves. Then
there exist a neighborhood W, of w,, an open disk or ring T<C and an analytic function
h: W xT — C such that every h, is a conformal representation satisfying:

ho(e®2)= £, (h,(2),

for all ze U, where 8 is the rotation number of fir /A, and hy(T)=U.

Lemma II1. 3 1s an analytically parametrized version of Poincaré ‘s linearization Theorem,
and its Proof follows immediately from the usual technique used to prove this
Theorem. Lemma I11.4 is in a similar situation with respect to the analytic lincarization
Theorem of super attractive periodic points.  The Proofs of Lemmas II1. 5 and IT1. 6 will be
presented after completing the Proof of the Claim. First observe the Lemmas above imply
easily that each S(7, 7, n, m)isopen and dense. Suppose thatitgeS({{, j). The Proof of the
Claim will be divided according to the following cases:

(I) There exist n20, m>0, such that £} (c, (ib,)) Zf™ (c;(iwy)). Suppose that n, is the
minimum positive integer such that the equality above is satisfied for some m>0. Then take
as mg the minimum integer such that the equality fio (c,(ib,) R fie (¢,{ib,)) holds. Since
wy €8 (i, j, ng, m,) there exists a neighborhood W, such that g (¢, (1)) Z fw (¢, (1)) for all
we W, Restricting W, if necessary, we can grant that 7, (¢, (w)) & /7% (¢c;(w)) for all we W,
and 0=Zn=n,, 0=m<m, From these facts it follows that W, satisfies the property
required by the Claim.

(1) f3 (e; (@) F™ (c;@)) for every n20, m>0. This case is subdivided in two
sttuations: .

(ITa) c¢;(wy) or ¢;(w,) (perhaps both) belong to J(f; ). Then it suffices to takes as W, the
connected component of H(f) that contains ib,. Then the topological equivalence between
the Julia sets of f, and f,, for any iz e W, given by Theorem B, plus the fact that the number L
(counted with ml_jltip_licity) of critical points in J(f,,) is constant on connected components of
H{f) (again a Corollary of Theorem B), implies the Claim.

(D) c;(wo)¢I (), ¢ (o) ¢ 7( f,) and they eventually belong to orbits of different cyclic
domains of J(f ). Then Lemmas 111.1, 2,3 or4imply that f (¢c;(iw)) F/7 (c;(iv))for every
nz0, m=0 and all w in a neighborhood of .

(L) ¢;(e) ¢3(f,), ¢;(i0g) ¢ J(f,,) and they eventually belong to the orbit of the same
cyclic domain. ‘Taking as W, the neighborhood given by Lemma 1.1, 2, 3 or 4 (according
to which type belongs the cyclic domain that eventually contain the orbits of ¢, (i) and
¢;(W,)) the parametrized linearization shows that f7,(c;(w)) F /7 (c; (w)) for every we W,

Let us prove Lemma II1.5. Suppose that f,(z,) =z, to simplify the discussion. Set
A=(f,Y(zo). IfA7=1 and A1 for 0<j<g, we can write, after an analytic change of
coordinates in a neighborhood of z, (see[2] for details): -

fw(z)=xz+__§ a,() 24,
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where the series converge in a fixed disk B, (z,) for every w e W, (taking W, sufficiently small)
and the functions a; are analytic. Observe that we are here using that z, is a persistently
where the series converge in afixed disk B,(z,) for every w e W, (taking W, sufficiently smiall)
and the functions a; are analytitic. Observe that we are here using that z, is a persistently
non hyperbolic fixed point of £, because i, e H(f). This granis that the fixed point z, has
an analytic continuation as fixed point z{(w) of f, and that f, (z'(#))=2A for every w
near i,. We claim that if a,(i6,)=0 for 1<j<m and a,,(i6,) #0 then a ;(10)=0 for all
1=<j<m and every i near to w,. To prove this we shall again use the hypothesis
woe H{f). Write:

fo@=z+ 3 aw)z**
i=1
and observe that a o) =0for 1=j<m and a,,(g)#0. Then:

“:19(2)_2: i Ej(wo)-zﬁ.j:z‘”’" ( _i Eij(wo) éj_m)._

=4

If V,, is a neighborhood of 0 where the second factor in the last term is #0, then z=01s the
unique fixed point of f, in V,. The J-stability of £, implies that f,, has a unique fixed point
in V, for w near to w,. This implies that a,(w)=0 for every 1=<j<m and every w in a
neighborhood of w,.  Hence a;(w)=0 for every w in the same neighborhood and 1 =j<m
completing the Proof of the Claim. Now with a linear change of coordinates we can write:

fo@=hz+ Y a(w)srt

I=m+1

By [2],f, is equivalent to the map z—Az+2z?"™ in a neighborhood of 0 and the
homeomorphism £, that conjugates both maps can be chosen depending analytically in ib.

Now let us prove Lemma II1.6. To simplify the notation suppose that m=1. Let
U, = U be an invariant annulus whose boundary has two analytic closed curves. We shall
need the following Lemma, to be proved later:

Lemma IT1.7. — There exists a neighborhood W, of ibg such that for every we W, U,
doesn’t contain eventually periodic points of f,, or points of I(f,).

Now take some point z, €U, and if C={e"*|n=0} define h, : C—>C, e W, by
h,(€™)=f"(z,). Thisfamily of maps depends analytically on the parameter iwve W,. To
apply the A-Lemma to this family we have only to check that every s is injective. IfA  isnot
injective, there exist n and m such that f%(z,)= fT(z,). Thenz, is an eventually periodic
point of f,, contradicting Lemma If[.5. Now, applying the A-Lemma we obtain a
conjugacy h,, between the rotation z — ¢z in the circle C and the restriction of £, to the
Jordan f,-invariant curve 4,(C). By Lemma III.5 this Jordan f,-invariant curve must
belong to some fixed connected component of J(f,,)°. Clearly it must be either a Herman
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ring or a Siegel’s disk. But ,(C) is a Jordan Jfo,-invariant curve and has points of J(f,,) in
its interior if and only if A is a Herman ring. Moreover 4, (C) contains points of J(f,,) inits
interior if and only if #, (C) does. Therefore &, (C) belongs to a Siegel disk or Herman ring if
and only if h, (C) belongs to the same type of component. Moreover it is an analytic curve
and since it belongs to a Herman ring or Siegel disk, the restriction of f,, to h,(C) is real
apalytically equivalent to a rotation of fhe circle. Say that the circle is C and let
F : 2,(C) — C be this real analytic conjugacy. Then F™'4_ is a conjugacy between two
rotations. Therefore the rotations must coincide. In particular /,, is real analytic. Now
let B,={z|r,(w)<|z|<r,(w)} be the maximal ring where an analytic extension
H,:B,—»Cofh,:C—C exists. From the identity principle it is easy to conclude that
foho(z)=h (ez) for every ze B,. We claim that for values of w near to w, the relation
h,(B. > Uholds. This will clearly prove Lemma IT1.6. Infact we can show that 2,,(B )
is the Herman ring A (ib) containing /,(C). This follows from the fact thatif 4, (B,,) A (w)
then one of the boundaries of z,,(B,) must be an f, -invariant real analytic curve or reduce to
a point. In the first case, the extension property of conformal representations would show
thatB, is not maximal, We leave to the reader to verify that the second only arises when
r,(1)=0 and then %, extends to an analytic map of B, U {0}.

To prove Lemma I11.7, take W, so small that J{(f, ) U=0 for all iveW,. This is
granted by Theorem B. It remains to show that there are no eventually periodic points of £,
in U,, for w in W,

Take a neighborhood V of the periodic orbits of f,, not contained in J(f; Yorin Aif Aisa
Siegel disk. Take V so small that VA A= . Since ib,c H(f), all the f -periodic orbits
notin J(f,) are contained in Vfor all e W, if W, is chosen small enough. Now suppose

" that for some ibe W, and ze U, there exists N>>0 such that f)(z) is f,-periodic. Since

JFINU=0, () ¢I(f,). Hence fii(z)eV.

