ON THE ERGODIC THEORY AT INFINITY OF AN ARBITRARY
DISCRETE GROUP OF HYPERBOLIC MOTIONS

Dennis Sullivan

We will describe an ergodicity phenomenon for the action of an
arbitrary discrete group of hyperbolic isometries on the tangent spaces of
the sphere at . One application (Section VII) is a maximal extension of
Mostow’s rigidity theorem ‘‘rough isometry =—> isometry’’ from finite
volume hyperbolic manifolds to manifolds whose volume grows slower than
that of hyperbolic space. Another application (Section V) allows a com-
plete description of the finitely generated Kleinian groups in one quasi-
conformal conjugacy class in terms of a nice complex manifold Teichmiller
space. Along the way to the main theorem we characterize ergodicity of
the action of I" on geodesics in terms of the divergence of a series of
solid angles (Sections II, III). We also characterize the conservative part
of the action on the sphere at « in terms of the horospherical limit set
(Section IV). (See [Su] for extensions to Hausdorff measure.)

To describe the situation in more detail recall that geometry in hyper-
bolic (n+l)-space tends as we approach o« to conformal geometry on the
n-sphere at . Thus a discrete group I' of hyperbolic isometries is
equivalent to a discrete group of conformal transformations of S". The
dynamics of these actions is quite different. In hyperbolic space T' is

essentially permuting convex fundamental domains freely. While on the
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466 DENNIS SULLIVAN

sphere at o one finds the cluster set of an orbit of I" in hyperbolic
space on which one knows [' acts minimally (each point has a dense
orbit) and an open complement where " acts discontinuously.

We seek the dynamical picture of 1" in the context of Lebesgue mea-
sure or ergodic theory. Thus we heretofore neglect sets on the n-sphere
of measure zero. In that case any group action whatsoever breaks into a
dissipative piece and a conservative piece. The dissipative piece is the
disjoint union of measurable sets permuted by the group. The consetvative
(or recurrent) piece has the property that for any set A of positive mea-
sure YA N A has positive measure for infinitely many group elements. We
will find this partition for discrete conformal groups and make use of it.

Now in terms of any measure of finite mass on S9, say the solid
angle measure as viewed from a point inside hyperbolic space, we can
divide the points of S™ into those for which the sum over the group of
area distortions is finite and those for which it is infinite. It follows as
in Poincare’s famous recurrence theorem that this is the partition into the
dissipative and conservative parts. This statement is general and makes
no use of our assumption that " is a discrete group of conformal trans-
formations. These hypotheses imply more. Namely,

i) the area distortions are unbounded at almost all conservative
points (Section IV),

ii) definite variation of the logarithm of area distortion takes place
for appropriate individual group elements on small annuli of definite shape
anywhere we look in the conservative part (Sections I, III).

The second property of area distortions is the key to the main result.
Define a measurable conformal structure on S™ to be a measurable field
of similarity structures on the tangent spaces. In Section VII we prove the

following theorem. (The case n =2 is treated completely in Section I.)

THEOREM. Any measurable conformal structure on S which is kept
a.e. invariant by a discrete group of conformal transformations of S%
must agree a.e. with the standard conformal structure outside the dissi-

pative part of the action.
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The first property of area distortions above allows us to recognize the
conservative part in geometric terms. For example, the horospherical
limit set, by definition those points of S™ for which an orbit in hyperbolic
space enters every horosphere (based at the point, see figure a) has full
measure in the conservative part. Or the dissipative part is the union of
the parts of the fundamental domains in hyperbolic space on the sphere at
 (Section IV). Thus if a fundamental domain has zero area at = (figure

b) the action is conservative, the measurable invariant conformal structure

theorem mentioned above (Section VII).

is unique and we have the needed step for the generalization of Mostow’s
a b
.%4; .
c d

The argument of Section II uses random walks as in [G] and yields a

new geometric characterization of the ergodicity of the geodesic flow in
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terms of infinite solid angle of the orbit in hyperbolic space (Section II).
We recover E. Hopf’s (1939) characterization in terms of conical approach
(Section III) (figures c and d).

Finally, we turn the discussion to quasi-conformal homeomorphisms.
First not only does hyperbolic geometry become conformal geometry at
but quasi-(hyperbolic geometry) becomes quasi-conformal geometry on the
sphere at oo, (This p_henomenon plus the ergodicity on tangent directions
summarizes Mostow’s theorem.)

Second, in dimension 2 quasi-conformal homeomorphisms of s? are
parametrized [AB] by measurable conformal structures defined a.e. on $2 ,
and which are a bounded distance away from the standard structure. (Remi-
niscent of the parametrization of Lipschitz homeomorphisms of §! by
measures with a bounded density.)

Thus if [' is a countable group of uniformly gquasi-conformal homeo-
morphisms of S% and v is a bounded measurable conformal structure in-
variant by I'" one can construct a quasi-conformal conjugacy of I" to a
group of conformal transformations. Furthermore the different ‘‘conformal
models’’ of I" are parametrized by such invariant v ([AB], [B]).

Now it is remarkable but elementary that one such invariant measurable
conformal structure v always exists for any quasi-conformal group I'.
(One merely forms fiberwise the barycenter of the convex hull of the trans-
forms by I' of the standard structure. And this works in any dimension.)
So in dimension 2, I" always has at least one conformal realization or

model using the measurable Riemann mapping theorem [AB].

COROLLARY . i) A discrete group I of uniformly quasi-conformal
homeomorphisms of S? has an invariant measurable conformal structure
and this structure is unique on the conservative part.

ii) If T' is finitely generated, the dissipative part agrees with the
topological domain of discontinuity.

iii) 4 general T" always has conformal models and these are parame-
trized by varying the invariant measurable conformal structure on the

dissipative part.
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iv) In the finitely generated case, again, this parametrization is by a

Teichmiiller space associated to a Riemann surface of finite type (Section V).

In Section VI we discuss further dynamical properties of finitely gen-
erated discrete groups of conformal transformations on S%. The first part
of Section I and Sections III, IV, VII also work for S™ n >1 as we explain
somewhat in Section VII. The proof of the main theorem for n =2 is
actually completed in the first section.

