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SEMINAR ON CONFORMAL AND HYPERBOLIC GEOMETRY

by

D.P. SULLIVAN

1, Motions in son-Euclidedn Geometry.

We will consider metric spaces X such that the distance between

any two points x , y € X is

dist(x,y) = Inf. length of curves connecting them.

A (local) isométry between any two such spaces is a map that preserves

lengths of curves. A space X as above is complete if given any path
p : [0,1) = X

of bounded length, the limit 1im (p(t)) exists, i.e. X has "no holes".
>l
(Note that such a metric can be multiplied by a bounded Borel function).

Theorem. For each =n > 2 , there exists a non—-Euclidean
infinite geometry. That is, a non-Euclidean (and non-compact) complete
Riemannian n-manifold which is homogeneous with respect to points, direc-

tions, and 2-planes .

(The case n = I can also be considered. However, a "hyperbolic line"

is isometric to the standard Euclidean line).

© Proof. The proof is Eased on work of Steiner (18253) on inversions in ;m“.




Let 8" < R" be the (closed) unit ball centered at the origin, let Mn s
be the group generated by inversions in R" , and let G = Gn ‘be the sub-
e e n
group of Mn consisting of 1inversions that preserve B . We call Mn s, and

G , the Mébius group.

Steiner showed that inversions preserve circles,
2-spheres, ..., (n~1)~-spheres. They also preserve angles. One proves easily that
the elements of G are just rotations about points, composed with transfor—

mations that move points along rays.

Since G clearly acts tramsitively on each ray, it follows that &

acts transitively on BT .

. ; u CLoes . : .
Now, let x € B = interior of B~ , and fix a Riemannian metric omn

IXB . If y € G, then the derivative dy maps fxB onto T If we

B .
¥ (x)
give Ty(x)B the induced metric and if we do this for all ¥ € G , we obtain

a complete Riemannian manifold B on which G acts by isometries.

We have then constructed a model for hyperBolic geomelry.




Now, consider our space B 'from the inside", and let v € G . Assume
. , 2 . . .
the points p,y(p) ,Y (p) € B are not 1in straight line, and let L Dbe a

line that bisects the angle they form,

-

Look at the lines Y_I(L) , L,y(L) . There are 3 possibilities :
1) They intersect inside the sphere. {(Generic).
I1) They intersect at o« , i.e. in 3B . {Unstable).

III) They do not intersect. (Generic).

Casgse 1.
Rotation about a point . vy 1is elliptic.
Case TI.

Fixes a point on the sphere at = .

Y 1is parabolic.




Case IIT.
Leaves invariant the line o obtained by
taking the segments of shortest distance
between successive lines. (The common per—
o pendicular). We have a rotation and a
translation along o . vy 1is hyperbolic.

So, in dimension 2, the isometries are rotations about a point and

translations along a geodesic.

Elliptic Parabolic Hyperbolic

In dimension 3, the general case is rotation about a line and tramsla-

tion along the line

Inside the 3-dimensional non-Euclidean model NE3 , we have all 3 of

2-dimensional geometries :




I}  Spherical .geometry.

1I) Euclidean geometry : the horospheres.

ITI) Hyperﬁolic geometry : the geodesic planes.

. The isometries of NE3 are in 1-1 correspondence with conformal

. 2
transformations of S .

2. Triangle groups.

Given integers p,q,r > 2 , let Pp r be the group with generators
- s4s

X,¥»2z, and relations

)P = (y2) = (zx)" = 1

Then T can be represented as a group of isometries of one of the
? ]

2-dimengional geometries :




v
[

1) Spherical geometry, if 1/p + 1/p + I/r

II) Euclidean geometry, if 1/p + 1/q + 1/r 1.

TII) Non-FEuclidean geometry, if 1/p + l/q + l/r <1 .

For this, let P denote either the Riemann sphere S2 , the Euclidean

plane E2 , or the model NEZ for non-Fuclidean geometry. Then, given inte-

T in P , bounded
Psq,¥ ,
2 2

by geodesics, with interior angles w/p , w/q , n/r . (T lies in S~ , E

gers p,q,r as above, there exists a triangle T =

or NE2 according as l/p + 1/g + I/r-1 1is positive, zero or mnegative),.

(*))

. The group T is isomorphic to the group of

‘Theorem (Poincaré _
© Psg,T

isometries of P generated by reflections on the 3 edges of T . The triangle

T serves as fundamental domain for the action of Fp q.r on P .
¥ ’

In other words, the various images of T wunder the actiom of Pp q,r
3 H

give a tiling of P .
Proof. Let I be the group of isometries of P generated by reflections

-~

on the 3-sides of T . It is easily seen that I is generated by 3 elements
which satisfy the same relations satisfied by the generators T = Fp _—

] L
So, there is a canonical homomorphism from T onto I , and we want to see

that it is in fact an isomorphism. We first form an abstract object X as

follows : Let

42
i
—
X
-

T2

(x) In "Théorie des Fuchsien groupes'. Tome II. See also [Milnor], "On the
3-dimensional Brieskorn manifolds M(p,q,r)" , in Annals of Maths. Studies
Mo. 84, p. 175-225, Edited by L.P. Neuwirth.




taking one copy of T for each element in T ; we associate each generator

of ' to an edgeof T,

and we call this édgé its domain. Now; define X = X/~ , where ~ is the
relation : (g,t) ~ (gx,t) & t € domain x , gimilarly for y,z . Then X. is
a combinatorial surface; now we make it geometric : embed T in P , and
use the homomorphism T -+ ; to definé a map TP by (y,w) ~ vy{w) ; This
induces a map = : X > P that, we claim, is a homeomorphism. For this, one
shows first that this is a local homeomorphism (this can be verified by
inspection on the £hree vertices of T , which are the only points wheré

we could have difficulties); next, we obsérve that, since P is compléte,

every path in P can be lifted to a path in X , hence is a covering

projection. The rest of the theorem now follows because P 1is simply connected.

Tt follows from Poincaré's thoerem that in the spherical case, the

rou T has order
ErOUP Tp,q,r
‘area (SZ) - 4 .
‘area T -1 =1 =1
p +q¢ +r -l
In the Euclidean and the non-Euclidean cases, the group T has

P.q,T

infinite order. Note that the only triples (p,q,r) for which p_l-rqul-&r"]

is greater than | are (2,2,r) , (2,3,3) , (2,3,4) and (2,3,5) . The corres-—

ponding groups Fp are the dihedral group of order 4r , the tetrahedral

sqs
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group, the octahedral group and the icosohedral group. (Beware that these
names are often reserved for the corresponding subgroups of index 2 consis-

ting of orientation preserving isometries). In the Euclidean case

p_I+-q_l+-rnl = 1 , we have only the triples (2,3,6) , (2,4,4) and (3,3,3).

For all remaining possible triples, infinitely many of them, we are in the

hyperbolic case.

Remark, In many cases, one can actually represent a triangle group Pp q,r’
e ¥ 3

< 1 , in the spherical isometries. What happens is that

with pml + q'_] +T
we can often find a suitable integer a € Z such that if we enlarge (one
or more of) the angles of the triangle T by this factor, we obtain a

P:q,T

new "spherical" triangle (i.e. with sum of its angles > ) whose associated

group of reflections is isomorphic to the original group Fp g
% ]

.. . " . 2
For example, is isomorphic to the group of isometries of § gene-—

Ts,5,5
reted by reflections on the edges of a triangle with angles 3n/5,3w/5, 31/5
Note however, that in this case we do not have a tiling of 52 , the various

images of the triangle overlap, and they wind around the sphere an infinite

number of times.

Now, if instead of looking at the full triangle groups Fp q,xr * Ve
P

+ . . . N .
lock at the subgroups T g consisting of orientation preserving maps,
R ]




-1t =

-1

then P+ r is a subgroup of PSLZ(HQ, (1f pul-rq*l-kr <1) , which is

»9s

the group of all oriéntation presérving isometries of E? . Under the

standard inclusion PSLZ(HQ — PSLé(mj ; théy givé oriéntation preserving

isometriés of hypérﬁolic 3;space TH3 . The isomorphism méntionéd aﬁove can

bé provéd using a field automorphism of ‘T to changé thé angles, which then
+

induces an automorphism in PSLZ(E) taking the triangle group Ts 5 5 into
3~ 3

the corresponding group of spherical isometries.
Exercise. Construct such a proof.

We have then seen that there exist finitely generated discrete groups
. . z . .
of isometries of H° with compact fundamental domain. If we do the same
constructions with an ideal triangle, we get essentially the modular group
]

.Pm - SLZ(ZD . It Has fundamental domain with finite area. (A subgroup of
]

index 2 in T is a subgroup of index 6 in SLZIZQ

SO 900900

Exercise. Show that given Qpsevesty with

n

¥ . < (n~2)mw
. i

1= ]

. . 2 .
there exists a convex n-gon in K , with angles Qpseesly o

n

Now, what about tilings of Ifs? , and of 7 .
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Theorem. Consider a conmvex solid in 1?3 with dihedral angles w/ni -

Let T be the group with 1 generator X. for each face and relations

2 _ 2 _ -1
Xl -‘Xz = oaaa =
_ n n
1 2 _
(Xlxz) = (Fyxy) "= .. =]
3

then T gives a tiling of MW”. .

Proof. The same construction as for the triangle groups
' x {solid)/~
givés the tiling,

. . . . 3
S0 now, what kinds of convex figures can be realized in ¥~ ?

Theorem. {Andreev. Math. USSR, Shornik, 1970). Any decomposition of S2

with angles 5_3/2 (with some fine print) can be realized uniquely by a

‘. s 3
convex solid in H™ .

This shows that there are many tessellations of ]HB by convex solids
and reflection groups. (For example, by a regular dodecahedron with angles
#/2 . Same considerations with an ideal tetrahedra vield finite volume funda-

mental domain.

In higher dimensions, we have the arithmetic groups, to be treated later.

Exercise., Construct all groups possible using regular solids for iHn,

n=2.,3,4,
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3, Tilings of yin by aritbmetic construction.

We show that there exist discrete subgroups of isometries

I — Isom(H™) such that H"/T is compact, thus giving a tiling of .

. . n . . . n
Lattices in R are discrete subgroups isomorphic to Z . They

are characterized up to a compact set of possibilities by two invariants :

S = minimal separation, the distance from.the origin of the lattice

point nearest the origin.

V = volume, the volume of a fundamental region of the lattice=det M

where M is a matrix composed of basis vectors for the lattice.

Let L be the set of lattices in R . We can topologize L as
follows : two lattices are close ¢ can find bases such that the basis vectors
are close. (Equivalently, one observes that [ = GLn(B)/GLn(ZQ and as such

has an induced topology).

Proposition (Hermite-Mahler). A set of lattices. Lo‘ has compact closure in

L if the minimal separation $ is bounded from below and the volume V is

bounded from above.

Lorentz model for hyperbolic space : Consider If“d with the quadratic
2 . .
form ¢ = xlé-xg + .. F xi-—t2 , and let G be the subgroup of invertible

e . n+l . . .
linear transformations of R leaving ¢ 1nvariant

1

c= {(MEG (B]oM) = 0@ , v € ®% )

The locus of points satisfying ¢ = -1 is a two-sheeted hyperboloid,

on which G acts. ¢ restricted to the tangent spaces to the hyperboloid is
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positive definite (see figure), this allows us to define a metric on the

hyperboloid that is invariant under the group G .