Moreoverifh,: J(f,,) — J(f,) is the homeomorphism given by Theorem B, thefact that V
and U, belong to different connected components of the complement of J( £,), implies that
they are also in different connected components of £, (J{(f, N=TJ(f,) for ail we W, if W, is
small enough. :

But we can take W, such that f,(U )~ U, #QallweW,. Thenf? 1 (U)nf(U)#Q
for all #, thus implying that () f*(U,) is connected. On the other hand the property

nz={
fu(z)eV implies that | f2(U,})n V£ then U and V belong to the same connected
nz0
component of the complement of J(f,).

Lastly, suppose A is Siegel disk with fixed point z,; let z,(w) be its local analytic

continuation. If U, still belongs to the Siegel disk corresponding to z,(w), clearly’

U fo(U) $z, () for w close to ivg.
nz0
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IV. — Proof of Theorem D

Suppose that w, € C(f) and that A is a compact totally invariant set of o de Lo H(AY=A
such that its intersection with any Siegel disk or Herman ring is compact. We shall
construct a set A, <A, a simply connected open neighborhood W, of w, and a map

h: W, x A, — C with the following properties:

@) 1o, (Ao)=Ag;

(b) A = U fwc_ H(AO);

=0

(c} The map w — k,(z) is analytic for every zeA,, h; (2)==z and h, is injective for
all ieW,;

(d) h,(z)belongs to the orbit of a critical point of f, if and only if z belongs to the orbit of a
critical point of f,, .

(€) fulho(2))=h(f,, (2)) for every ive Wy, z€ A,

Let us show how to prove the partial stability follows from the existence of #, W,
and A,. Let A, be A, minus the intersection of forward Ji,-orbits of critical points

with Ag. Set A=1J £, "(A;). Then A is densc in A. Define /,: A — C as follows:

Azl .
if ze A choose n such that 2 (z)e Ay and let @: W, — C be an analytic function such that
©(iwy)=2z and;

o) =ha(fi @),

forallweW,. Then define i,,(z)=(w). The existence of ¢ in a neighborhood od 1w, is
granted by the implicit function theorem and the fact that ( Fa) (2)#0 (because orbits of
critical points don’t intersect A,). Now let W, =W, be the maximal simply connected
open set to which ¢ can be extended. Suppose that W, #W,. Then there exists a
sequence w,€W, converging to some we W, \ W,. Suppose that ¢(i,) converges
t0 =, Thenf? (z,)=h,, (fi(z)). Weclaim that(f#) (z)#0. Ifnot,h, (£ (z))belongs
to the orbit of a critical point of f, . By (¢) this can happen only if [ (z) has same property
with respect to f, . But this is impossible because £ (z)e A,. Then (£ ' (z,,)#0 and the

Amplicit function theorem gives an analytic function ¢: W_ — C, where W, is a

neighborhood  of ib,,, satisfying @)= z, and (fMe@)=h, (f(2))  for
all we W. Moreover, the uniqueness property of the implicit function theorem grants
pli)=¢(w)forallive W, W,.  Then this contradicts the maximality of W, thus proving
that W, =W, '

Now that we have well defined maps #,: A -+ C, that depend analytically in w, let us show
that every h,, is injective.  Suppose that z, #z, and h,(z,)=h,(z,). Take n=0 such that
frzyel,, i=1,2. Then:

(i (zO)=fa (R (2:)y=F 0 (h o (22)) =R (i (22))-
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- But &, is injective on A,. Then S (zy)=fn(z,). Take the minimum ny>0 such that

o(zy)=for {z,).. On the other hand:
hw(ﬁ:_l (Zl)) :"éhw( 13:71(22))

for values of 4 near to t,,. Then we can assume that there exists a sequence , — w such
that: : ) ’

b (£ 2)) # by (2 2)).
But:

(%) Jo s, (fo = ) =hy, (fie(20)) =h, (o0 @) =1, (s (S~ (22)))
Hence A, (f2'(z,)) and h, (f2~"(z,)) are different, converge to the same point:
By (e~ (z ) =fu (2 ) =S (ho(z2)) =R (S5 (22)),
and its images under f, are by (%) the same. This means that:
hy(fae ) =h (ffe'(z,)) is a .critical point of f,. But:
| oD (o (f2e7 N =i 1)

By (d) this means that f;*(z,) belongs to the orbit of a critical point, contradicting the
definition of A,

To finish the Proof of Theorem D we have only to show the existence of Ao, W, and
h: Wy xA,— C. To simplify the exposition suppose that every non hyperbolic periodic
point or Herman ring is fixed. Without loss of generality we can suppose that A contains
the attractive regions of attractive and superattractive fixed points. LetS,,..., S,, be the
Siegel disks of f, and H,,. .., H, its Herman rings. Let z,,. .., z, be the attracting cycles
and superattracting fixed points of f, and let V,,..., V, be disjoint neighborhoods of
Zys- . ., Z, Obtained by the application of Lemmas IT1.3 and II1.4 to these attracting and
superattracting fixed points. Finally, if z,., ,,. . ., 2,4, are the parabolic periodic points, we
take open sets A;c V., j=1,..., I where V, ;is obtained applying II1.5 to these points,
such thatf, (A))=A;and U f~"(A))is the union of all the parabolic domains with z, ;in

a=0

its boundary. The existence of these sets follows from the discussion in the
introduction.  First we shall show that if we take a neighborhood W, of 1, contained in all
the neighborhoods of u, given be Lemmas 111.3 to III.6, and setting:

Ay :(U S;nA) U (Q'Hiﬁ A) U(U V) U(U A,

then, it is possible to define the map-f: Wy x Ay — C with the desired properties [that A,
satisfies (@) and (b) is obvious]. If we forget about condition (), the construction of £, can
be easily completed as follows. Suppose we want to define 4, on S;. Then look at the
preimage of z under the map A, given by Lemma III.4 and compose it with £,
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ie. ho(z)=Fh,h, ' (z). This definition satisfies (¢} and (e) (on S;) but (d) may fail to be
true. To satisfy also{d) we define , as the composition &, g,h, ', whereg, is a
homeomorphism of the domain D of the map 4, that maps the fi, -preimage of the set of
points where f;, forward orbits of critical points of f, first hit S, onto the £ -preimage of the
set of points where f,-forward orbits of critical points of f,, first hit £,(T). Require also
that g, depends analytically in # and that commutes with the rotation z — z¢®, where 9 is
the rotation number of f,/S,. Then h,=h, g i ! satisfies also property (d). To

formalize the construction of the rearrangement map g, we need the following L .emma:

LeMMa IV.1. — Let D be the unit disk, U a complete manifold, and ¢,: U > D, 1<i<k
analytic funciions ibithout zeroes such that for all 1Si<j<k either | @,(w) || @ (w)| for
all we'U or there exists a. € R such that ¢, (i) =e™ ¢ (w) for all weU. Then given w,eU
there exists g: U xD — D such that:

(@) for all weU, g, (.)=g(iv, .) is a homeomorphism of D and g, = ldentity;

(D) for every ze D the map w — g ,(z) is analytic;

(©) 8.(9:(wo)) = (i) for all we U, 1<i<k;

(d) g.@®2)=e®g (z) for all weU, zeD, 0eR.

Proof. — Arrange the indexes of the family { ¢,} in such a way that:
f@l(wo)[‘(, P (wod <. .. <[ @, (i) |
and for all n<j =k, there ‘exists 1=Zi(j) = n satisfying:

fo;(wy)=|o; (j)(wo) l-
Then

(%) O0<lo @) <l o w) <. .. <|o,w)|<1
and
' f(Pj(ﬁJ.)|=l(?i(j)(w)|:
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for every we U, n<j=k. Write the functions ¢, in polar coordinates as:
9;(0) =(r;(w), 0,(w)).
Let F,: [0, 1]  be the unigue monotone continuous function such that logF , is plecewise
linear and log F', (r; (i) =logr (w) for 1<i<n, F,(0)=0, F (1)=1.
The existence of F, follows from (x).
Let G,: [0, 1] » R be the continuous piecewise linear function satisfying:

G,(1)=0,
G,0)=0,
G, (7 (10p)) =0, (w) — 8, (w,).