We record our debt of motivation to Ahlfors’ papers ‘‘Remarks on the
limit point set of a finitely generated Kleinian groups,’’ Annals of Math.
Studies 66, and especially ‘‘Some Remarks on Kleinian Groups’’ from the
unpublished Tulane proceedings on Kleinian groups. In the latter paper
Ahlfors establishes the topological limit set is conservative for finitely
generated Kleinian groups (with a domain of discontinuity). In his well-
known finiteness paper (1965) he establishes the (domain of discontinuity)/T"
is a Riemann surface of finite type.

For me these two theorems of Ahlfors are almost the axioms for a good
theory of Kleinian groups. Together they impose a tight structure on the
situation.

Finally, we dedicate this paper to Lucy Garnett who supplied the
random walk idea for Theorem II, pointed out a non-obvious point about
horocycle limit points, Section IV, and generally sustained the work in

this paper.

Section I. The variation of area distortion lemma and groups with finite
solid angle,! 31/A% <
r
THEOREM L. For groups I' of finite solid anglel in H® there is on the
conservative part of the action of T" on $% no measurable tangent line

field invariant a.e. by 1",

1'I‘his finite solid angle condition can be dropped in two ways, see addendum
to Section I or Section II.
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Proof. Any conformal transformation y of the sphere is the composition
of a rotation followed by a hyperbolic transformation with antipodal fixed
points. Thus the linear distortion dy of the spherical metric varies in an
interval [1/A,A] with A > 1. The extreme values of the distortion are
taken at antipodal points. The intermediate values are taken on concentric
circles interpolating between these points. We need a uniform picture of
the distortion for A large.

Let r be the natural radial parameter for these circles with r =0
corresponding to the value of distortion A. For any given k> 1 and
A2 >k let Dy be the unique continuous function on the sphere with
values 1/A 2 on the circles of radius r with k/A<r< 1/k and which

is constant otherwise. Thus

T constant expansion
E non-linear
/A2 TR
N contraction

\

constant

MK on {0<r<k/Al =E@)
D, =<1/Ar* on {k/A<t<1/k}=N@)
L2 /A on {l/k<r<1} =C@).

LEMMA 1. The ratio of the actual distortion dy to the approximation Dy
is bounded in terms of k for all conformal transformations y with
A(y) > k®. Moreover on the nonlinear part N(y) this ratio is arbitrarily

close to 1 for k sufficiently large.

Proof. i) We compute for the affine transformation x > Ax on the line the
distortion of the measure coming via stereographic projection from the uni-

form measure on the circle of diameter 1. This transposed measure is
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4% Thus the distortion of x »Ax is d(x) = ML"X—) , which is mono-
1+x2 1+(Ax)?

tone decreasing in x.

ii) For 0<x<k-1/A, d(x) lies in [MA_) /\]C?\[l/hkz 1].
1+k2

For 1/k<x < e, d(x) lies in [l/h M:I C 1/Al1, 1+K2].
1+a2/12

For k/A<x<1/k, d(x)-Ax? lies in

Q?  AQIAD M | 1 e
1+(wx)? (Ax)? 141/

iii) Now we reinterpret these inequalities replacing the variable x on

the line by the variable r on the circle. The assertions for the parts
C(y) and E(y) follow. For N(¥) note that for k large stereographic

projection is almost an isometry between 0<r<1/k and 0< x <1/k.

COROLLARY 2. Area E(y)< 1/52+ ap, area yC(y)< 1/A2 ray , diameter
N(»)<2/k-cy, diameter yN(y)<2/k “Cy, Where aj is a constant de-

pending only on k and Cy 'is afbitrarily close to 1 for k large.

Proof. The first three follow from Lemma 1 and the definitions. The last
follows because the circles of radius r filling up N(y) map (by confor-
mality) to circles of radius r-1/Ar? (times a factor near 1 for k large).
Since k/A <r<1/k in N(y) these radii lie in the interval [k/A, 1/k]

(times i

REMARK. If ““ ~ " denotes an equality up to a factor (or discrepancy)

which is near 1 (or negligible) when k is chosen large, then
y(NG) ~ NG1),

YEG) ~ CoY) and yCOH») ~ EG D)

although we don’t use these facts explicitly.
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Now suppose R is a recurrent (conservative) set on S2 for the dis-
crete group I' of conformal transformations. Thus X CR of positive
measure implies X N yX has positive measure for infinitely many y.

Suppose also that ' has “finite solid angle'’: 21/)\2 < oo. The modulus
Ir

of a concentric annulus on the sphere is by definition the logarithm of the

ratio of radii.

LEMMA 3. Let X CR of positive measure and two positive consiants &
and A be given. Then there is a point x, an element y and a concen-
tric annulus A so that,

i) xeX, xeA, and y(x)eX.

ii) A and y(A) have diameter <.

iii) A and y(A) have modulus as close as we like to A.

iv) The distortion of y is constant on the concentric circles of A
and the log of the distortion varies in A by an amount as close as we

like to 2A.

Proof. i) Fix k so large that Z/k-ck <8 (see Lemma 1).
ii) Remove finitely many elements from the group to make
log A\/k? > A for the rest (possible since I' is discrete).
iii) Remove finitely many elements so the sum of area (E{(y)UyC(y})

for the rest is less than area X (possible since 31/A% < « using Lemma

r
1).2 Remove this infinite union from X to obtain X~ which still has
positive measure,

iv) Find a y outside the finite sets above so that y_IX'ﬂ X’ has
positive measure (using recurrence of the action). If x ¢ )TIX’ NX’ by
construction x FE(y) and y(x) FyC(y). Thus x e N@) .2

v) On N(y) the distortion dy varies between k%/A and A/k%

(Lemma 1), so dy(x) is somewhere in this interval. On the log scale we

2See the addendum to Section I for an alternative to this step.
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can fit an interval of length 2A about the value log dy(x), and stay in
log dyN(y), because log MK > A by ii) above. Let such an interval
define the annulus A in question, so that x ¢ A CTN(y) and log (dy)
varies through ~2A in A, by construction.