Denoting one sheet of the hyperboleid by ', we have G acting as a

. . n
group of lsometries of H .,

G acts transitively since it contains the full rotation group around

the point (0,0,..,0,1) , and any point on H"” can be sent to {0,0,...,0,1)
cosht sinht)

by an element of the form
sinht cosht

Now, we consider the quadratic form ¢ = x% + L.l xi— \/2'112'0:1 R ., As

before one constructs a model for H- bj taking one sheet of the hyperboloid
defined by @ = -1 , Let G be the subgroup of GLn+1(E0 leaving ¢ invariant.
Now define r, te be the subgroup of ¢ whose matrix entries lie in

O(Q(y?)) , the intégers of Q(V2) . Thus

e
Ii
—
=
i
-~
M
o
It

> -
U + m; V2 and oMv) =)}

. . . . n .
Theorem. Fn is a discrete group of ieometries and H /Pn is compactk,
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We first give a proof in the following analogous case :

> . L - . » 2
Consider ]Rl_' with the quadratic form @ = x% + xi Tx, - ‘]t2 and let
G c GL&(IR) be the group preserving ¥ and T be the integer matrices

of G . Then ]HB.‘fI; is compact.

Proof. Since integral matrices are discrete in real matrices T < G is

discrete. Since G acts transitively on 1-13 with a compact stabilizer
group, 1t suffices to show that G/T 1is compact; this implies H /T 1is
compact. Note first that G/T can be identified with the G-orbit, L0 <L,
' . . 4 4

of the basic integer lattice Z R .

We will show that Lo is closed in [ and that the minimal separation
is bounded below while the volume is bounded above, SO that by Mahler's
proposition, L0 is a closed set with compact closure, hence compact. Thus

G/T and hence 1'13/1‘ are compact.

S is bounded below om L * Reducing le +x§+x§ - 7t2 = 0 modulo 8 ,

it is cl.e'ar that o restricted to ﬂ.l' - {3}_ takes non-zero integer values.
Since ( 1s continuous and Lp(ﬁ) = 0 , the neighborhood U about the origin
on which © < /2 contains no point of 2?,4 —(3) . But Lo is the orbit of
the lattice E4 by G , which leaves o invariant, so there is no point

of any lattice L € L0 in U, and S is bounded below on LD

Vv is bounded.above oOn LO . The basic lattice EA has volume 1 and

since elements of G leave invariant, they have determinant 1 . Hence

the volume is bounded Dby 1 on Lo .

Lo 1o closed in L : Let Ly be a lattice in L and suppose that there




exists a sequence {Li} of lattices in L, converging to Ly . Since o
is continuous and (p[Li takes integer values, (pr* must take integer

values,

Let {Vi} Be a basis for Ly . Then there exists Li € {Li} with
‘ o
basis '{ui} such that u, is close to v. and o(u,) = (p(vi) as well
u, +u,) = . i i i - L, ) = L sVL)
as @( x j) Lp(vi _tVJ) » which implies that tp.(ul‘,uJ) LD(Vl,VJ) Hence
the element of GL4 (R) taking Li' to L, leaves ¢ invariant and

o

Ly €L .

Remarks on the general case : Since any integer can be expressed ag the

sum of four Squares, the quadratic form P = X:]Z'*' +xr‘;2 -7t2 takes zero
values on Z"- (3} for n Z 4, Therefore, one uses the form
Q= x? a4 xi- \/2“t2 over the integers of Q(v2) and the above arguments

go through with a standard modification,

Since ‘O(’Q(_\/’Z)) is not discrete in = » We need to work harder to
show that T < G 1is a discrete group of isometries, Fipst notice that the
integers O(Q(\/f)) from a discrete subring of tha product ring RxR via
the embedding (mtnyZ) ——s (a2, m-ny7y | This induces an embedding of

r in
G£n+l (R x R) = G£n+1 (R) x G'Q'n+l (R)

as a discrete group. Since T Ileaves P = X:IZ . +Xr21- \/2—t2 invariant,

the image of T in the second copy of GLnH(]R) belongs to the orthogonal

group of (g = xf+ “en +Xi + \/2_1:2 s which is a compact group. Thus T st

be discrete in the first facitor GLn+1(]R) .
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Remark. A more.general theorem was proved by A. Borel in Vol(l) Topology.
This makes use of the concepts of arithmetic and algebraic groups (ref.

Borel : Introduction aux Groupes Arithmetiques).

]

What does this proof yield in H" ? It implies the existence of solutions

. 2 . . . L . .
m , n to Pell's equation nz—am = +] which implies the existence of units

in the integers 0(QVa) .

Let = xz—at2 where a 1is a square—free integéru Then m]Zf;~3‘# 0,
and hencé Iiyr is compact whére ' is the set of intéger matrices 1éaving
© invariant. In particular; r is infinite. But T is isomorphic to the
units of (0(Q(va)) (i.e; thé integérs m+nV§ of norm #£1 , mz-—an2 = 1)
via the homomorphism m+nVE'+( i a;).cwtenthe units are difficult to find
in practicé. For example, in 0(QV94) the smallest unit aftér 1 is given

by 2,143,295 + 22106494 !

Remark. Apparently Fermat sent these examples to the English mathematicians
(especially Pell), presumaﬁly contributing to the strong tradition in number

theory then.

In infinite dimensions, one can construct groups of hyperbolic motions
by inversions in spheves, just as in the finite dimeﬁsional case. There
exists an Hilbertian hyperbolic geometry taking the unit ball of Hilbert
space and the group generated by inversions. Then taking '{ﬁf: Fn+] R
any sequence of cocompact groups constructed by the above theorem, the group

o

r,= U T, is a discrete subgroup of isometries of B .
n=1

Problems. 1) What is a maximal discrete group containing T _ 7

What is its fundamental domain ?
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2). Is there a discrete group with bounded fundamental domain ?

(This corresponds to cocompact in finite dimensions).

Exercise 1. Show that the rank of the group of units in the integers of
an algebraic number field K is given by g~+R~l where C (resp. R) is
the number of complex (resp. real) embeddings of K in & . (This is a

form of the Dirichlet unit-theorem)

Exercise 2. Consider a finite group T acting irreducibly on
R : p:T + AutCRn). An integral form of p is determined by a lattice
invariant by T . Show that the number of equivalence classes of integral

forms is finite,

Exercise 3. (Corollary to Ex. 2} : Show that the set of ideal classes ‘in

an algebraic number field is finite.

These exercises are all applicationsof the compactness of certain sets

of lattices.

How does one pass from the discrete cocompact'groups of isometries
constructed above to manifolds ? Since Fn is discrete, it acts properly
. . n n . _ n .
discontinuously on M and m'/Tn 1s a Hausdorff space. H /Fn is a
geometrically non-singular manifold if Fn has no torsion, or equivalently

if I, acts without fixed points.

Proposition. The group Pn has subgroupsof finite index without torsion.

Proof. We take the case where I is the group of integer matrices preserving

the form x%+x§+x§~7t2.'Let r' = Fri{integer matrices = 1 (mod 3)} . Now, we
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show that any finite subgroup F of GL'R(R,D injects into GLI-I(Z/BZZ) e
This implies that the kernel of reduction mod 3 has no finite subgroup,

hence no toxrsiom, and thus T' is torsion-free.

First, reducé to the case whére F acts irredu;cil;»ly on ]R4 '. Thén
introduce an F-invariant metric normalized so that thé shortest nonmééro
latticé vector of F has léngth one. Now; the orbit of a closet lattice
point on unit spﬁére givés a spanning sét for R -. But these vectors are

at most distance 2 apart and hence can't be identified mod 3.
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4. Construction of fundamental domains.

There are two natural ways of constructing a fundamental domain for a
given discrete group of isometriés_of Ifl, one isthat:yfﬁirichlet, the other
isthat:oberd.Befoﬁe‘describiqg these methods, let us give somé of Poincaré's
motivations for studying discre;é groups (the réference is [Ford] , automor-

phic functions, Chelsea, 1929). Consider a 2nd—order differential equatiom
n" + A(w) n' + Blwn =0 (

where A,B are holomorphic functions in a region S of the complex w-plane.
Given 2 linearly independent solutioms pl(W) . p2(w) of this eguation at

a point W, o, any other solution is of the form,
p(w) = ap, (w) + bp,(w) (2}

where a,b are constants. Now consider a loop L in § based at W,
if we continue Py 20y analytically along L , we obtain a new pair p;,pé

of "monodromic" solutions at w, . By (2), these are of the form

py(wy = ap (W) + bpy(w)

pé(W) = 'cpI(W) + dﬁz(w)

with ad-be # 0 . (Since pi and pé are algo linearly independent}.
Therefore, the ratio pi/pé _defines a linear transformation

_apl(w)-l-b

v co_(w) +d

The set of all linear transformation that arise in this way, i.e. by consi-

dering all loops based at W, , forms a group [ that Poincaré called the
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group of the differential equation., If we start with a different pair of

solutions, we obtain a conjugate of T by a linear transformation.

If the region § is simply connected, then any solution of (1) at W
is analytic in all of § , so the group T is trivial. Otherwise, T may

be finite, infinite or even a continuous group.

Now consider thé invérse function F of thé ratio of two solutions,
F(p](w)/pz(w)) = w , This is, genérally speaking, a multivaluéd function,
and Poincaré's question was, when is ¥ singlé valued.?.For this he noted
that if pi,pé are monodromic solutions of (1) oBtainéd by analytic conti-

nuation of p£,52 along a certain loop, then
I R '
Flpoy/05) = Flpy/py)

or in other woids, F 1is invariant under the action of ' (i.e. F is a
T~automorphic functiom). If wé assumé that F 1is single valued; then it is
a (non constant) holomorphic function on some region §° < S , lnvariant
under I . Look at the T-orbit of a point in S5' , then this orbit cannot
have an accumulation point in 8§° , otherwise T would be comstant.

Therefore, the group T acts properly discontinuously on §' .

These groups are discrete in the sense we have been talking about,
except that they have a fundamental domain that hits the sphere at = in
a fundamental domain for the action of the group on this sphere. Théy were
called Kleinian groups by Poincaré. He called thém Fuchsian if they also

have real coefficients, or preserve a circle in the complex plane.




We now return to the construction of a fundamental domain for a group
. P n ) ' . . i -
I' of isometries of H . As we mentioned before, there are two natural

ways.

i) Dirichlet way. It makes sense if you have a discontinuous group of

isometries on a metric space

ii) TFord way. This is based on the Euclidean metric, and you see how
much the metric is distorted, It has the advantage that it also makes sense

for points at « .

Dirichlet way.