Now define (in polar coordinates) g, (r, ) =(F,(r), G,(r)+0). Clearly every g is a
homeomorphisms satisfying (@), (c) and (d). To prove (b) observe that in each annulus
{@, 0)[r(ibg)<r<r;. (i)} We can write:

log Fw(")m[’_'i+1 (WO)_ri(wo)}_l [(r—r (o) logr . ()~ (r—ris,y (o)) logr,(w)]
and:

108 G () =[F i1 (th6) = 75(t00)] ™ [(r ~ r,(i36)) O, 1 , (1) —(r—r;11(0)) 8,0)].

Clearly, for cachfixed r, these are harmonic conjugate functions. Hence (b) is satisfied in all
these annulus. A similar computation shows that it is also satisfied in the disk r < ri(g)and
in the annulus r,(iw,) <7< 1, so the Lemma is proved.

Now take analytic functions @,: Wy ~» D, i=1 , kksuchthat b, (@, (w)), 1 £i<k,are the
points where the f, forward orbits of crilical pomts of fohirsthit S,. " If we show that these
functions satisfy the hypothesis of Lemxma IV .1 we are done. Restrict W, to grant that if
L@, (wo) | # [ @ (wy) | for some 1<i<j<n, then o, ('w)],é](pj(wd)l for all weW,. Now
suppose that |, (w,)|=| ¢ (w,)| for some 1<i<j<n Since w,eC(f) we must have
l@;w)|=]¢ ;(w)| for every weW,. Hence ¢,/¢,; ; has constant modulus. Therefore it is
consiant i.e. ¢, {w)=e" @ (w) for all wec W, :

Now we shall show how to construct k,, on a set of type A, To simplify the notation

set i=1 and let V a neighborhood of z, is defined a map #: Wy xV - C such that £ is a
local conjugacy between Jo,and f,.  This map is given by Lemma II1. 5. Wecan take A,
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such that A, /f, (A,)is a union of sets whose boundaries are closed arcs: as in the Figure (see -

the discusion in the Introduction). Then every f, -orbit intersects U(wy) =A; \ £, (A) in
at most one point, and, by the existence of a local conjugacy, every f,-orbit intersects
U{w)=~A (U (w,)) in at most one point. Take the images by £, of the intersections of the
forward f, -orbits of critical points of f,, with U{w). '

Utwg) Uw)

P, (w)

. Describe these images by analyticfunctions ¢, (w),. . ., ¢, W), we W,. Restricting W if

necessary it is ecasy to construct a map g;: U(w,) &, that is a homeomorphism for

all we W, is the identity in the boundary of U(w,), depends analytically in i, is the identity ‘i

for w=w, and maps ¢,(w,) in ¢, (w), 1<i<m. Extend g,: U(wy) e to g, A, & using ;
ie.:

L]

solfa@)=fign(z) n20,  weW,  zeUld,).

Now definek,,: A; > Cby k= ‘E‘w g bzt Clearly i, satisfies conditions (a){d). Asinthe
case of Siegel disks and Herman rings the role of the rearrangement map g, is to make A,
satisfy condition {d).

To constrct /2, on sets of type V,, ssociated to an attractive fixed point, the construction

is exactly the same replacing Lemma II1.5 by Lemma III.3. Let k- W, xV; - C be the
parameterized linearization given by III.3. Set A=(f,)'(z). By composing /i, with a
convenient map we can suppose.that f, is a conjugacy between fo:V,eand Doz > AzeD,
where D is a disk. Set U=D™_AD. This set is a ring and we have analytic functions
@, (w),. .., ¢, (b) indicating the images by fiw of the points where forward f,-orbits of
critical points of f, hit V,\f,(V;}). Takeg,: Uo as before and extendittog,: D o by:
2.(\"2)=A"g (z). Finally define: h,=h; g, h '

Wp*

This map satisfies the required conditions. Once more observe that bt fzwﬂ would
satisfy (a), (b), (c) and (¢), and that the role of g, is to make it satisfy also (d). It remains to
consider the case of super attracitive fixed points.