vi) Since A CN(y), diameter A and diameter yA <& by i) and
Corollary 2.

vii) Since dy ~ 1/At% on N(y) and thus on A, wvariation
log dy ~2A on A implies modulus A ~ A (log r22/r12=2A iff
log rz/r1=A). Similarly yA has radii drle2A and dr, (for some d)
because we know dy on A. Thus the modulus of yA is

rlezA
dr

log ~ 2A - log r1/r2 ~ A

2
Now we pass from the sphere to the plane.

LEMMA 4. If e is an absolutely continuous isomorphism of the plane

(relative to Lebesgue measure) carrying B to B’, thena subset A CB
with a proportion n of area is carried to a subset e(A) = A’CB’ of pro-
portion at least n’ of area where 7"=1-d(1-n) and d is the maximum

ratio of area distortion at various points of B,

Proof. By an affine scaling we can assume area B =1, the low value of
area distortion is 1, and the high value is d. The worst case occurs
when 1 occurs onall of A and d occurs on all of the complement of A .
Then,

n" = area A’/area B” = n/n+d(l-n) > 1-d(1-9).
LEMMA 5. Let X be a set in the plane of positive measure and let 7

and A be given positive numbers. Consider sectorial boxes of shape A,
G, Nizg<a g eArO, By <8< By + AL,

Then there is a 6 > 0 and a subset X' of X of positive measure so that
each box of shape A and diameter < 8 containing a point of X’ also

contains at least the proportion n of X.
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Proof. The class of sectorial boxes of shape A are generated by simi-
larity transformations from one of them. Thus Lebesgue’s theorem con-
cerning density points is true using these instead of round disks. (Sée
E. Stein ‘‘Singular Integrals ...”” pp. 11, 12.)

So for almost all x there is a largest positive 5}{ such that the pro-
portion of X in boxes containing x of diameter - 5x is at least 7.
But then x - Sx is a positive measurable function which has to be greater

than some & >0 onaset X'CX of positive measure. This proves the

lemma.

Now consider a conformal transformation of the plane

y:z-»?é—jz ad-bc =1, c#0

and sectorial boxes Bp of shape A < 7/2 centered at -d/c.

LEMMA 6. If AC Ba is any subset with the proportion 71 of area, then

the variation on A of the real and imaginary parts of log v’z is at least

A1 -e2B(1-n)).

Proof. i) On a unit square the function (x,y) -»x has variation at least
n’ on any subset whose proportion of area is at least 7.

ii) Introduce the variable e'g =z +d/c so that the variation of

log v’z = log 1 o= -2 log (z+d/c) + constant on A C By is just the
(cz+d)

variation of —2& on a corresponding subset A’ of a square in the &-plane

of side A.

exp

-2 ¢ + constant
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iii) The ratio of area distortion of exp at different points of the
square is at most BZA . By Lemma 4 the proportion of A’=exp (A) in
the square is at least 7= l—e?‘A(l—n).

iv) Applying i) the result follows.

Now we are ready to prove the nonexistence of invariant measurable
line fields for groups of finite solid angle.

i) Choose a small number, #/2 > A > 0 and a set of positive measure
X in the plane where the hypothetical invariant line field varies only in
an interval of inclinations of length %A .

ii) Choose 0< 7 <1 so that lfezA(l—nJrezA(lfT})) 3 T

iii) Find X°C X of positive measure satisfying a 8°> 0 uniform
density relative to X, 7, and sectorial boxes of shape A (as in Lemma 5).

iv) Choose a point of density of X’ and stereographically project the
action of I on the plane to a sphere resting on this point.

v) Let Y denote the intersection of X’ with a ball B’ about this
point sufficiently small so that the distortion of stereographic projection
on 2B is as close to 1 as we need for the following. Let & = min (8",
radius B7).

vi) Relative to 8,A and Y (put Y on the sphere) find the element
y and the concentric annulus A satisfying Lemma 3 (and put A back on
the plane). In A choose a sectorial box B of shape ~A containing x
and centered at the pole of y (possible because we know the variation of
log dy on A).

vii) Since the diameters of B” and yB’ are less than 8° (even &)
they each contain the proportion 7 (at least) of X. xeBCA,
yxeyB'CA, and x and yx belongto X7.)

24 the pro-

Since the ratio of area distortion of B’-» B’ is at most e
portion of y in B’ sothat yy ¢ X is at least 7= lkezA(l—n) by
Lemma 4 again. Thus the proportion of y ¢ B” sothat y ¢X and yy ¢ X
is at least 1-[(1-m+ -] =n+7"-1=7".

viii) By Lemma 6 the variation of the argument of y’(z) on this sub-

set BNX Ny !X of B is at least 2A{l—e2A(1—n”)). This variation
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is greater than ~ A by ii) which contradicts the definition of X i) and
the invariance of the line field under y. This proves the Theorem I for

discrete groups of finite solid angle, T1/22 < 0,
|

Addendum

After writing this paper I learned from Klaus Schmidt’s notes ‘“Cocycles
of ergodic transformation groups’’ Warwick 1976 §4, that for any conserva-
tive group action, any set A of positive measure, and any &> 0 there
are infinitely many group elements y so that ix sAﬂy_lA and the area
distortion of ¥ at x is eclose to 1} has positive measure. For

Kleinian groups such x belong to Ny by the formula above for Dy.

Section I1. Ergodicity of the geodesic flow and groups with infinite solid
angle, £1/A% = o
I

THEOREM II. If S1/A% = = for a discrete group of conformal transforma-
i
tions on S2 the action of ' on S% x §% is ergodic. (P(x,y) = H(yx,yy)

forall y el' and ¢ measurable implies ¢ is constant a.e.)1

COROLLARY.? For groups I of infinite solid angle in H3 there is on

S? no measurable tangent line field invariant by ' a.e.

Proof. If there were such, for almost all pairs of points on S?" we would
have a measurable angle difference function (measured along connecting
geodesic). By ergodicity one deduces this angle is constant a.e. The
line field is seen to be the restriction of a continuous line field invariant

by I'. This is absurd.