Fix a point X € #" which is not fixed by any element of T except
the identity. Look at its orbit, then the Dirichlet's fundamental domain
Dy of T consists of all points closer to X than to any other peoint

in its orbit, that is,

R Iy ' .
DDir = {y €EH ]p x’xo) f.p(x,y(xo)) for every vy € P-ii}

where p( , ) is the hyperBolic distance.
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L(XO,Y(XO)

""H(Y(Xo) ,xo)

If given 2 points Xys%y € Ifl, we let L(xl,xz) be the hyperplane

L(x),xp) = {x € B[ p(x,x) = 0(%,%.))

then L(xl,xz) divides H" in two convex halfnspaces H(XI’XQ) and H(XZ’XI)’

where
n
Hipex)) = {x € B | p(%,%) < p(¥%)}
and H(xz,xl) is defined similarly.

Returning to our fundamental domain for T , one clearly sees that

the interior of D_, is,
Dir

D.. = N Hix ,v(x))
Dix YET~1 s} fa]

which shows that DDir is convex .

L . . . . 2 .
Remark, If we consider the ordinary lattice Lo in R, the construction

above yields the dual lattice. However, this is a special case. The generic
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one, moving Lo slightly, yields an hexagon as fundamental domain.

& L ]
] '
® +
° a

Exercise. Consider a group Tg < SLZ(]R) that yields a surface of genus g .

Show that in the gemeric case, D,. =~ has 12g~6 sides . (Hint. Use the

Fuler characteristic )
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Example. T

2

S
e e

“‘"m,—mww-”“”’ﬁ

Cut locus as viewed from p .
Exercise.

How many different ways there are of glueing the 18-gon to get

different 2-holed-tori. (Different means up to orientation preserving diffeo-
morphism of the surface).

There are about 9. This will appear

in a joint paper by JBrgensen and
Natainen.

Lee Mosher studied the case

g =3, There are 1726 different ways. In

the case of g=4, one puesses that there must be about 20 million!
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Example. Let Fn be the group on matrices with entries of the form

(ni 4—mi_v2),ni;, n, € 7 , that perserve the quadratic form
L3 . j .

p(x) ='-}/7. tzfX% 4’-:{% £ oae. Xi ]

Choose the point X = (1 0,...,0) as base point. Its isotxopy group
which is contained in So(n) consists of the signed permutations of the

'g , It has order 2Ma 1, Now, dlsregard these signed permutations and

X!
i

construct a Dirichlet domain for T with respect to ¥_ .

" Theorem. 1) Fn is uniformly discrete. That is, there exists a ball contained

in DDir(Fn) of radius independent §f n .

2y diam D (r ) > c log n , with ¢ constant.
. Exercise. What does the volume Vol(Fn) looks like as n »+ = ?

. gketch of proof. The idea to prove 1) is to show that we have 2 minimal
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distance fronm X, to any other point in itg orbit, independently of n .,
For this we note that thé hjperbolic distance from a peint P ip thé hyper-
boloid to the Base point X is é function of jitg "ﬁéight"; i.é. of the
t—componént; In face, if Y € Pn is a matrix opérating on Xo ,'thén the
distance from X to 'y(xo) is nlog’t—componéntl of t-column of Y .

Now,
¥(t~column) = -VZ and @(x~colum) = |

therefore, the t~component of ap X-column is either 0 or > 1+ 7

and the L-component of 5 t~column ig

1 if all othersare 0

2 1+yZ  Otherwise

Actually, if many 'Ki's are non-zero, then ¢ has to be very large. This

gives minimal distance independent of dimension,

The idea for 2) is to find enough hyperplane; Lo chop off DDir » and
then userthe fact that the main diagonal (I,...,I) forms an angle & of
almost /2 with respect to the Principal axis (i.e. cos 0 = v%a to show
that, at least for one generating side, the t-component ig > Vo, so the

length of the main diagonal in DDir tends to « g5 1 o+ o

Ford's way,
o2 8 way

The fundamentai domain for g group T obtained by Ford's method depends

on the model for " that we use, If we use the unit balil model, we obtain

the same domain as for Dirichletﬂsmethod.rlf we use the upper half-space model,

we may get a different one. We use the ball model here,

e
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Note that if we fix a po;nt P at < , then we can look at all the

horospheres based at P, and the.y give an ordering to all points in B

s in u you can. dec1de which one is closer to P .

g_iven any two point

g based on the Euclidean metric on B" ®® . The idea

Ford's method 1
move it towards the boundary

ou pick a sphere ms:.de B" and you

s smaller and smaller as you approach

the boundary, so you cam decide where in H" you are by looking at ly‘(x)]

js that if ¥y

by an element Y €T, the sphere get

. . n ., . .
Any transformation 1in B is arotatlon followed by a non—euclidean transfor—

mation. Suppose you have a translation by 4, them this trenslation is &
reflection on two hyperplanes whose distance is d/2. 80 if ¥ is a translation then



E-

it is given by a.reflection in the hyperplane at ofigin, followed By a

reflection on the Bisecting hyperplane.-

This bisecting hyperplane jig Ford's isometric sphere § p of yhl y i.e.

it is the set of points in g% where fyrl(x)[ =1 . In the inside a1l
points have ]Y-l(x)’ >1, in the outside they have IY&I(X), < 1 . The

transformation takes Sy into Sywi

S -1
Y

-Now, to define Ford'g fundamental domain of T » Pick xec g™ which ig

not fixed by any element of 7 . Then

D= ix] |yt (x| 21 for all ye gy




This gives the same fundsmental domain as Dirichlet, but it also makes

sense at = (because the derivatives are defined).

To seé that D 1is in fact a fundaméntal domain for T . first we note
that if we pick two peints X%,,%, inside U, thén they are not related
by any elément of T, 5écansé 1f there were a Y €T with y(xl) = Xy s
then either lY(Kl)l or IQ—l(xz)l would be‘.> 1 . Now, pick a point
€ #® . If all derivatives are < 1 , you are in ¥ . Suppose some is » 1,
then look at the maximum of all derivatives, say ]Yo(x)] . Then the chain
rule implies that at the peoint To(x) all derivatives are < 1, 8o

Yo(x) €D .

Example. Consider the Schottky group T defined by reflections on 3 hyper—

planes

more copies of P

This gives a Ytriangle” as fundamental domain, but it also gives &




a fundamental domain in the circle at ® . The group T' acts dlscontlnuously

Oon an open set of §~ . the complement of this open set ig the limir set of
- BEt

r.

Rémark. The limit set of the Schottky group is a geometrlcally repeatlng
Cantor set. [All Cantor sets are topologlcally the same. However, geometri-
cally, there are w11d Cantor setsg (e.g. the DenJoy diffeomOrphism) and

‘B@ometricalty repeated Cantor setsg]

e e e e

——

B

|
IE’

[
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5. Hyperbolic¢ geometry as part of conformal geometry.

The theme of this chapter is to consider hyperbolic geometry as a part

of conformal geometry. Conformal geometry also includes :
- Complex analytic transformationms in T are conformal.

- Differentiable maps in dimni= 1 are conformal; this contains the theory

of codimension 1 foliations.

- 0 dimensional geometry (group l——— tree , etc).

In some sense this is & one dimensional discussion since conformal maps

have one degree of freedom.

Consider the Poincaré ball model- for hyperbolic space and let T be a

discrete group of hyperbolic isometries.

pefinition. The domain of discontinuity, & for T 1is :

I’l ]

0=1{x € ball{3 compact neighborhood K of x such

that card (YET|y KNK # §) is finite}

The Poincaré limit Set,.Ar , 1s the complemént in the hyperbolic ball of

the domain of discontinuity, Qr .

Remarks.

1) AP is a closed set.

2) Since T is discrete, the interior of the hyperﬁolic ball is contained

in . and Hence A, < 3(ball) = the sphere at infinity.




Remarkable Proposition. If C ia any closed T-invariant set on

d(ball) = sphere s thenm I gers discontinuously on sphere~C (C must

contain at least 2 points),

- Proof (due to Grémov}. Form the hypérbolic convex hull, H(C) , of C in
the ball. Define a map ¢ : sphere~C — frontiér(H(C)) by dfopping each
point pérpendicularly to the frontier of the hull, Since C is invariant
under T , ¢ is a TI-invariant map and oné has an équivariant image of

sphere ~C inside the ball where T acte discontinuously.

Corollary, In the sphere at infinity, there is 4 unique minimal, closed

I~invariant set.

Proof. Two suchﬁﬁniﬁalsets cannot iﬁtersect, ctherwise tﬁéy would not be
minimal. The orbit of a point of a minimal set has to be dense, hence I is
not discontinuous on a minimal set. Now by the proposition, the action of

I' is discontinuous on the complement of aﬁ I-invariant set, so it follows

that there can be only one such minimal set.

In all, these considerations rule out the elementary groups : finite,
parabolic with exactly one fixed point and axial with exactly two fixed

points. They rule out the cases of no, one, or two limit points,

From -the point of view of topological dynamics 4 and o behave very
-differently. 0n g s ' acts discontinuously with no recurrence - points
wander off to the sphere at infinity under T . On A every point has a

dense orbit, hence A 1is sometimes called the non-wandering set.

Here, we have considered more special behavior whére each of the two sets




behaves better than in general. One also has the Following examples :

Example., Consider the shift on an infinite sequence of 0,1 . Here the mon-

wandering set is not minimal.

2 0

Example. Consider the hyperbolic transformation ( ) on IR?\O . This

0 1/2

gives a non-discrete action on the wandering set.

Corollary. The Poincaré limit set A ig -either nowhere dense (i.e. interior

A= ¢) or all of the sphere at infinity.

. <
Indeed, if A had interior, the complement of A would be a closed
invariant subset C of the sphere and by the proposition T would act

0
discontinuously on sphere~C = A .

Corollary (left as axercise). For any relatively open set U of A there

exist Finitely many Y, ,.-e>Y¥n €T with A= ¥ (0 U-- U v (U)

The geometrical properties of A will be interesting. According to the

last corollary, it suffices to look at a small piece of A .
- Example. I1f T 1is cocompact, then A = sphere .

We have another description of A . Take any point of hyperbolic space
and look at its orbit under T . Then the limit set A will be the set of

cluster points of this orbit. (This does not depend on the point-chosen).

We have the following general picture for discrete groups T acting on the

hyperbolic bal1 and having a fundamental domain with finitély many faces.




e

I' cocompact

I' cofinite volume

L

A & sphere

The fundamental domain 1ntersects the sphere at infinity in a polygon,

gives a fundamental domain for the action of T op g . The fundamental

domain is contained in a component . of .

In dlmen51on 2, dlscrete groups of hyperbolic 1sometr1es are called

- Fuchsian groups We have the follow;ng picture :

which
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Fuchsian groups of the second kind :

ST

\\\\
)

A = Cantor set

There is also the following case :

We will rule this out for the moment, since in this case the limit set

A is not geometrically self-similar,

- Exercise (for computor). Let T be the group generated by z — z+3 and
Z ~»--£ . Determine the limit set of T . (AF is of the complicated kind

since AT # S1 and a fundamental domain for T has cusps).

We now consider T generated by inversion in some collection (not necessa-
rily finite) of disjoint circles. Consider the case of four circles

I . . . . .
$i , 1= 1l,...,4) . Reflecting in these circles gives

™




A fundamental domain for the action of [ on 82 is given by the intersection

of the exteriors of each of the S! . Reflection about each of the 4
1

circles yields four addition fundamental domains of the form :

Reflecting -again about each of the four circles S; vields twelve

fundamental domains of the same form

This yields a "tree" of fundamental domains




1%

Ce
N

Now the fundamental domains cover everything except a Cantor set. Thus the

1imit set is this Cantor set.