4° gfRIE — TOME [6 — 1983 — nN'2




ON THE DYNAMICS OF RATIONAL MAFS 215

By Lemma INI .4 thereis amap /: W, x V; - D, where D is a disk centered at 0, such that
~each h, conjugates f,:V; o with D:z—z"eD. Set U=D\{z"|zeD}. Let
@, (). . ., ¢,(i) be analytic functions describing the images by &, of the points of f,,
intersect U. Letg,: U o beafamily of homeomorphisms of U, that are the identity in the
boundary of U, depending analytically in w, and satisfying g, (o;(iig)) =o;(it). Require
also that g, acts as a linear map in circles z=Const. Such family is given by
Lemma IV.1. Now extend g, to D by setting g,(z)=g,(zo)" ifzeD, z,e U and
zy =z, The fact that g, acts as a linear map on circles grants that this definition is
independent of the root z, of z used. Now define hw=ﬁ;1 gwﬁwo.
"To prove the converse property is sufficient to observe that a map 4 satisfying (i) maps the
set of critical points of Ju, onto the set of critical points of f,,, preserving their orders, and
maps the foliations of superattractive regions, Herman rings and Siegel disks of Ja, onto the
corresponding foliations for f,. Those properties immediately yield that iy e C(f).

VY. — Proof of Theorem E

We start proving the following property:

LemMA V.1, — Suppose that f and g are analytic endomorphisms of C such that there exisis

a quasi-conformal homeomorphism h: C < satisfying gh=hf and analytic in the complement
of 3(f). Then, if [ has no invariant line fields in J(f), h is analytic.

Proof. — Associate to a.e. ze C the ellipse C(2)=4(z) ' C,(k(z)) where Cylh(z)) is the
unit circle of T, ,,C. The relation gh=~/f implies:

(%) '@ CE)=CfE),

fora.e. zeC. If J(f) has measure zero, the Lemma is proved because # is in this case 1-
quasi-conformal, hence conformal. Then we can supposc that J(f) has non zero

" measure. Let X be the set of points of zeJ(f) where C(z) is defined and is not a
circle. Then (%) shows that f~'(Z)=2%. If zeX define E(z) as the one dimensional - ;
subspace ‘of T,C containing the major axis of C(z). Again, (%) proves that
F (2 E@=E{f(z))for zeX. Since fhas no invariant line fields in J (), it follows that the
measure of 2 iszero. Thismeans thatC(z)isacirclefora. e zeJ{f). OutsideJ(f),C(z)1s
always a circle by the analyticity of £ in the complement of J(f). Therefore C(z) is a circle
fora.e.ze(. Thismeans that & is 1-quasi-conformial, therefore conformal as we wanted to
prove. ;

Now suppose that i, € C(f) satisfies the hypothesis of Theorem E. First of all observe
that the hypothesis i, € C(f) plus the non existence of Herman rings and non hyperbolic
periodic points imply that J( ﬁ%)?&E because by Theorem D, every f,, with i near w,, is
topologically equivalent to f;, via a quasi-conformal map. By the previous Lemma this
means that these maps are analytic, thus implying that every f,, with @ near w,, is
analytically equivalent to f, contradicting the hypothesis that the family is reduced. Then
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I(fe,) =C, and since there are no Herman rings or Siegel disks, there exist attracting cycles
and superattracting cycles whose attractive sets cover the complement of J(f, ). Recall
xZy if f1(x)Rf" () for some n= 0, m=0. Let r, () be the number of ( F)-equivalence
classes of critical points not contained in J(f,) and noteventually periodic. Thenextstepof
the proof is the construction of an anialytic function ¥: W, - M of constant rank, where
W, < W is open and M is a complex manifold with dimension r, (10,), such that for every
value ceW(W,) and évery connected component S of ¥~ '(¢), all the endomorphisms f,
with we S are analytically conjugate. If such a function exists, then the fact that the family
of endomorphisms that we are considering is reduced implies that every S must consist of at
most one point. Hence dim W =<r, (w,). But on the other hand dim Wzr(i,) by
hypothesis. Then r, (i6,)=r(i0,). This means that there are no critical points in J(f, ),
hence, as observed in the introduction, f,,,u satisfies Axiom A.