Proof of Theorem. First we gather some facts from hyperbolic geometry.

What we need follows from the complete symmetry of hyperbolic space

! This theorem holds for S® using $1/A%, n>1, and the proof is the same.

2This proof is independent of Section I and is akin to Mostow’s original dis-
cussion (see point iii), Section VII).
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together with the positive lower bound on the convexity of spheres of
arbitrarily large radius. Let 6(x,y) be the reciprocal of the area of the
sphere passing through y with center x. So 6(x,y) is the (density of )

solid angle of one point as viewed from the other.

LEMMA 1. $1/A\2 = < if and only if the total solid angle of an orbit,
r

2 6(x,yy), viewed from any point X not on the orbit is infinite.

r

Proof. Consider a homothety y in the upper half space model with fixed
point at zero and a very small linear derivative 1/A. If x and yo are
on the z axis above zero, then clearly 6(x,y,) and O(x, vy ) are in the
approximate ratio 1/A%. Thus in general the order of the term 6(x, yy)
for A(y) large and x fixed is in a bounded ratio to 1/A%. This proves

the lemma.

EXTRA REMARK. If g (y) denotes the Green’s function of hyperbolic
space with pole at x (g, (v) is positive, harmonic, tending to zero at oo,

and symmetric about x), there is the exact formula
y
g, (v) = f O(x,y)dy’

obtained by integrating in along a radius from . Since 6(x,y) is ex-
ponentially decreasing in the distance (x,y), the integral is approximate-
ly the upper limit so g (v) ~ 6(x,y), at large distances.

Thus in case hyperbolic space mod I" is a manifold V one sees the

condition ¥ 1/A% < w is equivalent to V has a finite Green’s function

r
8y (¥)= X g,(vy). Or in other words 3 1/A%2 = » if and only if random
yel r

motion on V is recurrent. This idea is the point of the ensuing discrete

time proof.
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Now to each point p in hyperbolic space associate the Poisson

measure p_ on the sphere S? at . If ACS? then up(A) is the

P
solid angle of A viewed from p.

LEMMA 2. The measure by, is the spherical average of the measure thy

where q ranges over a sphere with center p.

Proof. Each of the two measures on the sphere at « is invariant by the

full rotation group about p. Thus they are equal.

We can fill in bounded measurable functions ¢ on the sphere at o to

bounded harmonic functions on hyperbolic space. Namely define

hip) = I@s d“p = < ¢, p'.p> ,  ““Poisson formula’’ .

LEMMA 3. ¢ non-constant a.e. implies h non-constant.

Proof. Take density points x and y in S? of sets where ¢ has values
in disjoint intervals. For points p in hyperbolic space near x, Ky sees
mostly the values in the interval associated, so h(p) lies nearly in this
interval. Similarly for points q near y, h(g) nearly lies in the disjoint

interval.

Let P denote the (averaging) operator on functions and measures on
hyperbolic space f Pf and p+ puP, where Pf(x) is the average of f
over a ball of radius 7 centered at x, B(x,n) and if Sx denotes the
dirac mass at x, SXP is the uniform measure on B(x,7n) of total mass 1.
Note <puP,f> =<y, Pf> when both make sense.

By Lemma 2 the functions h constructed by the Poisson formula are

P-harmonic, namely Ph=h. Also P cleatly commutes with isometries.

N
LEMMA 4. The density at the point y of the measure 3 SXPn is for
) -1
N large at least a fixed constant times 0(x,y). "
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Proof. It is clear that the sequence of measures BXPH n=0,1,2, -
begins at x, spreads out symmetrically by steps of length at most 7
and converges to e in the sense that almost all the mass is eventually
outside any sphere centered at x. The last part follows since a ball of
radius 7 centered on a sphere which is itself centered at x has a pro-
portion of area definitely more than 1/2 outside the sphere.

Thus all the mass of BXPn as n - o passes through any spherical
ghell of thickness 7 centered at x. Since the density function of the
measure ;1 BXPn is decreasing, only depends on the radial coordinate

n=
from %, and puts at least mass 1 in each shell of width u whose
volume is proportional to 1/6(x,y) when y lies in the shell, the result
follows. Q.E.D.

Now form the space T from the product of hyperbolic space with the
sphere at o by dividing by the diagonal action of I', T = HxS%/mod I'.
Provide T with an averaging operator P on measures and functions
which is defined using P in each H-level. Provide T with a natural
smooth measure dm using the family of Poisson measures pp on the
factors (psz) and the natural measure on H to obtaina I' invariant
volume element dm” on H x S%. Let o also denote the image measure
resting on a sphere of T. Now we come to the key lemma.

N

LEMMA 5. The density of the measure 3 gLPPﬂ relative to dm con-
n=1

verges to +oo at almost all points of T as N - oo,

N
Proof. We compute the density of v = = up(Pxid)n in HxS? relative
1

=
to dm and add these densities up along an orbit of I': (y,s), (yy, ys), =+
Let g (v) denote the density of the Green’s measure 5x+8XP+BXP2+
in terms of the natural volume dh on hyperbolic space. In terms of the

product measure dh x Mo O H x S (which is not [ invariant) the
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measure lim v has density gp(y) at each point (y,s) of the product

N-ooo
space. Rewriting in terms of dm” (which is " invariant) introduces the
5 28
Radon Nikodym factor d‘u—p(s) at each point (y,s). The desired density
du y
is thus 2 gp(yy) (VS)
r dityy

1 to transform (p, vy, vs) into (yp‘l,y,s) and the symmetry

Using y~
diyp

g,(y) = g,(x) changes the sum to one of the form X g (yp) ——(s). By
y T y dp,y

Lemmas 1 and 4, = gy(yp) = o so Lemma 5 results from the following
r

lemma.