These-groups were first»studied 5y Shottky around 1875 and are called

the classical Shotthy groups. They gave the first examples of Cantor sets.

The group T is the "free” group on four generators of order 2. There
are no relations other than genz = id ., (To see this let a normal subgroup

of T act on the tree constructed above).

Remark. A non-trivial normal subgroup N < T has the same limit set as T
ie. A=Ay This is because A, is invariant under T 3

(N normal = NTAN = FNAN = FAN_w-FAN =_AN) now apply Gromov's proposition.

Thus the picture given by four disjoint circles 1is structurally stable,

and is equivalent to the following picture :

il
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However, things are essentially different when the circles touch or intersect.
For example, consider the group generated by reflections in the following

four circles, three of which have a

common orthogonal circle, The subgroup generated by the three inner circles
is Fuchsian, having the common orthogenal circle as its limit set. Similarly,
for the the other 3~tuples of circles, we have the limit sets being the common

orhtogonal circles :

Now inverting one of the four circles of the limit set in the circle not

contributing to it, ome gets the Apollonian packing
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Sending the point x to o (conformal transformation) gives the picture :

G b

Exercise, Find the position and size of all circles. Show that the circles
. . . o . ‘ 2

on the bottom line rest at rational points p/q and have diameter 1/q” .

In this case the group I with this limit set is a subgroup of

PSLZ(Z[i]) .
Given a packing, define the packing comstant § such that

@w(s) = I r° =

. 1
circles <o for s < 3§

Unsolved problem. Is ¢ minimal for the Apollonian packing ?

Exercise. Given a packing with Er, <=, show that the Lebesgue measure

of the complement is positive.

. . 1 . s
‘Proposition. Let I be a group of homeomorphisms of S8  with no finite
orbits. Then there exists a unique minimal closed invariant set.

(The proof is analogous to the hyperbolic geometric case).

Now, back to our four-circle Shottky group. In the case where the four

circles have a common orthogonal circle, it is invariant and the limit set
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of the reflection group is this circle.

(1)

In general, there is no common orthogonal circle. Under iteration of
reflections, the circles converge to the limit set, a very wiggly curve,

pictured here :

(2)

There is a homeomorphism between pictures 1 and 2 and hence the two curves
are homeomorphic. However, as we will see later, the second curve is non-

rectifiable,

Another case is that of over-lapping circles :

N

If there is a common orthogonal circle this is the limit set, and one gets

a complicated fundamental domain inside this circle.
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Definition, The limit set A of a discrete group I has an expanding

coﬁformai‘56vér if at éacb'poin;' x €A, Iy €T such that Iv'x} > 1.

This implies that I a finite covér Ul,.;:,Un of A with Yy :Ui - &
such that (Uif]A} —A is an éxpanding conformal map. In thé casé

of refléctions in circles that overlap, it is clear that the limit sét

haé an expaﬁding conformal cover - simply take the U, to‘bethe interior

of the discs bounded by thé génerating circles. Wé will séé that the existgnce
of an expanding cover of A forces A to "look alike everywheré" in a sense

which we will make precise.

Definition. A limit set A is quasi-self similar if 3K , 3r = such that

v € A and Vr < ¥,

e[AnB(x,x)] “——p A
K-quasi
isometry

A K quasi-isometry is a bijection that distorts distances between and

1
K
K .

Thus roughly speaking, A 1is quasi-self similar if each small piece <can

be expanded to a standard size and then mapped into A by a K quasi-isometry.
Proposition. A set with an expanding conformal cover is quasi-gelf similar.

Thus in the case of the limit sets of Shottky groups, overlapping circles
imply the existence of an expanding conformal cover of A which implies that

& is quasi-—self similar.

.

Distortion lemma (proof of Proposition in the compact case). If A 1is a

closed compact set with a finite expanding cover, then A is K quasi-gelf

similar.

4]
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Proof. Let L be the Lébésgue numbér of the expanding conformal cover
and x € A . If 1 < T, , B{x,r) lies inside a disc of thé éxpanding confor-
mal cover. Apply thé corrésponding conformal map to gét‘a Bigger B(xl,rl) .
Iterate until the diameter of B(x_,r ) 1is no longer smaller than r, -
The total distortion is given by thé chain rule : the distortion of thé pro-

duct equals the product of the distortions of the Y; - Now go backwards :

At each step there is compression, and the total compression goes as a

geometric series :
log ratic = & Ilog y'(xi)-log v* (y;) |
which by the mean value theorem gives
-= By 0 : -
Z(tog v ' (xD) Ixy yi[
< Ry y™

¥

This depends on ¥’ and " and not on the choice of point x or the

radius r .
Now, we mention another limit set, the Julia-Fatou limit set.

General remark. There is another formulation of the Peoincard limit set

that will be useful in defining the Julia-Fatou limit set. Start with a

pbint of discontinuity on the sphere. Choose a compact neighborhood U of
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x . Regarding this point as = and forgetting the finitely many vy with

BN yU# ¢  we get :

Thus we have a family of mappings "{y} & T such that '{f}[U forms a
compact family of mappings U ~ S2 . The Poincaré limit set is the complement

of the set of normal points {i.e. points with compact neighborhoods U on

which '{#}[U.forms a compact family of mappings.

Now, let f : 82 »-52 be a GT-analytic self mapping of the Riemann

sphere (e.g. & polynomial, which fixes é ).

' ‘Definition. The Julia set, .Jf s of an analytic self-mapping of S2 is the
complement of the set '{xla U3 x such that the family £ , £e¢£,... forms

a compact set in Q{U) in the topology of uniform convergencé} .

Example. Consider the polynomial £(z} = 22 . Points of norm > 1

2] =1

»

Ig

tend to « under iteration, while points of norm < 1 tend to O . The Julia
set is the circle |z| =1 . Notice that the backward orbit of any point x

clusters at the Julia set.
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Suppose now that we'perturb f(z} slightly to £ (z) = zz+e . Then the

Julia set Jz is still topologically a circle, But.geometrically it differs

! e e R
from 8§ since it 1s non-rectifiable.

The Julia set J? is still quasi-self similar, but not rectifiable

then J_, is quasi-self similar.

Corollary. If |[f'z] > 1 for all =z € N £

(Since |f'z| > 1 there exists an expanding conformal cover and thus

J is quasi-self similar).

f'

Exdmple. Consider f(z) = e as a mapping of T . It has been proved that

Je = € . It is unknown whether or not this action is ergodic.

I
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6. A dictionary : Limit set & Julia set.
We have two similar examples of conformal things

i) A discrete group I < PSL?(E) . It acts discontinuously on an open set
of the sphere at « . The complement of this open set in the sphere is the

Poincaré limit set AF of T..

iij A €-analytic map
£: LU {0} — Ty =}

with all its iterates fof , fefof,..., and its Julia set Je 1f, for
example, f is a polynomial, then there is a maximal open neighbourheood of
« which is mapped into itself, i.e. » is an attractor, and Te is the

boundary of this neighbourhood.

We will develope a "dictionary™ between these 2 examples.

1Yy A, +=— J

T £

2) Discreteness of [I' «——+ (to be discussed later).

3) A is the whole [ U {»} or it is a Cantor set. Jf is T U {«} oz

it has no interior.

4) A is the minimal, closed, T-invariant subset of U U {o} . N is a

closed set, invariant under all iterations of £ .

5) In the case of A the orbit FX of a point X, is
o

{x & Ap i X Y(xo) for some vy € '} ; for every x € Ao s the orbit TX is

I‘! 3®
dense in A, .

T

In the case of Jf ,we have three types of orbits :
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i} The forward orbit. (Most often used in dynamics)

If f 1is linear, then ffl is a Mobius transformation (so forget it).

iii) The full orbit. This is given by the equivalence relation z ~ £(z) .

[\

This orbit is the biggest. It is relevant for studying ergodicity, and

questions of invariance,

#)

Proposition™ . For all x¢€ J the backward orbit of x is dense in J

f-9 f -

This is a conseguence of the following lemma.

‘Lemma. Given an open set U in s? with 1 N Te # @ , there exists a N

T )
s.t. £ (V' n Jf) = Jf .

Proof. Consider an open neighbourhood V in 82 of a point X € J. . Using

£

¥ C.f. [Brolin] . Inveriant sets under iteration of raticnal functions.

(Lemma 2.2 and theorem 2.5). Arkiv fiir Math. 6, 1967.
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Montel's argument in the proof of Picard's theorem, we have
T

UES(W) = (T U =

n TUw-pt  (and £ ~ polynomial)

TU®-2pts (and £ ~2")

for otherwise the £ 's would form a normal family at X 3 nome of these

{(at most) two points is in Jf . This implies Ufn(V)-D Jf . Now use that
. . n

the repulsive periodic points in Jg are dense (Brolin), to conclude that

the union Uf" is increasing, and therefore exists a N s.t. fN(V) = Ufn(V).
n ‘ n

This proves the lemma. The proposition follows easily : Given a point
vy E Jf and a neighbourhood V of y , there exists a N s.t. fN(V) = Jf,

so V contains elements in the backward orbit of every point in Jf .

6) On each side of the dictionary, thére is a "good" case, charactérized

by the expanding property. In Ar' this means that for all x € A, there
exists vy € T s.t. LyTx)l >1 ., In Jf this means that there exists N s.t.
](fN)'(x)[>} for all x € J; . In both cases, "good" implies that there exists
a finite expanding confofmal cover.

Corollary. 1In the good case, Ap OT g is gquasi-self, similar.

This follows because you can take any small piece and start expanding
it until it has full size. A simple calculation shows these iterated expan-

sions are quasi-similarities. (See distortion lemma of §5).
The following is a new theorem.

Theotem (Sad). In the Julia case Je s the set of good cases is dense.
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(also open, by definition},

Main problem. Is the set of good cases dense in the set of all finitely

generated Kleinian groups ?

So to speak, Thurston describes the groups in the boundary of good cases.
If main problem were solved affirmatively, then the conjecture of Alfhors
would be true and the finitely generated Kleinian groups would be well

understood.

Reﬁark. In the good case for Kléinian groups, the group T has fundamental
domain P with a finite number of sides, and therefore [ is finitely
presented. This follows because the expanding property implies that D

does not interest Ap 80 you can cut A out with 2 finite number of

isometric spheres,
Now, we have an ergodicity result,

Definition. Topological transitivity for an expanding conformal cover

means that there exists a dense full orbit.

Definition. A measure u is conformal (of exponent §) with respect to a

collection of conformal maps {y} if

). Cayu = y']®
dy

for some real 0 < § < G%ﬁ% is the Radon-Nikodym derivative). That is,

if yhn = EY'|5 T

If we have bounded multiplicative error in (%) , we can medify p to
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compensate, so this definition is stable under Lipschitz deformations of

the geometry.
The following theorem applies to both examples.

