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Introduction

LEeT & be the g-algebra of all Borel subsets of the unit inferval. When &
is the o-ideal of Borel sets of Lebesgue measure zero, it follows from the
work of von Neumann [4], that each automorphism of #/4 is induced by
a Borel bijection of [0, 1]. Answering a question posed by Kakutani, it
was shown, recently, by Maharam and Stone {3], that when A is the
o-ideal of meagre Borel subsets of [0, 1] then, given an automorphism g
of #/M, there can be found a dense Gy-set X <[0, 1] such that 8 is
induced by a homeomorphism of X. Their result is more general than this
since they replace the unit interval by an arbitrary complete metric space.

In this article we shall be mainly concerned with non-commutative
~ C*-algebras. When specialized to commutative algebras our results give

an altermative ,proof of the Maharam-Stone Theorem, but only for
separable complete metric spaces.

Let & be a separable C*-algebra with Borel® envelope £~ (see below
for definitions). Let $ be a (two-sided) o-ideal of = and, for each
xed”, let [x] denote the image of x under the quotient map from A~
onto #7/#. Our main theorem states that, given any automorphism 8 of
A”{#, we can find an automorphism o of ™ such that

BlxD=[e()]

for all xe ™.

As an application of this theorem, we show that if </, and sf, are
separable C*-algebras and #, and %, are o-ideals of o7 and &3,
respectively, such that «7/#, is isomorphic to «5/#, then there exist
central projections p,, p, in #7 and &3, respectively, such that 1—p, € #,,
1—-p,e ¥, and p, o7 is isomorphic to p.sf5.

We shall also show that every countable group of automorphisms of
A<|# can be lifted to an isomorphic group of automorphisms of &%,

§1. Preliminaries
Unless we state the contrary, capital script letters o, & will denote

C*-algebras and capital roman letters A, B their, respective, self-adjoint
parts.

Quari. §. Math, Oxford (2), 32 (1981), 371-381

B




372 DENNIS SULLIVAN AND J. D. MAITLAND WRIGHT

For each C*-algebra of we shall use o#** to denote its second dual. We
shall identify sf with its image under the universal representation, that is,
as an algebra of operators on its universal representation space; we recall
that ** may then be identified with the von Neumann envelope of .
Let A™ be the smallest subset of A¥¥, (the self-adjoint part of «4*%)
which contains A and is such that whenever (x,) (n=1,2,...} is a
monotonic sequence in A” with strong limit x, in A™*, then xe A”. Let
A”=A"+iA", then by [5], ¢~ is a C*-subalgebra of #*. Following
Pedersen, we call of* the Borel*-envelope of . We remark that
whenever o is separable then ™ is unital, because of has a sequential
approximate identity.

A C* -algebra & is said to be monotone - -complete if, whenever (b,)
(n=12,..)1s a ‘norm-bounded, monotone mcreasmg sequence in B,
then this sequenoe has a least upper bound in B. Let # be a closed
(two~s1ded) tdeal of a monotone o- oomplete C*-algebra &; ¥ is said to
be a o-ideal if, whenever (b,) (n=1,2,...) is a monotone increasing
sequence in $N B, which has supremum b in B then beg.

Let %, and %, be monotope o-complete C*-algebras. An homomorph-
ism ¢: B, —>B, is said to be a o-homomorphism if, whenever (b,)
(n=1,2,...) is a monotone increasing sequence in B, with supremum b,
then ¢(b) is the supremum of (¢(b,)) (n=1,2,...) in B,. Clearly the
kernel of a o-homomorphism is a ¢-ideal, conversely, see Lemma 2.13
[1], the quotient of a monotone o-complete C*-algebra by a o-ideal is
always monotone o-complete and the quotient homomorphism is a
o-homomorphism.

We remark that whenever % is monotone o- complete then there exists
a o-ideal M in %~ such that ® is isomorphic to &~/ [13].

We shall lean heavily on the methods and results of Pedersen [6, 7] on
Borel*-algebras. A particularly lucid account of their theory is given in
[9]. In particular, in the special case where % is a von Neumann algebra,
Theorem 2.2 already follows from the results of Pedersen [6]. We remark
that whenever o is simple, unital, separable and infinite-dimensional then
there exists a o-ideal # in o™ such that &f/*/# is a monotone complete
AW?*-factor which'is never a von Neumann algebra [11]. _

Let o be an arbitrary C*-algebra. Let Z(#**) be the self-adjoint part
of the centre of «#**. For each x € sf**, the central cover of x is defined to
be the infimum, in Z{«A**), of {a € Z(4**): a=x}. Since the self-adjoint
part of a commutative von Neumann algebra is a conditionally complete
lattice, ¢(x) is well-defined. When p is a projection then c¢(p) is also a
projection and is the supremum of all projections in the set {u*pu: u is
a unitary in &%

Lemmva 1.1. (Pedersen). Let o be a separable C*-algebra. Let $ be a
o-ideal in o™ and let x be a positive self-adjoint element of . Then c{x) e #.