LEMMA 6. X gy(yp) = oo Implies that for almost all s on the sphere
y(l_'

2 g, 0P ol (s) = .
yel duy
Proof. i) Denote by B a small ball centered at p, and by I'B the

disjoint union U yB. Definea I' invariant function ﬁB(y) to be the
yel’
probability that a random walk, whose transition operator is P, starting

at y hits I'B. Clearly ma(¥) <1 and Prg <mg. If 7y is not identi-
cally 1, the I' invariant function mg - Prg is greater than ¢> 0 on

the I' orbit of some smaller ball. Now consider the identity
N _ N+1
<6y+6yp+ BYP ; Prig> = <8 Ty > - <8 B e .

The right-hand side is uniformly bounded wrt N. The left-hand side is at
least € ? gy(yp) as N » ., We conclude that ng = Prg or nB(y) =1,

Thus almost all paths starting at y hit I'B when ZP gy()/p) =00,
ye

“
L (sg) isa
dglxo

ii) For fixed s, and % the function of x,

P-harmonic function (Lemma 2), whose boundary values are + at Sg
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and zero at other points of the sphere. One sees by a standard limiting

d
procedure [K] that g, () a%(SO) is the corresponding Green’s density for

the random walk conditioned so that the limit at « is s,. By Fubini’s
theorem and i) for almost all s, almost all paths starting at y and

conditioned to end up at s, must also hit I'B.

du
Now if for one of these s, 2 g (yp) l)(so)< K < «, the same
I 7 duy

Y
inequality would hold for p in a small ball B. It would follow that the
conditioned Green’s measure would give finite measure to ['B. This
contradicts the fact that almost all conditioned paths hit I'B starting
from any point and thus hit it infinitely often by the Markov property. This

completes the proof of Lemma 6.

Proof of Theorem II. Let ¢(x,y) be a non-constant characteristic func-

tion on S2 % S? invariant by ' and suppose = 1/A% = . We can sup-
T

pose by Fubini (after interchanging x and y if necessary) that for a set
of v of positive measure ¢(x,y) is a non-constant a.e. function of x.

Fill in each ¢(x,y) to a P-harmonic function on H x y by the
Poisson formula above. We obtain a function h(x,y) on T by invariance
of ¢, harmonic on each level (Lemma 2) which implies Ph=h , and
finally h(x,y) is non-constant on a set of levels of positive measure
(Lemma 3).

Break h-1/2 into positive and negative parts h_ and h_ and add
the inequality 15|h—1/2| > |15(h—1/2)i = |h=1/2| to the equality ls(h—l/ﬁ)
=h-1/2 to obtain Ph_>h, . Using Lemma 5 and the cancellation argu-
ment of part i) Lemma 6 deduce Ph_=h  a.e. The latter implies the
subregions of leaves (levels) where h_ is zero don’t communicate via
posers of P with their complements. This is absurd and the theorem is

proved.

NOTE. This method of proving measurable functions harmonic along the

leaves of a foliation are constant was borrowed from Lucy Garnett’s thesis
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[G] which contains a very simple proof of the ergodicity of the geodesic
flow in the finite volume case.
Section IIl. Conical approach and E. Hopf’s theorem®

Say that I" has conical approach at a point s on the sphere at
infinity in hyperbolic space if an orbit of " has infinitely many points in
a circular cone with vertex at s. E. Hopf proved in 1939 that I' acts
ergodically on the (sphere x sphere) if and only if I" has conical approach
at almost all points of the sphere. We study conical approach and derive

E. Hopf’s theorem (cf. [BM]).

LEMMA 1. If I" has conical approach to a density point of a I'-invariant

set on the sphere, this set has full measure.

Proof. We integrate the characteristic function y, of the set A against
the Poisson measure of p inside hyperbolic space. Choose a sequence

of group elements y; so that y,p has conical approach to a density point

of A.
area A = ,upA =f)(Adup =fyi)(Adup :foduyip ¢

The easy classical estimate shows the right hand side approaches 1

since a is a density point of A.

CoROLLARY. If I has conical approach to a set of positive measure
on the sphere then " has conical approach to a set of full measure on

the sphere.
Proof. Apply Lemma 1 to the set where I' has conical approach.

LEMMA 2. If T' only has conical approach to a set of measure zero, the
action of I" on S x 8% is dissipative (i.e. it has a fundamental domain

a.e.).

1 This section works on s®, n>1, without change.
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Proof. To each point q of the orbit of p under I" associate Aq , those
pairs of points on the sphere so that the connecting geodesic is closer to
q than to any other point of the orbit. For almost all pairs there is a ¢
because given a pair we merely swell up a geodesic tubular nghd of the
connecting geodesic until it first meets the orbit, There is a first time
because of the no conical approach assumption. The point q is unique
after we throw out from the pairs countably many lower dimensional sub-

manifolds. The Aq provide the desired partition of almost all the pairs

into sets permuted freely by I'.

COROLLARY. If I has infinite solid angle then 1" has conical

approach at a set of full measure.?

Proof. Infinite solid angle implies the action on pairs is ergodic (Theorem
II) which would be contrary to the conclusion of Lemma 2 if I" did not

have full conical approach.

LEMMA 3. If I has conical approach at a set of positive measure on the

sphere then ' has infinite solid angle.

Proof. The best angle of approach is a positive measurable function so
is at least a for a set of positive measure which by Lemma 1 can be
assumed to be the entire sphere.

a determines the size of a ball B appropriate for what follows. If
the total solid angle of the orbit of B were finite, we could cast out
finitely many balls so the remaining solid angle would be arbitrarily small.
But the a conical approach implies the balls near infinity block infinity

from view.

COROLLARY (E. Hopf). A group I' has conical approach either at a
set of measure zero or at a set of full measure. In the first case the
action on pairs of points on the sphere is dissipative. In the second the

action on pairs is ergodic.

2P roven by Tsuji(1944) for the case of Fuchsian groups using complex
function theory.
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HISTORICAL REMARK:
Theorem II (for hyperbolic 2-space) has an interesting history in func-

tion theory and the theory of Fuchsian groups. There were the implications

Tsuji (1944)

infinite angle ——— conical approach

Tsuji (1945) l E. Hopf (1939)

geodesics ergodic
However, the implication
infinite angle ———— geodesics ergodic

was called Tsuji’s problem, Shimada (1960). Tsuji apparently only knew

the earlier Hopf theorem

finite area ——— geodesics ergodic
E. Hopf (1937)

which he reproved using potential theory rather than Birkhoff’s ergodic
theorem. Hopf’s stronger (1939) theorem became more accessible after
his Gibbs Lecture on the topic, AMS Bull 1971. P. J. Nicholls connected
up Hopf (1939) and Tsuji (1944), corrected by Yujobo (1949), and Tsuji
(1951), in a 1976 paper (see [NI] and p. 531 of Tsuji’s book).