‘Theorem. A conformal measure yu relative to a topological transitive
expanding conformal cover is ergodic (i.e, if X =AU B with A,B Borel

sets, invariant under the system of transformations, then p(A) .- u(B) = 0).

' EEQQE, Let A,B be as abové; and note that the amount of "black/white"
in A U B only changes a little if wé havé boundéd distortion; Almost all
points in B aré dénsity points, so apply the distortion 1émma of §5 to
one of these points to obtain in the limit a disc which is 100% black

{full measure). In this way, we obtain open sets in B of full measure

everywhere.

Doing the same with A , etc., we conclude that y has finitely many ergodic

components. The result now follows because there is a dense orbit,
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Now, consider the examples

limit set A

If there is a common If there is no common
orthogonal circle. orthogonal circle.

' ATy
Wad I
o E
\’ Y

e J )
7. ‘
S - L'\.’ i {
2 w'l e '
z — Z z— z +¢
ek . .
Theoren. ) If these curves are not circles (Platonic case), then they are

not rectifiable.

The proof is similar for both examples. The first step was given by
Bowen. We prove now the case of the Julia set. We will prove the result
for A, 1in §7.

r

£
length. This y satisfies

Proof for J.. Assume the curve is rectifiable, and let u be the arc

d 1
=

*)Fateu proved this by a function theory argument (1919).
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{.e. U is conformal (8=1). . This curve divides the sphere 82 into two

simply connected domains D, , D_ ..We then have Riemann maps R, R_

mapping the unit disc U .conformally onto D D_ .

+ ?

8 +I32!le

Now, f preserves D and D_ -, and R+ conjugates the self map in

D, to produce a conformal map f_ in U which is of the form z — 22
(Because it has same critical and fixed point). Similarly, the self map

272

in D_ conjugates to z — z* . (Because critical point and fixed point

14252
are different). The dynamics of the first map on the boundary is 6 — 28 ,

for the second map, we have 6 — “2"8 (not quite 2).

These Riemanann maps are continuous on the boundary (Caratheodory) and,
if the curve is rectifiable, they are also absolutely continuous, by the
theorem of F.M. Riész. Thus, we obtain an absolutely continuocus map from
S1 inte SI which conjugates 6 - 26 into 2 — "2"9 . This is not
possiBle”because both maps aré strictly éxpanding, so they aré érgodic, and
they aré érgodically distinet, i;e. there is no Borel map ¢ on SI conjuga—

ting 20 and "2"s . In fact, both 28 and "2"¢ have invariant measure
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v =d6 and if @ is such & map, then ¢ has to preserve the invariant
measure (by erdodicity). Therefore, ¢ being continuous is a rigid rotation,

but then the conjugaté of 206 under ¢ is 20 and not '"2"0
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The proofs of theorems for the Poincaré limit set A, and the Fatou-—
Julia limit set Jf usually have some gemeral arguments in common. These

are expressed in the language of conformal dynamical systems.

Definition. A conformal dynamical system consists of a countable collection

of partially defined conformal transformations in some Riemannian manifold

n n : ' - . '
{usually R or S ), closed under composition whenever this makes sense.

This definition, as such, does not include flows (uncountable). However,
if we are interested in ergodicity, we can look at flows by taking "enough'

transversals,

-

so the flow defines a countable dynamical system.

" Examples. 1) Discrete groups of conformal transformations on s,
2) Iterates of complex analytic maps U U {w}e) .

3) Foliations of codimension 1 or with conformal holonomy.
[that is : consider a Riemannian manifold foliated by submanifolds. If L

is a leaf and p(t) 1is a path in L , we can follow p(t) along the

il




- 55 -

. . . d
nearby leaves. This gives transformations on the transversal space R ,

which are required to be conformall.

All these transformations are manageable because conformal maps have

only 1 degree of freedom (conformal =) - orthogonal).

Definition. A closed invariant set is topologically transitive if some

full orbit is dense.

For example, A is topologically transitive since every orbit is dense.

(Similarly Jf) .

Definition. A conformal dynamical system contains an expanding cover for
some compact invariant set X if for all x € X exists a vy (in the

dynamical system) s.t. |y(x)] > 1 .

Again, this implies that there is a finite covering of X by open sets

Ui and conformal maps s oo defined on.‘Vi s Set !yi(x)|> 1 for x € Ui .

The following theorem was stated and proved in §6 for the two special

examples Ap s Jf » The same proof works in general.

Theorem. A conformal measure u relative to a topologically transitive

expanding cover is exgodic.

Corollary. With the above hypothesis, 1 is unique given the exponent

and the total mass. {(Assume lp] = 17.

‘Proof. Suppose v is another one. Then

_ Bhy
o=z
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also satisfies vy*m = Iy'lafnl, and |m| =1 . Hence p and v are absolu-
tely continuous with respect to m . Consider the Radon-Nykodym derivitives
T dy dy o ' . . . ' o

= * o ; these are functions 1lnvarlant under vy (because u, v, m have

same exponent), so by ergodicity

S0 B EmE VoL

"Hausdorff dimension,

A reference is [Rogers}, Hausdorff measure, Camb. Univ. Press. Also

[Federer], Geometric measure theory, Springer Verlag.

Consider some set X in a metric space, cover it with countably many
small balls of radii T, <E and take the infimum of the sums

8

I r.
1

el
over all such coverings, for a fixed ¢ € R’ . Now define a function on §
by

B (%) = lim inf I -

&0 |ei<e .

this function is the ra—Hausdorff measure of X . Hﬁ(X) is always © or

w , except at one point 60 where it is 0 , finite or = .

, e

Fl

H
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This critical number 60 is the Hausdorff dimension of X ,

Note that if & 1is a point where
0 < Hﬁ(x) < o
then 6 1is, necessarily, the Hausdorff dimension.

The Hausdorff dimension is a geometric property. For example, a

n-manifold M has Hausdorff dimension n .

Conjecture., If X 1is quasi~self-similar, then
0 < HG(X? <

for some §{(= Hausdorxff dimension).

(*) Now, consider a conformal dynamical system, a closed invariant set
X topologically transitive, with an expanding conformal cover.

Proposition. Suppose the rS Hausdorff measure H6 of X 1is finite and

positive. Then HG is conformal of exponent § .

Proof. If vy 1is any map in our dynamical system, then + takes small bails
intc almost small balls, with consistent scaling. In the limit, balls go

to balls (of different radii). Hence,

8
.Y*H6 = !Y‘[ Hﬁ
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Proposition. Suppose X has a finite conformal measure u of exponent

8

Moreover, u(B(x,r) N X) , x € X , is comparable to rﬁ .

§ . Them H js finite and positive, and therefore u = HG (if normalized).

Préof. The last statement is cléar from the distortion lemma and the

transformation law. vy*p = !Y'léu .

O — O
™S
O

\

)

L

Y

O

[In fact, (Marstand) shows that, in general, one cannot get anything better

than comparable, As r + 0 , we must get oscillation, otherwise § € Z] .
Now, take a covering of X by balls of radii L then

u(x) < In(xg,ry)

but also
(x;,7) < 1. (up ¢ tant)
H Xi, ri = i. up 0 a4 constan
because they are comparable. Hence
. N §
0 < u(X,r) = p(B(X,r)0 X) < r’
this implies HG(X) > 0 .

It remains to prove Hﬁ(X) < w , For each € » 0 , choose a covering of

f
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of X with balls B},Bz,..., of decreasing size E.ir;.iré > ..., and

make it an efficient cover, i.e. the center of Bi+1 is outside

B]lJ...(JBi . We will prove"Erg < o , and therefore Hd(x) < o , For this

observe that the balls 1/2 B. are disjoint.

thus,
il < 2%z v e 2bhus 1720 < 28 W@,

Coxollary. With the hypothesis of (%) above, for at most one § , there is
a finite positive conformal measure. This & 1is the Hausdorff dimension of

X and the measure is the Hausdorff measure.

Example. Consider the dynamical system 7 - 22 + £ . We know that Jf is

non-reectfifiable,

‘Claim. There exists a unique, finite and positive conformal measure 1y

on Jf , of exponent § . (So u = H5 and & is the Hausdorff dimension).

The analogue following result on the Kleinian side of the dictionary is

due to Bowen.

—
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Proposition. For e # 0 of small modulus, the Hausdorff dimension & of

J is 1 <68 <2 .

£

- Proof. Jf is topologically a curve (see Eelow); sp §>1.1If § =1 then
the ecurve is rectifiable, so 6§ > 1 ; Also, 6 <2 'Becausé Jf is sitting
in T ; supposé 8§ = 2 , then thé 2—diménsiona1 Lébesgue méasure of Jf is
finite and positive, which is not possiBle; [In fact, thé Lebesgue measure

of a nowhere dense closed invariant set X of a conformal dynamical system

with expanding cover, is always 0] .

We now study the Kleinian case by characterizing a single MObius trans-

formation vy on :md+1, {or on Sd). The idea is to think of Mostow's

rigidity theorem to prove something in dimension 2, where the theorem

is false.
Proposition. y satisfies the following "mean value" formula
. 2 : , 7 -
Y@ -y = [y @Iy D x|

Proof. This can be proved by a direct computation for d =1, i.e. on € .

In general, look at the plane containing x,y and.do the same.

Corollary. Yy preserves the cross ratio :

Txyl o] _ Jy@ -y ] v@ =@
[x-z] [y-w| O y@ =y@) v v |

This formula shows that the Lebesgue measure is not preserved by vy

and also says how to correct the distortion. We want to have a measure

. . sy . . d _d
invariant under Mobius transformationms. For this, we let y act on 5 %8
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by v (x,y) = {yx,vy) ; then vy preserves the measure

_dxxdy
5d
[x-y]|°

{v is the Euclidean chordal distance between %,¥) . This v 1s the

unique invariant metric on the product.

In fact, if 1 1is a measure on the limit set Ar which satisfies

Y¥*u = |Y‘|6 for some v € T , then the measure

WX p
'\) I v r——t———
|-y [28

on AL XA, is invariant under vy , so v is TI'-invariant, for

T = {y € T:y¥y = |y'|5u} . [This is a2 measure theoretic form of imvariance

of cross ratio under Mdbius transformations].

Remark. The above measure v 1is related to the Liouville measure on the

tangent bundle T(Hd+1/F) : the action of T omn Sd x Sd- is ergodic with
d+1

respect te v if and only if the geodesic flow on T(H /T') 1is ergodic .

1

. . + P P . . . . .
A geodesic 1in ZHd is determined by a pair of distinct points in the

sphere at infinity Sd s
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d

o0 the geodesics in E@+l are parametrized By S XSd—A . (Note that the

diagonal A 1is irrelevant for measure theory). Now, a point in the unit

,Hd+1

tangent bundle T,(H) of determines a geodesic. This gives a map

d><Sd-"A

T}(H) — 8
which defines a foliation of TI(H) by lines. So, we have a natural measure

d

on Tl(H) given by the cross ratio measure on Sd‘xs and the arc length

upstairs. Since v is T-invariant, this leads to the invariant measure of

the goedesic flow on T(Ed+I/F).

Fxample. (E. Hopf, 1930's). If I is cocompact, then the geodesic flow

is ergodic. (i.e. the action of T on deSd is ergodic).