%
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The proof of Proposition 4.5.8 [9], shows that c(x) is the strong limit of
a monotone increasing sequence of elements of &, When x €. then the
terms of this sequence are in $. :

Lemma 1.2, Let of be any C*-algebra and let ® be a monotone
o-complete C*-algebra. Let ¢: si—> B be an homomorphism. Then ¢ has
a unique extension t0 a o-homomorphism ¢: A~ — R, '

"This is proved in Proposition 1.1 [12] by combining Proposition 4.2 [8]
with the main result of [13].

The following lemma can be proved in much greater generality but this
simple result is all we shall need. Since we do not know of a convenient
reference we sketch a proof.

Lemma 1.3. Let & be the o-field of all Borel subsets of a Polish space X.
Let o be a Boolean automorphism of ¥. Then there exists a Borel
measurable bijection 6 from X onto X which induces a, that is, Suéh that

a(A)=0"TA]

forall Ac¥.

Let S be the Stone structure space of ¥. Since & is atomic and
separates the points of X, we can regard X as densely embeddecl in § and
can identify X with the set of all 1splated points of S. Thus any
homeomorphism of § maps X onto X. h

Let ® be the homeomorphism of § which corresponds to the au-
tomorphism «. Let 8 be the restriction of ® to X. Then 8 IS a bl]CCth[l
from X onto X and it is straightforward to show that

a(A)=06"1A]

for each Ae#. Clearly @ is Borel ﬁeaéurable. _

§2. Lifting automorphisms

Let o~ be the Borel*-envelope of a C algebra . A function
v: A~ —> o~ is said to be a o-normal map if v is a linear map such that,
whenever (x,) (n=1,2,...) is a monotone increasing sequence in A~,
with strong limit x, then y{(x) is the strong limit of (y(x,)) (n=1,2,...).

LemMa 2.1. Let o be a separable C*-algebra with Borel*-envelope .94 .
Let # be a (two-sided) proper, o-ideal in . For each x € s£~, let [x] be
the quotient-class containing x. Let v: A~ — A" and 6: A~ — A” be
positive o-normal maps such that

[y(x)]=[5(x)]
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for every x € ™. Then there exists a central projection d in s such that
1-de$ and dy(x) = d5(x)
for each x € ™.

For notational convenience we shall assume that |y[|=<1 and |8]|=1.

Let (x,) (n=1,2,...) be dense in the unit ball of A. For each n, let
Yn = Hy(x,) —~8(x,)}. Then yic £ and [lyA=<1. Thus (yD**) (k=1,2,.. .}
is a monotone increasing sequence in S whose supremum, in &%, is a
projection q,. Then q, €% and so, by Lemma 1.1, c{g,)c .#.

Let 1-d=V c¢(q,). Then d is a central projection in ™ and 1—de
n=%

#. Moreover, dy>=0 for each n. So dy(x,)=d8(x,) for each n. Hence
dy(x)=d&(x) for all xc A.

Since A~ is o-generated by A and since y and & are o-normal it
follows that dy(x)=d8(x) for all x € A™ and hence all x e ™.

We now come to our main theorem. We have already remarked that
when f is a separable C*-algebra then %~ is unital. Hence, whenever $
is a proper ideal of o™ then of”/¥ 1s also unital. Thus if 8 is a surjective
image of &/~ then 2 is necessarily unital.

Tueorem 2.2. Let 3% be a monotone o-complete C*-algebra and let 8 be
an automorphism of B. Let 5 be a unital separable C*-algebra with Borel*-
envelope «”. Let w be a surjective o-homomorphism from A~ onto B.
Then there exists an automorphism a of A~ such that

B = ma.

In other words, the automorphism B of % can be lifted to an automorphism
a of A~

Furthermore, if vy: o™ — o™ is a positive o-normal map such that
7y =37 and p is a central projection of 4~ for which w(1—p)=0 then
there exists a ceniral projection q in A~, with g<p and w(1—q) =0, such
that the restriction of o to q«~ is an automorphism of q4* and a(x)=
qvy(x) for all xeq4”.