REMARK. The action of " on pairs is orbit equivalent to the geodesic
flow on H/I". E. Hopf used the latter model, the associated asymptotic
foliations, and his extension of Birkhoff’s individual ergodic theorem to

the case of an infinite invariant measure for the proof of the 1939 theorem.

For Fuchsian groups the condition infinite angle is just the divergence
of the Blaschke product associated to an orbit. For the 1944 result Tsuji
used complex function theory in an essential way, in particular the
Riemann mapping theorem and the theorem of F. and M. Riesz, (Stockholm
1925).
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Recall that our path around the triangle was different,

infinite angle <———— conical approach

geodesics ergodic

Only the slating arrow using random walks was not obvious.

Perhaps it is worth mentioning a conceptual anatomy of our proof. One
rearrangement is

i) There is a general theorem that a discrete group I' of symmetries
of the state space E underlying a symmetric Markov process acts ergodi-
cally on pairs of points of the boundary of the process if and only if the
induced random walk on E/I" is not transient [G].

ii) This abstract theorem applies to random motion on an infinite
regular covering of any Riemannian manifold complete for random motion.

iii) For a complete constant negatively curved manifold the boundary
of the natural random process can be identified because a random path
hits a definite point on the sphere at = with probability 1. Also tran-

sience can be identified with finite solid angle.

Section IV. Horospherical approach and recurrence

Say that T" has horospherical approachto a point s on the sphere at
o if the T' orbit of a point in hyperbolic space enters every horosphere
based at s. We call such points of the sphere the ‘‘horospherical limit
set of I".”" It is geometrically clear the horospherical limit set is inde-
pendent of the choice of reference orbit. These points were studied by
Hedlund and later Eberlein [H], [E]

If s is not a horospherical limit point we can try to swell up horo-
spheres at s until one first hits a point q of a fixed reference orbit. If

(41

there is a unique first hit we define this q to be the “closest orbit point

bR

to s.
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THEOREM III. For any group ' and any choice of reference orbit in
hyperbolic space the horospherical limit set union the points of the sphere
which have a closest orbit point form a set of full measure. Furthermore
this dichotomy is precisely the partition of the action of I" on the sphere

into its conservative part and its dissipative part.

Proof. Assuming the first patt for the moment, let us prove the second.
To each orbit point q, associate the points Aq of the sphere to which
it is closest. The Aq are freely permuted by I", so their union is a
dissipative set.

On the other hand the horospherical limit set is easily seen to be
characterized as those points s at which the derivatives of elements of
I evaluated at s are unbounded. It follows there is no dissipative part
in the horospherical limit set because along almost all dissipative orbits
the sum of Jacobians is finite (the union of areas is finite).

Let us return to the first part. Throw out countably many lower dimen-
sional submanifolds of the sphere which are bases of horospheres con-
taining more than one point of the reference orbit. Now a point ¢ on the
sphere not in the horospherical limit set fails to have a unique closest
orbit point only if there is a critical horosphere h(f) so that every larger
horosphere based at { contains infinitely many orbit points. We call
such points “‘Garnett points.’”’! The proof of the theorem is completed by

the following lemma.
LEMMA 1. The Garnett points have measure zero.

Proof. Let s be a point of density in a set G of Garnett points of posi-
tive measure where the radius of the critical horosphere is a continuous
function. Now there are infinitely many orbit points x; outside the criti-

cal horosphere converging to s but entering every larger horosphere. For

1]’_.ucy Garnett pointed out that these points have to be considered. Later John
Garnett independently found a simple proof they have measure zero. In [N2] this
possibility is overlooked (line 5, p. 310) invalidating the proof of Theorem 1,
i) = ii), there.
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critical horosphere

forbidden regions g

each x; there is an associated forbidden region on the sphere at e
which does not contain Garnett points of G. Feor a point of G is the
base of a horosphere whose radius is approximately that of h(s) by con-
tinuity and which contains no orbit points,

One calculates easily the forbidden region associated to x; isa
definite proportion of the area of the smallest disk centered at s contain-
ing the vertical projection of %; . But then this picture contradicts the

fact that s is a Lebesgue density point of G. Q.E.D,

Associated to the reference orbit is the partition of hyperbolic space
into convex fundamental domains. To each orbit point g one assigns all
the points Dq closer to it than to any other orbit point. The above dis-
cussion has extended this notion of closest point to the sphere at ~. One

has the

COROLLARY. The dissipative part of the action of the discrete group T’
on the sphere is just the union of the ‘‘fundamental domains intersect the

sphere at =.” (s fDqﬂ S if there is a geodesic in Dq hitting s.)

COROLLARY. The action of I" on the sphere is conservative if the area

of one fundamental domain intersect the sphere at « is zero.

REMARK. The condition of the last corollary may be reformulated in terms
of the growth of volume of the quotient manifold V = H/T". Let V()
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denote the volume of the points of V within a distance r of some base
point p. Let H(r) denote the volume of the ball of radius r in hyper-

bolic space.

THEOREM IV. The following are equivalent
i) The fundamental domain has zero area at o.
ii) The ratio V()/H{) -0 as 1 - oo,
iii) The action of I" on the sphere at o is conservative.

iv) The horospherical limit set of 1" has full measure on the sphere.

Proof. Only i) => ii) is not obvious or already proven. Consider the

solid angle w(r) of the sphere of radius r centered at q within the funda-
mental domain Dq' By convexity of Dq w(r) is decreasing. By i) the
limit at r = ~ is zero. If a(r) denotes the area of the sphere of radius r

we have
r

a(r) e(r)dr

VW) = s,
a(r)dr
(o]

Since w(r)<e for r>r, we have

T r
a(t) w(r)dr f a(r)dr

VE/HE) < g

fa(r)dr f a(r)dr
0] 0

The first term is zero in the limit of r -+ o and the second is at most ¢ .