Proposition. Suppose @ : Sd — Sd is a Borel bijection almest everywhere

(a.e.), such that A > 0 ® u(A) > 0 , (i.e. non singular with respect to
Lebesgue measure), and such that ¢ x ¢ : Sd % Sdh) presefves v, up to a

constant, then « agrees a.e. with a Mobius transformation,

Proof. Since @ x ¢ preserves v , for almost all points x,y € Sd .

fot) ~o() |
lx—yl2 '

is a product of a function on x and a function on vy . (The Radon-Nykodym

o ,
dx

7|' x~y| | z-w]

=2 [yv]

derivatives %%5 . Therefore, for almost all 4~tuples, the cross ratio

is preserved. If we change coordinates and we put w at infinity, then for

almost all triples in Eg‘ the ratio |x-y|/|x-z| 1is preserved. Permuting
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x,y,z .we see that triangles go into similar triangles, with a proper
scaling. Therefore, we can scale ¢ to make it an isometry a.e., s0 a

Mdbius transformation a.e.

Problem, Do this for other simple Lie groups . That is, try to characterize
elements of a Lie group G by looking at measure theoretic properties on

G/K , K = maximal solvable subgroup.

As a corollary, we have something like a Mostow's rigidity thecrem

in dimension 2.

Corollary. Let @ : Si — S1 be a Borel Bijection, absolutely continuous

with respect to Lebesgue measure, If for some cocompact Fushsian group T,
. -1 . . .
the comjugate ©I'¢ = T' is again a Fuchsian group, then T and " are

conjugate in SLz(IR) . In fact, v € SLz(]R) .

Proof. Because T is cocompact, the geodesic flow on T(H/T) is ergodic

(Hopf), se I acting on S}l ><S1 is ergodic; similarly, T acting on

i I, . . . : . .

S x8 is ergodic. New, ( -is.a conjugacy between ergodic actioms, so ¢
' . . ' i 1 . . ..

takes the T-invariant measure on § X8 into the T '-invariant measure

1 I ' . ' . . . -
on § x8 ; but in both cases, this measure is v ., S0 @ 1s a Mobius

transformation.
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In constrast with higher dimensions, @ here has to be assumed to be
absolutely continuous. In higher dimensions it is quasi-conformal, so auto-

matically absolutely continuous.

The theorem says that the Teichmiiller space injects into abstract ergo-

dic theory.

Problem. Define the moduli of Riemann surfaces as invariants in ergodic

theory. (Perhaps with suitable restrictions on the systems considered).

Now, we use ergodic theory to prove that Ar is non-rectifiable.
. 2 . . . . .
(The other side of z + z +¢ in the dictionary). Start with a Fuchsian

group with limit set a geometric circle,

and deform this slightly, (by varying the parameters a,b,c,d} , destroying
that there is an invariant circle. By topological stability, the limitset Ap

of the new Fuchsian group is still a topological circle (see §8).

Theorem. (Bowen). Ap is either a geometric circle or it is non-rectifiable.

o ' ' .. 2 . .
Proof. The curve Ap divides S into two discs D+,D“ , and we have

f
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Riemann maps R _,R_

these conjugate T to Fuchsian groups I sT_ acting on the unit disc. If
they were the same (up to a reflexion), they could be fused together in I

Kleinian group and aA_ would be a geometric circle.

T

Now, suppose the curve is rectifiable, then the Riemann maps restricted

to the boundary are absolutely continuous (F.M. Riesz). Hence the map

QP oz Sl — S1 that conjugates IysT is absolutely continuous, sc it is

a M8bius transformation.

Here, we used ergodicity on the Mobius transformatiomswith respect to

. . L . . 2
pairs of points. In Jf s we used ergodicity on z ~> 2z .

Again, if we have a conformal measures:

Theorem (Bowen). The Hausdorff dimension D of AF' is 1 <D < 2, except

for the round circle.

The proof is essentially the same as for Jf . By deforming the group,

-
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we can actually cover the whole range between | and 2. (See Sullivan's

paper in celebration of Nico Kuiper's sixtieth birthday).

Observe that D is a function on the Teichmiiller space. Is it continuous,

analytic ?

In order to actually compute the Hausdorff dimension D of a given

. . 2 . .
limit set AP c S one can do as follows : define a function

tD:]H3 — R
by looking at the mass at infinity vieﬁed from variable point. That is,
take the usuél metric on the sphere at « ; givén a point x in IH3 , the
geodesics through x _i&entify the unit tangent sphere TICHB)X with the
sphére at « , This gives a metric on T}(H3)X, and the function  (x)
is defined to be the Hausdorff measure of the image in TICH3)X of the

limit set Ap Now, this function satisfies
Mp = D(D-2) W

and it is T-invariant, so ¢ 1is a (positive) eigenfunction 6f the Laplacian
on IE3/T with respect to the hyperbolic metric; This is enough to charac-
terize ¢ : it is the "smallest" possible eigenfunction, i.e. for the smallest
possible eigenvalue, so if we know the spectrum of A on 'HBIF we know the

Hausdorff dimension of the limit set of I .
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8. _Topologieal‘Stabilii:y'of Jf s .

We want to show that in the cases of Jf s Aps if we have the expansion
property, then a slight deformation of the coefficients preserves these sets
topologically; i.e. there is a homeomorphism commuting with the dynamics.

The idea is to use telescopes.

Lét X be a closed invariant set of an expanding system, and cover X
with balls having an éxpanding map on éach. Now take a point x € X and ap
£-disc about it, with ¢ smaller than the Lebesgué number of thé cover, Thus
the disc is in at least oné mémbér of the cover, use the corresponding map
to blow thedisc up; now.take thé image point of x , and a new g-disc about

it, and blow it up again, and so on.

So we get maps

with a definite amount of compression at each step. After infinitely many
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steps, one single point is determined.

For the Julia set case the "telescope™ is unique, because our cover
consists of one set. In the limit set case Ap we get a tree of possibili~-
ties depending on how the g-disc is related to the cover. This causes

difficulties in the proof below.

Now suppose that you deform your dynamical system. That is, you deform

the generating maps slightly. If we have a telescope

f x'} 32

: &~ ¢ . %5 L

‘III' " (:::) e (:::) - (:::) ﬁ;/‘ T
% % z

then the images of the deformed xis, will have approximately same image.

ol

If the deformation is of class C] ,’thén we will havé a definite amount
of compression, so we get a2 new télescope convérging to a nearby point x' .
This definés a corréspondéncé ¢ by x—p x' . In the Julia set case this
is a well definéd function, and wé will prove that (¢ 1is actually a homeo-
morphism onto its imagé. In the case of Ap we havé to prove first that

9 is well defined, i.e. that it does not depend on the choice of telescope.

Julia set case.

Let us assume that our expanding‘maps are expanding in a néighbourhood
of Jf . It is clear that if g is thé perturbed function, thén ¢f =g,
g0 @ commutes with thé dynamics, Now, ¢ is continuous because it is
determined arbitravily accurately by finite piéces of the telescope. Moreover,
@ is 1~} bécause it only movés pointé By less than £ , so if two points
weré idéntifiéé, thén by éxpanding a 1itt1é we would havé that @ 1is

identifying two points whose initial distance is more than £ .'[This argument

works for all "expansive" dynamical systems:]. By point set topology, this
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implies that ¢ is a homeomorphism onto its image.

Now look at a néighlsourhood N of Jf .. The Julia set is the only set
in N that rémains in N aftér all itérations of £ . Thé perturBed set
(P(Jf) will Be the sét in N that rémains theré after itérations of the
perturbed function g .- That is, (p(Jf) is a closéd invariant suﬁset of Jg .
From the fact that the invérsé orﬂit of any point in Jf is dense in Jf » One

deduces (P(Jf) = 'Ig .

Example. if £ is z — 22 , then g is z — zz+6‘ , and @ is a

homeomorphism between J £ and Jg .

Note that @ is not Lipschitz, since it does not preserve the Hausdorff

dimension, however @ 1is "nice" :

Property. ¢ is quasi-conformal, in the sense that it does not distort shapes

too much. (The argument will make this statement clear).

If S is a little circle intersecting J. , then (8 is not too

eccentric,

W (O~
HERE)

@(8) is contained in an annulus of bounded ratio of radii. Look at all circles
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within thé annu}us, of a fixéd'size.and.touching Jf ; they form a compact
set, so ¢ of thesé circles has bounded distortion; If you start with small
circlés, thén you can first éxpand them until théy have “full” sizé, and the
distortion is contreolled. by the distortion lemma of §5. What (&Vdoes to

small circles is controlled by what it does to large ones.

Now take a shape, if small first expand (distoption lemma)., So, we only
have to consider large shapes, and here we can apply the compactness princi-

ple. Thus, ¢ does not distort shapes too much.
Example, On the unit dise, consider the map

(r8) —s (r'% 8

this is quasi-conformal since it takes circles into ellipses of eccentricity

2 . However, the distortion of distance goes to o¢ mnear O ,

The Kleinian group case.

Here we must cope with problem that telescopes are not unique. However,

they are "essentially” unique (see below).
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Start with a Kleinian group " with the expanding property, so I 1is
finitely presented (see §6) Now .deform the generators slightly, keeplng
the relations flxed (A prlorl, more relatlous might occur, but we will see

that this does not happen if the deformation is sufficiently small).

 Theorem. If ' 1is a sufficiently small perturbation of T" , then there

exists a homeomorphism

PNy — A

commiting with the actions, and does not distort shapes too much.
ng . P

We construct @ by the telescoping technique. Note that if @ is well
defined, then it is also continuous and 1-1 (same proof as for Jf) , 80
éutomatically onto, bécause it commutes with the dynamics (this implies
that its image is a closed invariant subset of Apr s which is minimal).

Also, ¢ does not distort shapes too much (same arguments as for Jf).

Wé have to see that @ is well defined. For this it is enough to prove
that if you have two telesaopés converging to a point x , them you can go
as far as you please in either télescope,-and you can always commnect them
up by little discs and group actions, so that the resultiﬁg ¢ircuit is a

relation is the group (i.e. the idéntity).

QKQ*”OMQO
(DL T O

oN _

O

O X

~
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In fact, we do not need the "connection" to be telescoping, we only
need to get a commutative diagram, then the two constructions will agree

to all orders and @ will be well defined.

Actually, the following proof shows something stronger. It shows that
the limit set Ap can be constructed in abstract, just from the group T’
itself. The proof is really a construction in the group which has been

interpreted geometrically (ideas of Margulis, Gromov, etc.).

For example, if T is free in two generators, then we may let T act
2 . ... . .
on §° by reflections on four disjoint circles, and Ap 1is the set of end

points of the tree of fundamental domains, i.e. the infinite words in T .

. . . 2 .
Now, start with a telescope converging to a point x € Ap € 5 . This

gives a seguence of maps Bys 895 Bgsee- onto the g -disc about x ;

e 05 0O

e

e

[ SR s e

think of these group elements as words WI’WZ"" of shortest length in the

group {written in terms of the generators). Now choose a "centre" ¢ €iH3 .

and let the W;s act on ¢ .