Therefore the proof of Theorem E is now reduced to construct the function ¥.  Infact we
shall construct this function satisfying the a priori weaker property that all the
endomorphisms £, with # in a set S as above, are topologically equivalent via a conjugacy
that is quasi-conformal and analytic outside J(f,). But then Lemma V.1 shows that the
conjugacy is in fact analytic. To simplify the construction of ¥, we shall suppose that every
attractive periodic point of f, isfixed. Then the same property holds for every w in W,
if W, is small enough. Let ¢,: W, — C, i=1,..., k be analytic functions describing the
position of the attractive and superattractive fixed points @, (@), .., 9,00} of f,,
weW,. Suppose that @,(in,) is superattractive for i=1,. . ., k; and that (f, )’ (@;(i0,)) #0
fork,<igk. Define¥,: W, — C, k, <i<k, by ¥,(i0)=(f,) (9, (&)). LetV,,...,V, be
neighborhoods of @, (ity),. . ., @,(ib,) given by Lemma IIT.4.  Assume that W, is so small

that the maps 4, given by this Lemma are defined for we W,. If 1</<k,, let n, be the .

number of ( ¥ )-equivalence classes of critical points of f, whose orbits intersect V; and don’t
coincide eventually with @, (). Foreach 1 £i=k, take an analyticfunction $.oW, - Cm
such that each coordinate is the image under /2, of a point in the forward f,-orbit of a critical
point of f,, and moreover different coordinates correspond to different (£ )-equivalence
‘classes of critical points. For k, <i<k, define n; as before and let M, be the quotient of
(C—{0}y by the action of C—{0} given by (z,...,2,)=(Azy,..., Az,). Define
¥,: W, — M, as an analytic function that to every we W, associates the element of M
determined by the images under &, of the forward f,-orbits of critical points. Finally,
define:

W: WooChx... xChxM, ;x...xM,xCx..:xC,

by W () =(¥, (@), . .. ¥, (), ¥, 1 (@), . ., ¥, (). Themanifold at right has dimension:
it O, — D+ ey = DR~k ) =1, (i),

as we wished. Now restrict ¥ to W, =W, where it has maximal rank. LetS be a

connected component of ¥~ *{c) where ce ¥(W,). Fixsomew, €S. Let A be.the union
of the attractive sets of the attractive fixed points of f,, minus the orbits of the eventuaily fixed

points. In a neighborhood W, of w, there exist, for every we W, an-analytic conjugacy-
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Iyt A— b (A)between f, /Aandf,/h,(A), depending analytically in w, constructed by the
same method used in Section IV to prove Theorem D i.e., starting with local conjugacies
nearby the attractive fixed points that map f, -orbits of critical points of £, onto f,-orbits of
critical points of f,, and then pulling back these conjugacies by £, and f,, in order to
fill A, The new fact we have now is thatw varies inS. Then the property
W (w) =c="F(w,)-makes it possible to take these local conjugacies to be analytic because
now that there are onmly attractive and superattractive fixed points to consider and
the rearrangement functions g, can be taken as linear maps depending in w. Then
h,: A— h,(A)isanalytic. Theextensionof #,to C (granted as before by the A:Lemma) is

(also by the A-Lemma) quasi-conformal and analytic in A. Since A is C—J{( f»,) minus a
discrete set of points, it follows that /,, is analytic in A—J(f, ) as we wished.
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