NOTE. In the 1939 treatise E, Hopf asked whether condition ii) or others
like it might imply the ergodicity of the geodesic flow. (Equivalently the
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action of I" on S x S). In the fifties a Fuchsian group [' was con-
structed® (after a long search) whose Riemann surface carried a Green’s
function but no bounded harmonic function. Thus the action of this I’ on
Sty st is not ergodic but the action of I' on st is ergodic. In particu-
lar condition ii) is satisfied but there is no sectorial approach. By

Theorem IV there is horocycle approach almost everywhere.

Section V. Ahlfors-Bers quasi-conformal deformations of discrete sub-
groups of PSE(2, C)

If T is a discrete group of isometries of hyperbolic space H?, one
knows how to deform I' in a nice way using a measurable line field‘ in-
variant by I" and a positive bounded measurable function invariant by 1.
By Ahlfors-Bers [AB] there is a quasi-conformal homeomorphism ¢ of the
sphere whose conformal distortion lies a.e. in the direction of the line
field with strength given by the function.

One may view the measurable data consisting of the line field and
function as a new measurable conformal structure invariant by I (which
is a bounded distance away from the smooth conformal structure). The
homeomorphism ¢ converts the measurable structure back to the smooth
conformal structure on S2.

Bers [B] conjugates the conformal transformations of I by ¢ to
obtain new conformal transformations, iy} - {éy¢ ™1}, and a new discrete
group I'". If ' and I'" are also conjugate by a conformal transformation
it follows the measurable data we started with vanishes a.e. on the topo-
logical limit set (because fixed points are carried to fixed points by any
conjugacy, so any topological conjugacy between 1" and I is determined
uniquely on the topological limit set). I' = ¢ 1 is called a quasi-
conformal deformation of I'.

From Section I we find there can only exist invariant line fields on the

dissipative part of the action of I" on §2.

2See Ahlfors-Sario, p. 256-257.
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Now the dissipative part of the action splits into two pieces: the
domain of discontinuity of I (if any) whose quotient by I is called the
Riemann surface associated to I', and the dissipative part (if any) of
the action on the topological limit set.

Any dissipative piece in the limit set will lead to an infinite dimen-
sional space of inequivalent quasi-conformal deformations by the unique-
ness of the conjugacy remark above. The domain of discontinuity leads
to a Teichmiiller space of deformations which can be nicely described if
the Riemann surface of I is obtained from a compact by removing at most
finitely many points, [B] and [M].

For finitely generated groups I one has Ahlfor’s result [A] that the
associated Riemann surface is obtained from a compact surface by remov-
ing at most finitely many points. One also knows the embeddings of the
abstract group into PSE(2, C) is a finite dimensional space.

Thus the infinite dimensional linear space is not present for finitely
generated groups and the Teichmiller space in question is a nice complex

manifold about which much is known, [B].

THEOREM V. For a finitely generated discrete subgroup I" of PSE(2,C)
the classes of quasi-conformal deformations consists of a Teichmiiller
space associated to the uniformized Riemann surface of finite type. For
example, if I" has a dense orbit on S2, then T is quasi-conformally

rigid.

Proof. One only needs to read [B] and [M] and forget their hypothesis
that the deformation data be zero on the limit set. For it must be by the

uniqueness theorem and the above deformation remark.

Section VI. Dynamical properties of finitely generated Kleinian groups
Let us collect here the information about finitely generated groups

following from the foregoing general discussion. The main point of the

finite generation of I" for us is the deformation remark of Theorem V

which is mostly due to Ahlfors.
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THEOREM VI. For a finitely generated discrete group of isometries of
H3 , the horospherical Hmit set has full measure in the topological limit

set.

Proof. The deformation remark of Section V shows the topological limit
set contains no dissipative piece.1 Thus by Theorem III, Section IV the

horospherical set has full measure in the topological limit set.
We record the proof as a

COROLLARY. The action of a finitely generated 1" on the topological

i i ; o 1
limit set 1s conservative,

COROLLARY. There is no measurable field of regular tangent n-crosses

defined on a positive area subset of the limit set and invariant by T .

Proof. We have proved this result for tangent line fields (= tangent 2 —

cross) in Section I. The same proof works for n-gons.

REMARK. A formal ergodic consequence of the previous corollary is that
the ‘““angular ratio set’’ is the entire circle. Namely given 0 on the
circle, a positive number ¢, and a subset A of the limit set of positive
measure there is an element y ¢I" so the subset of A N y_lA where the
angular part of the derivative of y is within & of € has positive mea-
sure. In other words one sees every twist () up to any approximation

(e) anywhere one looks (A).

COROLLARY, There is no absolutely continuous measure on the lmit

set invariant by 1.

Proof. If p were the density function of such a measure, work in a sub-

set where p is approximately constant using the variation of distortion

1Ahlfm-s (1967) gave a ‘“Cauchy transform’” proof of this fact when there was
a non-trivial domain of discontinuity. See ‘‘Remarks on Kleinian Groups”’ Tulane
Conference, 1967.
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produced by Lemma 3 of Section I to derive a contradiction, as in the last

part of Section L.

NOTE. The density function p is not assumed to be locally integrable.
For it is elementary that for an arbitrary group I' there is no invariant
probability measure. The corollary means for finitely generated groups
there is never a o-finite invariant measure in the smooth measure class.
This fact means that the measurable equivalence relation induced by I'
on the limit set is type III in the sense of Murray and Von Neumann. One
can hope to classify the equivalence relation up to Lebesgue isomorphism
by a further study of the derivatives (going beyond Lemma 3 of Section 1.2

““ratio set’’, de-

For example when are there non-trivial elements in the
fined as in the previous remark using the area distortion of the derivative

rather than the angular part??