Progosition. The sequence Wﬁ(c) converges to x conically (i.e. contained

in cylinder about 2 geodesic) and regularly distributed along a geodesic.
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¥ X X

L

\_ox ~
\MJJ X \&N,;ih x

'
no long gaps

Proof. We know that any hyperbolic motion is a rotation and translation

along a geodesic, Thus, near oo it is compression and rotationm.

Now obsérvé that there are two natural metrics on the set T'(c) , one
is the hypérbolic metric, coming from 1H3 , the other is thé word metric,
i.e. we define a metric |l on T Sy |#| = minimal length of ¥el”
written in térms of the genérator, and we translaté this metric over to

Tc) . (Note that this is a construction in T ) .

Propogition, These two metrics are equivalent, i.e. they are Lipschitz

N

H
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quasi-isometric, and both are left invariant.
Proof. We have to show that there are constants Ko’KI such that
K,lv] £ pleswe) <k, |7

for all ¥e T, whéré e, ) is the hyperﬁolic distance. For [ cocompact,
this follows hecausé we havé a tiling of 1i3 by a compact sét, In general,
we consider the convex hull N of Ap, then any géodésic joining ¢ with
a point in its § -orbit is contained iﬁ N (see Thurston's notes), and N

is tiléd by N m (fundamental domain), which is compact. (sée [Floyd], Inv.

Math. 57, 1980, p.213, for a detailed proof).

Therefora, the sequence Wn(c) goes towards x at a rather umiform

rate, i.e. each step in the sequence is given by a generator,

the length is ~n (the number of steps), and the hyperbolic distance grows
less than a constant times n and more than a constant times n . That is,

the sequence Wn(c) ferms a quasi-geodesic.

Lemma. Every quasi-geodesic is a bounded distance away from a unique geodesic.

See Thurston's notes (Ch. 5, §9) for the proof of this lemma.




...75..-

Now suppese you have another telescope converging te x , i.e. another
quasi-geodesic Wn(c)  going to' x , staying in a cylinder a regularly dis-

tributed along a geodesic,

/\ AT I6  aeps  sp 10 ’)/\ 3 ¥
\/ xb x® Ko T \\/

then infinitely often we have pairs of points wn(c) , ﬁ;(c) right next

to each other, i.e. h = W;I ﬁm is a short word. So, there is a subsequence

with W;l ﬁ; = h , This gives a relation in T (not telescoping, but this

: &
is irrelevant for uniqueness). ()%’C)&’(>k’()h
“Oe
O«
e

Now, given two quasi-geodesics, we say that they are equivalent if they

are a bounded distance apart. Then the limit set of T is

An = Equivalence classes of
re . . .
quasi-geodesics in T

This correspondence is given by the telescoping technique.

‘Remarks. 1) This shows that the topology of Ay is determined by I alome,

but not the geometry (e.g. Hausdorf dimension).

2) @ is unique. In fact, a hyperbolic element in | has a
compressing fixed point and an expanding fixed point. If ¢ is any homecmor-—
phism commuting with the dynamics, then & has to preservé fixed points.

But the orbits are dénsé in the limit set, so §5 is detérminéd on a deunse

set of Ap .

3) ©Note that the above construction of Ap  out of T works for

all H",

f
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In thé case of Ifg thére is thé.revérsé theory of constructing defor-
mations of T from deformations of the Riemann surfaces (Alfhors, étc.).
An important tool for this is thé'méasuraﬁle Riemann mapping théorém (6auss,
Morrey, Aklfors, Bérs; etc.); Thé following local théorém was provéd first

by Gauss in the real analytic case.

Local Theorem. Given any smooth metric gij in iR? , there exists a diffeo-

morphism of the plane taking g.. into the usual flat metric &£.. .
1] 1]

Sc now, if we have any oriented 2-manifold M , we can use the theorem
above to define a complex structure on M from a given metric. (The metric
, s s . . e ' . 2
defines a multiplication by i in each tangent space). Taking M= 5" ,

we then have that given any smooth metric 813 on 82 , there is a diffeo-

morphism of the sphere carrying g.

i3 into the usual metric J}j . Moreover,

we have the following theorem :

Theorem. (Measurable Riemann mapping). Glven any measurable metric in R
. 2 . . . . .
(or in 87) with a.e. bounded conformal distortion, there exists a quasi~—

conformal homeomorphism taking this metric into the usual one.

In other words, given any field of infinitesimal ellipses om ]R2 with
bounded eccentricity a.e., there exists a quasi~conformal map taking these

ellipses into infinitesimal circles.

) 7
5’? < o o O O [_(3 O OQ
N R R N N o C) (:}&d Cﬁ»}Jgkf
o o Lo O 0o OO ,jc O
N~ - Oy 0y e
{ o Q -~ 0~
o o o, ) o O “’(}Q)
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1f we fix 0,1 and 20, then the q.crmap is unique. So, if we identify
the field of ellipses with an Lflfunction by z — (e,8) where e 1is the
eccentricity and @ is the orientation of the main axis, this gives rise to

a correspondence

L”(Plane) > {QHaﬂ—conformal maps}

fixing 0,1,<0

The measurable Riemann mapping theorem can be deduced from the the smooth
version as follows. First, we note a compactness principle : If we have a
set of K-quasi-conformal homeomorphisms on & , fixing O0,1,¢0,they form a
compact family. Now, if we have a distortion _A¢, in the metric, we can approxi~

mate %, by a sequence

A s e g A,
of smooth /Mis ; where the convérgénce is pointwisg a.e, For each /ﬁg there
is a quasi-conformal map <Pi taking the distorted metric into the usual one.

By the compactness principle, the (pis converge to a quasi-conformal map
P . Since distortion of qPi converges pointwise to _"%, it follows

/ﬁB= distortion P (see Léhto et al,;"Quasi conformal mappings of the plane"

Springer).

‘Remark. Here we used that the distortion of the limit is the limit of the

distortions. For this, in general, we need that both exist.

Example. Take a square 12 and divide it into four small squares,
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Now, make a smooth twist in the interior of each little square, and map
. . 2 : . . :
everything back into I” by the identity. If we carry this construction to

o0, in the limit we get the identity map on I2 . but the distortion does

not converge to zero.
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9. Ahlfors finitenéss theorem,

There was an important result of Ahlfors in 1965 that aroused new interest
in Kleinian groups. The proof of this theorem that we give below is technically
different from that of Ahlfors, and it can be adapted to prove a similar

result in the Julia set case (§10).

Let T be a finitely generated Kleinian group and assume for simplicity
that T has no torsion. (If it does, then take a subgroup of finite index

with no torsion). The theorem has two statements,

Ahlfors theorem. I) If AF = S2 ,-or if A, has positive 2-dimensional

* ' . P -
Lebesgue measure( ), then there is no set A < AT of positive measure, with

AN y(A) = ¢ for all vy € T-e . (i.e. there is no A which wanders around}.

TI) The associated Riemann surface of T , SP = G(T}/T ,
is of finite type. That is, if & U {«} - An is the region of discontinuity

of T , then S, is obtained from a compact Riemann surface by removing

r

(at most) finitely many points.

*) Thls statement is hypothetlcal There is no known example of such a
Kleinian group. In fact, it is conjecture that no such Kleinian group

exists.
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This theorem is only for dimension 3. In fact, it is not even clear

what the 2nd statement should be in higher dimensions.
Problem. Is (I) true in " ?

Note that ('} can have <« many connected components, However, an

immediate consequence of the theorem is,

Corollary. The comnected components of Q(T) fall into finitely many

I'-orbits.

This follows because you can pass to the gquotient and have a Riemann

surface of finite type.

gives a compact Riemann surface

gives a punctured surface

Proof of theorem. Consider the space

Hom(P,PSLZ(E))

of representations of T in PSLZ(E) . This is clearly finite dimensional
since a homomorphism is defined by the image of the (finitely many) generators
of T and ?SLZ(E) has complex dimension 3. The idea of the proof is that

if (I) or (II) were false, this would imply that Hom(F,PSLZ(E)) is infinite
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—dimensional. This contradiction will come from the measurable Riemann

mapping theorem of §8.

Definition. A homeomorphigm ¢ of 32 " is compatiBle with T iff waﬂl
is again a Kleinian group.

Let Homeor be the set of all such homeomorphisms. By definition, we have

a map

'Homeor — Hom(P,PSLz(E))

If ®),0 € Homgo have the same image, then miwgl commutes with T ,

r
so it preserves the fixed points of I . Since orbits are dense in AT this
implies that mlwgl' ig the identity in A, . So the idea is that if the action

of T "did not cooperate", then we would have an infinite family in Homeo,,

consisting of maps that disagree on__Af .

To use the measurablé Riémann mapping theorem (MRMT) , we need a bounded
éccentricity field of ellipsés defined a.e., and-we just put circles where
this fiéld is not'défined. (This is fine because ciré¢les are invariant under
conformal maps, and we want to have I'-invariance). We call such a field a
bounded measurable conformal structure. We will say that such a field is
I'-invariant if the direction of the distortion is I'~invariant and if any

two points which are related by an element in T have the same eccentricity.

It is clear that a T©-invaraint bounded measurable conformal structure
2 . . . .
on S8° gives rise, via the MRMT , to a homeomorphism such that for
' ' -1 . . ‘ ' '
every Yy € T ,@y®  is a quasi-conformal map that preserves a.e. the stan-—

dard structure on S2 . Thus $'y¢r1 is Iin PSLZ(E) , L., PE HomeoP .
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Now, given a quasi-conformal homeéomorphism ¢ of S2 , we call
tpfqu < PSLZ(E) a quasi-conformal deformation of I . We then have a

surjective map
quasi-conformal ., | quasi-conformal
deformations of T deformations of Q(I)/T
(In fact, this map is also 1-1 , but we do not need this here).

Proof of (I). Suppose there is an A c_AT of positive measure that wanders.
Any L —-function, A + T , gives a field of elli?ses on A ,and s0 on thé
translates of A by elements in T (by specifying r—invafiance); elsewhere,
we take the field to be circles. This yields an «-dimensional family of
r-invariant bounded measurable conformal structures, which gives an
w-dimensional family in Homeor , and they disagreé CLI (because we are

specifying the derivative by the bounded measurable conformal structure).

Proof of II. Suppose fixst that there is a disc A which is a connected

component of A(r) , and suppose A wanders. Note that ﬁhe Banach space
{q.c. homeomorphisms of Al}/agreement on dA

is an o-dimensional manifold. (It looks like SLZ(EO % o~dimensional space).
For example, it contains all diffeomorphisms on 23A eisl with a fixed bound

in the derivative.

Now, as in the proof of (I) above, consider all fields of ellipses on A
with bounded eccentricity, and move them around by elements in T . We then
have an w—family of homeomorphisms on A defining, as above, an infinite

family in Homeor , and they disagree on AF . (Since’ BA¢:AF) .
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Similarly, the disc argument shows that the Riemann surface SF = o(I)}/r

has no "holes", these correspond to funnels in S going to = .

In other words, if we restrict to a component U of Q(T') , then the stabi-
lizer of U must have dense orbits in 98U . [Thus, if U is a disc, then

the Fuchsian group corresponding to the Riemamn surface is of the lst kind].

gives a hole

.