Since o is separable, Bw[#] is also separable. So we can find &, a
separable unital C*-subalgebra of o™, such that #w[€]> Bw{sf].

Let .# be the kernel of =, so that £ is a o-ideal of #~. Because €MN.% is
a separable C*-algebra, there exists a monotone increasing sequence (f,)
(n=1,2,...), in the positive part of the unit ball of £N.%, which is an
approximate identity for £M.¢. Let f be the strong linzit of this sequence
in #%. Then f is a projection such that

fx=x=xf ey

for all xe&N.#. Moreover, since # is a o-ideal, fe £.
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Since f need not be an element of &, (1—)Z(1—f) need not be a
subalgebra of &##”. Let e = ¢(f), the central cover of f in &”. Thus e is a
central projection and, by Lemma 1.1, ec¢$. Clearly (1—¢)& is a C*-
subalgebra of «™.

Let ye(1—e)& such that w(y)=0. Then y=(1-e)x, for some xc&.
Since e €.$ we have,

a(x)=mwlex)+a{(l—e)x)=wle)m(x)+mw(y)=0.

So x €N and thus, by (1),7
0={(1— NP =he* A~ Hxl =[x *(1 - e)xl| = (1 — e)x[ = iyl
Hence the restriction of 7 to (1—¢)& is an injective homomorphism into
A=, Thus (1—e)& is isometrically and algebraically *-isomorphic to
w[(A - e)&]= 7[&] = Bl o]

So there exists an homomorphism &: Bw[sf]— (1—e}& such that, for
every ac 4,

we(Br(a)) = Brr(a).
Let ¢g: & — o~ be the homomorphism defined on & by
dola)=eBala)+tea
By Lemma 1.2, ¢, has a unique extension to a o-homomorphism
d: A”— A",

Let V={aec A" wd(a)=PBw(a)}. Since ¢ is an extension of ¢,, we
have that A < V. Since m, ¢ and § are all ¢-homomorphisms, we have
V=A". Thus w¢ = pmw.

Similarly, we can find a o-homomorphism ¢: ™ — o™ such that

=B
So ‘
wp=pmp=pR 'w=m
and
wilip = B ard = BT B = .
By Lemma 2.1, there must exist central projections do and dl_ in o7
such that w{dy) = m(d;)=0 and, for all xe«~,
(1—do)di(x) = (1 —do)x
and
(1-d)gd(x)=(1=dy)x.

We define a sequence of central projections in «~, recursively, as
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follows. Let g, =d,vd,.

&nr1= Bn V(B (g)) v e((g.)).
Clearly, g,<.#. Suppose that g, « %. Thus

0=m(g.) = Br(g.) = mp(g.). -

So ¢{g,)e # and hence c(d(g,)) e £. Similarly, c(y(g,))cF#. So g, €F.

It follows by induction that (g,) (n=1, 2, ...) is 2 monotone increasing
sequence (of central projections) in #. Let g be the strong limit of this
sequence. Then g is a central projection of %™ and g € $. Furthermore,

(1-g)p(x)=(1-g)p(x)=(1—g)x

for all xe ™.
We have

g g1 Z B(g)-
Since ¢ is a o-homomorphism, this implics that

g=d(g).
Similarly

g=yl(g).
Thus
(1-g)d(l—-g)=1-g=(1-g)¥(1—g).
We define o and &' on o™ by '
a(x)=gr+(1- )d((1—g)x) = gx + (1~ g)(x)
a'(x)=gx + (1~ g(x).
For each xe ™,
mwa(x) = w(g)mw(x) + (1~ g)weh(x)
= mwep(x)
= Ba(x)
Thus
o= B

o

Straightforward calculations show that « is a homomorphism from =
to A& with ae(1) == 1 and that aa'(x) =x = a'a(x) for all xe A#™. Thus a is
an automorphism of .

We now show that « is “almost” unique. By hypothesis y: &~ — o~ is
such that «y = B = wa. We are given that p is a central projection in &~

_—
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such that w{1-p)=0. By Lemma 2.1, therec is a central projection
de o, such that w(d) =0 and

(1-d)y(x)=(1—d)a(x) forall xeoAL™

Since we could replace d by d v{1—p), we can suppose, without loss of
generality, that d=1—p.