Recall that we can pretend to understand the ergodic theory of groups
where 3 1/A2 = w. If then 3 1/A% < o, what is the significance of the

r I
of the function = 1/A% for other values of s? For s =1 one has the
T
COROLLARY. If the topological limit set has positive area then

I

Proof. The area of the isometric disk of y union the image of its com-
plement has the order 1/A using Lemma 1 of Section I. Using recurrence
as in the final argument of Section I after casting out finitely many ele-
ments to make 2 1/A small we arrive at a contradiction. Namely,

S 1/A <  => the action of any I" on S? is totally dissipative.

2Actua11y the addendum to Section I and Lemma 3 implies the ratio set for
the area distortion is all the positive reals. Thus any Kleinian group has type
1111 on its conservative part. This theorem will be explained in more detail in a
future publication.
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Section VII. Rigidity in the sense of Mostow for infinite volume discrete
groups in O(n, 1)

Say that a complete hyperbolic n-manifold V = H*/I" is Mostow-rigid
if any pseudo-isometry between V and another hyperbolic manifold V~*
is homotopic to an isometry.

A pseudo-isometry is by definition a continuous map V » V' inducing
an isomorphism between the fundamental groups and keeping the distances
between sufficiently farlying pairs of points in a bounded ratio.

Mostow showed [Mo] that

i) a pseudo-isometry of hyperbolic n-space is onto and has a con-
tinuous extension to the sphere at o« which is a quasi-conformal homeo-
morphism;

ii) a quasi-conformal homeomorphism of gh-1 (n>3) whose deriva-
tive is a.e. a similarity is a conformal transformation;

iii) for discrete groups I' whose fundamental domains have finite
volume there is only one a.e. measurable conformal structure on the

sphere invariant by I,

MosTow’s THEOREM. Complete hyperbolic n-manifolds of finite volume

are rigid in the above sense, n > 3.

Proof. Mostow lifts the pseudo isometry to hyperbolic space, extends to
the boundary by i) to find a quasi-conformal homeomorphism which must
be conformal by iii) then ii), and obtains an equivariant isometry of

hyperbolic space with these boundary values.

Celebrated corollaries are: compact hyperbolic n-manifolds M even
complete finite volume hyperbolic n-manifolds are determined up to

isometry (n>3) by their fundamental groups.

Proof. The fundamental group determines the pseudo-isometry type in
these cases. This is clear for the compact case and follows from an

analysis of the cusps in the finite volume case (Margulis, Prasad).
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Using Theorem VI below to extend point iii) we obtain by the same

proof an extension of Mostow’s theorem to the infinite volume case.

THEOREM VI. If V is a complete hyperbolic n-manifold (n>3) and
satisfies any of the equivalent conditions of Theorem IV (for example if
the volume of the part of V out to distance t grows slower than the ball

of radius r in hyperbolic space), then V is rigid in the sense of Mostow.

COROLLARY. If V® is defined by any discrete finitely generated group
of isometries of H® with a dense orbit on S*, then V¥ is rigid in the

sense of Mostow.
Proof of Corollary. Section VI reduces the corollary to Theorem VI.
Proof of Theorem VI. Same as above proof using Theorem VII.

THEOREM VII. Let I" be a discrete group of conformal transformations
of 8", n>2 and let v be a measurable conformal structure (on the
tangent spaces), which is a.e. invariant by I". Then v agrees a.e.
with the standard conformal structure on the conservative part of action

of T' on ST.

Proof. By comparing v with the standard structure we find a field of
ellipsoids, each defined up to similarity. We can work on an invariant set
of positive measure where the smallest axes form a proper subspace of
constant dimension. We find then an invariant tangent k-plane field in-
variant by I, k< n,

We ruled out this possibility for k=1, n =2 in Section I by an argu-
ment based on the variation of distortion (Lemma 3). We will deduce the
general case from this same argument. Also note that Sections I, II, III

go word for word the same for general n, using 3 1/A% instead of = 1/A%,
r r

Now working in the R™-model choose a set of positive measure X
where the k-plane field {P} is within e of being parallel. Now consider
any transformation y keeping {P} invariant. We can factor y intoa

composition
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.y = (inversion in circle) - (Euclidean isometry) = IyRy .

Then {P’}= RV{P} is another almost parallel field (on X’'= Ry(X)) which
is carried by the inversion L, to {Pt, Iy{P'§ =4iPi.

Now the tangent maps to an inversion are just the reflections in the
tangent planes to spheres concentric about the center of inversion. Near
to the center of inversion these tangent planes turn rapidly and it is diffi-
cult for the.inversion to carry an almost parallel field on X’ to an almost
parallel field on X (if X” has many points sufficiently close to the
center which are also carried to X).

Now if y ¢I' we can determine where X’ is relative to the center of
inversion of Iy by knowing the distortion of ¥ on X’ (since Ry is an
isometry, and in polar coordinates based at the center the distortion of the
inversion (r,8) » (1/Ar,6) is 1/Ar?). What we will know from consetva-
tivity and the argument of Section I is that for any Y C X of positive
measure there is a y ¢1" so that y_lY MY has a point y, log(planar
distortion y) varies in an interval of length ~ A overan ~ concentric
annular shell A containing y (being constant on ~ concentric spheres),
A and yA have diameter < &’, and ‘“~’>, A, and 8" are at our
disposal.

Writing A'= RyA we see from these values of distortion that A’ is a
nearly concentric annular shell about the center of inversion of I'y of
diameter &’. Since the shape of A is determined by A and ‘““ ~ " we
can use such sets to describe (#,6) uniform density points of X as in
Lemma 3, Section I.

We choose 7 soclose to 1 that a contradiction results from the
following chain of considerations. Y is chosen, using Lemma 3, Section I
for (X,n,6). Then y is chosen as above for A, 8", Y with 8°<&6. A
will be almost filled with points of X which mapto X by y (as in the

argument of Section I). So the same holds for I,, namely A’ is almost

y}
filled with points of X’ which map to X (note Ry alters nothing being

an isometry).
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The above description of the tangent map forces a contradiction, Iy

cannot carry the e-almost parallel filled on X~ to the e-almost parallel
field on X.
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