_f_fjf><::, gives a puncture

To finish (modulo the technicality that the boundaries of domains are
‘not always Jordan curves), we must count the number of parameters in the

conformal structure on such a (punctured) Riemann surface ST .

Slice off cusps since
these circles are not
geodesics.

'\ | 2

Cut along geodesics.

i
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Remark (method of Ahlfors). The number of punctures iga bounded by 3 . N,

where' N*=numbér of generators. (see Ahlfors paper iﬁ"Tulanée Congress or

Sullivan "Finiteness of cusps Acta Math. 1982).

Now, cut the Riemann surface aleng geodesics, in such a way that the
basic units have three holes (i.e. they are pantalones). Then, the number
of pantalones is bounded by the number of gemerators. This follows because

a pantalon is the same as having a right angle hexagon,

Therefore, the Riemann surfaces ST has finite genus, bounded by the

number of generators,

Remarks. It is clear that we are proving something quantitative, i.e. bounds
in the number of cusps, genus, etc., in terms of the number of parameters.

In §10 , we will prove similar things for the Julia set Je -

i
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If f is a complex analytic self-mapping of the Riemann sphere, Fatou
(1918) defined the domain (of equicontinuity) where points have neighborhoods

so that the restrictions of f , fof , foefof,... form an equicontinucus

© fFamily. Julia (1918) in effect defined the complement Jf of the domain

of equicontinuity Fo as the closure of the expanding periodic points.

In this paper, we add certain techniques to the general study in the memoires
of Fatou and Julia, using the anology with the modern study of discrete groups

of hyperbolic motions.

A component § of the domain of equicontinuity is called cyclic (of order

k) if for scme k > O fkﬂ =Q .

Theorem 1. Every component of the domain of equicontinuity has an image under

n e e . PR
f  , some n > 0 , which is cyelic. (There are no wandering components).

The method of proof combines ideas of orbit equivalence (to study the

equivalence relations  {x£sy' if I n > 0 so that f?x = fny} and

{x~y if d n,m > 0 so that 'fnxl=fmj}: and hyperbolic geometry (analytic

seif maps of general Riemann surfaces are distance decreasing for the'hyper—
bolic metric, and discrete subgroups of PSL(2,R) can be characterized by

nature of elliptic elements) via the Riémann mapping theorem for measurable

Riemannian metrics om U .

Theorem 2., There are only finitely many cycles of domains. There are Fatou

domains which contain non-expanding periodic points either in the interior
or on the frontier to which all points of the domain tend. And there are

Siegel-Arnold-Herman domains, discs or annuli where the kth power of £
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is conjugate to an irrationalrotation. There are no others).

)

Theorem 3. There is a cyclic covering of the domain of equicontipuity ° so
that the quotient by the large orbits of f (the equivalence classes of

n m . . '
x~y =+ £ x-=f y some mn,m) is a Riemann surface, Sf .

Theorem 4. All the conformal structures on Sf compatible with the cyclic
cover appear for rational maps quasi-uniformally homeomorphic to £ . Thus,
we have a finiteness theorem for Sf (the analogue of the Ahlfors finiteness

theorem for finitely generated Kleinian groups).

Theorem 5. There is no measurable set A < Jf in the Julia set which wanders
(A,fA,sz,... are all disjoint) and which has positive Lebesgue 2-dimensional

measure.,

A) Hyperbelic preliminaries.

1} An analytic transformation of an open Riemann surface R covered
by the disc, is either an isometry or strictly distance decreasing for the
unique conformally equivalent complete metric of curvature -1 . By easy

arguments one can then show

a) If £ has a fixed point x then f .is either a rotation of a disc
or for all ¥y fny +%x as n-~>o , If f has no fixed point then for all

n
v £y +x as n+e
A

b)) If R is a domain on the sphere and f extends continuously to 3R
where it has only finitely many points fixed (at most) , then there is a unique
fixed point p in R U 3R to which all orbits of f tend (fny—>p for

v in R n=++e«) , This uses a) and the fact the hyperbolic metric and the

)

‘Mine the fixad noint if anv and all its inverse imarges under f.... .
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spherical metricare related by factor tending to +« at 9R).

2) * (Siegel). A non-elementary subgroup of PSL(2,R) is discrete iff it
contains ne irrational elliptic,
B) The proofs and the construction of the Riemann surface Sf .

1) (Wandering domains). If 91_1; QZ £ ... are all disjoint, the

relations x~y and xmy are identical in Q] . We may discard finitely

many to have no branched points.

a) If g, is a disc, the £ are all injective and Ql/mﬁ=gllw = Q

1

is a Riemann surface with ideal boundary in Julia set.

b) If @, is an annulus one can show that f is eventually injective

1

(see Appendix (wandering annulus)}), so Rlﬁv is a Riemann surface with ideal

boundary in the Julia set.

¢) If @, has higher connectivity then 2 £ 2, i ... determines

1
an increasing union of discrete subgroups of PSL{2,R) whose union is discrete

by A)2). Thus, either the £ are eventually injective and we have 91/~ is

a Riemann surface with boundary in the Julia set or QI/N is a Riemann sur-

face with a non-finitely generated fundamental group.

Proof of theorem 1. In all the cases a) b) ¢), we use the measurable

Riemann mapping theorem to construct (appendix-infinite parameters) an infinite

dimension space of rational maps homeomorphic to £ . (In a), b}, and the
first part of c), we use the fact that small conjugacies are unique on the
Julia set (Appendix - conjugacy on Julia set). We also use the theory of prime
ends to relaté the frontier of a domain and the Eoundary of the standard disc).

{Appendix-infinite parameters).




- 88 -

2) (Invariant domains): Suppose f : Q » Q . If there is a fixed point

in Q@ remove it and its . full orbit from & (keep the name ) . (This is
a discrete set because the inverse orbit - Julia set). We say that (in a

cyclic cover), the full orbit of any critical .point is now discrete (Appendix

(critical point}.

Construct a function m : Q +'{1,2,3,..}} satisfying m(f(x)) = (local
degree of f) (x)-m(x) which is identically 1 outside the full orbits of
critical points. Then (Q,m) is a Riemann surface with branch points and

{(Q,m) j; (@,m) is a geometric covering.

Then {(Q,m) L (2,m) L (G,m) ... determines an incréasing sequence
of discrete groups whose union is either elementary or discrete by A2).
Leaving the elementary cases aside, we have then a branched Riemann surface
(in the cyclic cover) representing the =~ equivalence classes on which f
becomes an analytic isomorphism. Now £. acts discontinuously here and we
can form a further quotient which is  a Riemann surface and classifies the

~ equivalence classes (in the cyclic cover).

This analysis proves theorem 3. Theorem 4 uses. this and the measurable
Riemann mapping theorem. Theorem 5 uses the uniqueness of small conjugacies
on the Julia set, Appendix (conjugacies on the Julia set) and the measurable

Riemann mapping theorem. Theorem 2 follows from A) 1).
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Appendix. (Wandering Annuli).

Case ii). If @, is an annulus, we need to rule our am infinite amount of
winding in the sequence §I, +~Qz + ... . If this 1is such, the modul s of

ﬂi + ® , Since disjointness implies érea(ﬂi) + 0 , conformal geometry

implies the diameter of one componeunt of agi + 0 ), Since f has abounded

Identity distortion and is an open mapping, this‘impliés eventually the small

side of Qi is mapped to that of ﬂi+1 .

However, each time there is winding Qo > Ry each complementary
disc of Qi contains a branch point. This forces resting in a subsequence
of Qi . Then a high power of f takes one annulus into its swall side a

piece of the Julia set is trapped.

. Trapped piece of Jf

This completes the proof of Proposition 2.

Appendix., (Uniqueness of small conjugacy on Julia Set).

We take advantage of non-trivial topological dynamics on the Julia set

in the following proposition.

Proposition 1. A homeomorphism ¢ of the Riemann sphere commuting with a

rational mep f must be of finite order on the Julia set of £ .

*)

“See last secticn.
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259253 We take a powér of @ so that it fixes a periodic point p in J.
of lowest period and its Ist iﬁvérse image undér f . We supposé also there
is no critical peoint in thé backwards orbit of p . We construct a contrac-
tible infinite tréérover the backwards orbit of p avoiding all critical
points. ﬁe have d local branches of f'_1 commuting with thé power of
near p . These equations hold by analytic continuation along the trée and
we deduce this power of © fixés the backward orbit of p which is dense

in Jf . Q.E.D.

Remark. For the subsequent arguemment, we could get by with the more immediate

fact that the homeomorphismsof Je commuting with f from a Cantor group.

A corollary of the proposition is that such homeomorphisms close to the

identity must be the identity on J. .

Appendix. (Infinite parameters).

Proof of theorem ] special case. Suppose some component £ 1is a simply

*)

connected Jordan domain which wanders. Then §/~ is a disc . There is amn

infinite dimensional (linear) space of quasi-conformal homeomorphisms of

*)

a disc modulo those which are the identity on the boundary* . Thus taking

into account all measurable conformal structures on Q/~ leads to an infinite

Aok )

dimensional (linear) space of quasi-conformal conjugations @ which
are different on the frontier of Q < Jf . All these near (zero) lead to

different rational map @:EQ”I by the propesition. Q.E.D.

We formulate in theorem 4 what this type of argument proves.

*) Actually a bounded open set of an infinite dimension linear space.

*k) We suppose here f is injective on %9 for n > O . Then no points
of Q. are identified by -~ .
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Theorem 4. It cannot happen that a Borel part of Qg/~ be a Riemann surface

with an ideal boundary (i.e. defined by a Fuchsian group T whose limit set

is not all of Sl) corresponding to a part of the Julia set.

Proof. We proceed as in the case of the wandering disc to get infinitely

many parameters. There is one technical point . There is a topolegical dif~

ference between

frontier

the ideal boundary (mod T') in the universal cover of ﬂf/~ and the frontier.

This is surmounted using prime ends.

Namely, one knows there is a totally disconnected set of prime ends
(or ideal boundary points) associated to a prime peint in the frontier.
Thus a deformation of the identity through quasi-conformal homeomorphisms

of § which are the identity in the frontier lift to maps of the disc which

become the identity on the boundary of the disc.

Appendix. (Critical point class is discrete).

If © has a fixed‘point, we remove 1t and its full orbit. This is 2
discrete set, If the fixed point was also a critical point, we pass to the

logarithmic cover (around it). In all cases, we have a map on a domain in
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the plane and all points tend toward a frontier point p (near which

(say I) the map is 1-1).

Thus, for any peint x theré is an n so that fm(x) is in the injec-—
tive region I for m £ n . Thére is a disc D around £ (x) so that D
is disjoint from U fiD since fm(x) > p ;'Thé disc must Be_pairwise

I T3 B I . .
disjoint because i;mlle n £y # ¢ £ 3 (intersection) S D N £f'p  which
is various by construction. Now, it is easy to comstruct a disc about x
so that all the forward images are pairwise disjoint. In particular, there
ié a neighborhood of any point x which intersects any full orbit in only

finitely many points (because there are only finitely many branch points

and because of the cyclic cover f is eventually injective om £'D).

Thus, any full orBit is discrete., In particular the full orbit of a

critical point is discrete.