The identity 7o = B'n' implies that o maps F onto $. Hence o (d)e ¥
for k=0, =1, £2,.

Also, since « is an automorphlsm of A=, a¥(d) is a central projection
of o~ for each k. Let ¢ be the central projection in &~ which is the
supremum of all the projections {a*(d): k=0, £1, £2...}. Then, be-
cause F 1s a g-ideal, e e $.

For each j, o (e} is an upper bound of {a**(d): k=0, £1, %2,...}. So
afe)=e and o '(e)=e. Hence ale)=e

Let g=1—e. Then g=1—e=<i-d. So gy(x)=qga(x)=ax) for all
xeqsd”.

CoroLLArY 2.3. Let s, and s, be separable unital C*-algebras with
Borel*-envelopes A7 and A3, respectively. Let B be a monotone o-com-
plete C*-algebra and, for j=1, 2, let m be a surjective o-homomorphism
from AT onto B. Then there exist central projections q,. and g, in 57 and
A3, respectively, for which w(1—q,)=0 and w,(1—q,)=0. Furthermore
there exists an isomorphism vy from q,s43 onto’ a7 such that, '

myy(y) = m,(y)
for each y € q.+45. '

Let & be the direct sum <, ®Psf,. Then &~ may be identified with
ATDAST. Lét 7 =a;Dwr,, so that # is a surjective o-homomorphism
from & onto BEB. Let B be the automorphlsm of @EB% which
interchanges the first and second coordinates, that is

, 'ﬁ(x, y)=(y,x).

By Theorem 2.2, there exists an automorphism a of #” such that
wa =3 For i=1,2 and j=1, 2, there exist homomorphisms ¢-; from
A7 into o7 such that, for x e o7 and ye o5,

a(x@y) =(d(x)+ ¢21(Y))®(¢1__2(x) + ¢22(Y))
So
wo(xDy) = (111 (x) + 12 (V) D (mr2h12(x) + 7w225(¥))-
The left-hand side of thlS equation is Bw(x@y) = a,(y) D7y (x). Thus

mpy=T ¢, and 7 =mydy,.
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Let ¢{(xPy) = ¢, (¥)Bd»(x). Then, by the ““almost” uniqueness part
of Theorem 2.2, there exists a central projection g€~ for which
7(1—q) =0, the restriction of « to g&f” is an automorphism and, for each
xDyequAa”,

a(xDy) = qp(xDy).

There exist central projections q; and g, in #£7 and &3, respectively, such
that g = q,Pg,. Then, for x ¢ q; o7 and y ¢ g 47,

a(xBy) = q1¢2(y) P qaya(x).

Since a, when restricted to g&f™, is an automorphism of g™ it follows
that if we define v(y) = q.®,:(y) for all y € 445 then vy is an isomorph-~
ism of g,sf5 onto q, 7. Moreover, for y € g,545,

w1 Y(Y) = mldy 21 (y)) = Wi (y) — (1 — qy) i oz (y)
So _
miy(y) =mm(y) forall yeg,s5.

The next two corollaries show that, when specialized to commutative
algebras, Theorem 2.2 gives some known results for Boolean algebras.
The first is due to Sikorski, see Theorem 32.5 {1{], and generalizes
a result of von Neumann [4].

We recall that a topological space X is said to be a standard Borel space
if it is Borel isomorphic to a Borel subset of a Polish space, in particular, all
Polish spaces are standard Borel spaces.

CoroLLary 2.4. Let X be a standard Borel space. Let & be the o-field
of all Borel subseis of X, let § be a proper o-ideal of ¥ and let 7 be the
quotient homomorphism from ¥ onto F[$. Let B be an automorphism of
#|$. Then there exists a Borel measurable bijection 6 from X onto X such
that ’

B(wA)==(07[AD
for all Borel sets A< X,

Suppose X is not countable. Then, by the geéneral theory of standard
Borel spaces, X is Borel isomorphic to [0, 1]. Hence we may assume that
X is a compact separable metric space. Let & be the commutative,
separable C*-algebra C(X). Then &~ is isomorphic to B*(X), the algebra
of ail bounded Borel functions on X. Let ¥ be the set of all f in B*(X) for
which the set {x e X: f(x)#0} is in #. Then # is a o-ideal of B"(X).

1t follows by applying Theorem 2.2 that there exists a Boolean au-
tomorphism o of ¥ such that me(A)=Bw(A) for all Ac$. By Lemma
1.3, a is induced by a Borel bijection § on X




LIFTING AUTOMORPHISMS 379

Now suppose X is countable. We ignore the trivial situation when X is
finite and identify X with N, the set of natural numbers. Let &f be the
commutative C*-algebra c,, the algebra of all complex sequences which
converge to (. Then o™ is isomorphic to I, the algebra of all bounded
sequences. On applying Theorem 2.2 to &, the required result follows.

The next corollary shows that the Maharam-Stone Theorem [3] for
Polish spaces is an easy consequence of Theorem 2.2. We emphasise that
the argument below does not establish the Maharam-Stone Theorem in
full generality, since their theorem holds for arbitrary complete metric
spaces, not just separable spaces.

CoroLrLary 2.5. Let X be a Polish space. Let & be the o-field of all
Borel subsets of X, let M be the o-ideal of all meagre Borel sets and let w be
the quotient homomorphism from ¥ onto ¥[M. Let 8 be an automorphism
of #/M. Then there exists a dense Gs-set Y < X and a homeomorphism ¢
from Y onto Y such that

Bu(A)=mp HANY),

that is, the homeomorphism <& induces the automorphism B.

Let 8: X — X be the Borel isomorphism whose existence was estab-
lished in Corollary 2.4. Since X is a Polish space, by applying a theorem
of Kuratowski [2; page 400] to # and 67!, there exists a co-meagre
G;-set G, such that @ and 87" are continuous when restricted to G,,. Let
-us recafl that by the Baire Category Theorem, each co-meagre subset of
X is dense, and, conversely, each dense Gy-subset of X is co-meagre.

Since @ is a bijection of X which maps # onio #, whenever C is a
co-meagre subset of X then 8[C] is a co-meagre set and hence 6[C]
contains a dense Gz-set. So we can choose a dense Gg-set G, <
GoN8[G,] N7 *[G,]. By repeating this process we can choose a decreas-
ing sequence of dense Gs-sets (G,) (n=0,1,2,...) such that

Gn+1 < Gn N 6[Gn] N 9*1[(’}"]‘

Let Y =) G,. Then, by the Baire Category Theorem, Y is a dense
1

G;-set. Let ¢ be the restriction of 0 to Y. Then ¢ is a homeomorphism
of Y onto Y with the required properties.

‘We now return to the non-commutative situation. Let &f be a separable
C*-algebra and ¥ a proper o-ideal of #~. If a c Aut A~ and a[F]=5
then « induces an automorphism ®(a) of A/ by

D(a)(x]=[alx)].
Let Aut, o~ be the set of all a € Aut &~ for which «[.#]=¢. Then, by
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‘Theorem 2.2, & is a surjective group homomorphlsm from Aut, &£~ onto
Aut (A7), -

CororLary 2.6. Let of be a separable unital C*-algebm and let Fbe a
proper o-ideal of A”. Let ' be a countable group of automorphisms of
A”[#. Let ® be the canonical group homomorphism from Auts A~ onto
Aut(A~/F). Then there exists a countable subgroup G of Autj.sd such
that ® induces an isomorphism from G onto T.

For each vy eI" we choose p, € Aut &% such that ®(p,) = v. Let 1 be the
neutral element of I. Then we choose p, to be the identity operator on
A

For each yeT and eacﬁ pel,

®(p,p,) =B(p,,.).

So, by Lemma 2.1, there exists a central projection e, in &£ such that
(1-e,)ef and e, ,L(p.,p,,, £,.)(x)=0 for all xeaf” '

Let e be the infimum, in the centre of #~, of (e, (v, p)eI' XTI} Then
e is a central projection such that e(p p, — p,w_) ={. Furthermore, since #
is a o-ideal, 1—e & %. : o

Since, for each v, p, is an automorphism of 7, it maps the centre of
A~ onto itself. Let f be the infimum, in the centre of o=, of {g,{(e): ve
T'}. Then f is a central projection. Since, p, maps $ to .ﬁ py(i e)e df. So
1-fed.

We have, since f=<e,

foup. (x) = fouu. (%)
for all xe ™ and each v, u in I'. In particular,
fo,p,.(e) =fp..(e).
Since p, is an isomorphism of £~ it is a o-homomorphism, and so

fo, (N = /E\]r fop.(e)=f le\r oyu(e)=f.

We define «, on o~ by
_7 o, (x)={(1—fix +fp,(x).
Let G={a,: yeT}. Then G is a subgroup of Aut &5 and the restriction
of & to G is an isomorphism from G onto T
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