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GEOMETRY OF LEAVES 
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(Received for publication 26 June 1980) 

1. INTRODUCTION 

A LEAF OF a foliation of a compact manifold? has a complete Riemannian metric 
determined up to quasi-isometry. In fact, since a quasi-isometry is by definition a 
diffeomorphism with global bounds on how much it can stretch or shrink a tangent 
vector, any two metrics on the manifold are quasi-isometric and the same must hold 
for the metrics they induce on the leaf. 

From this point of view it is interesting to ask: what do leaves of foliations of 
compact manifolds look like? We will prove here, for example, that the quasi- 
isometry types of the “Jacob’s ladder”, the “infinite jail cell window”[ lo] and the 
“infinite jungle gym” (see Fig. 1) cannot occur in foliations of S3, or in fact in an 
orientable foliation of any manifold with second Betti number zero. These surfaces 
are diffeomorphic to the “infinite Loch Ness monster” which does occur in S3[2]. We 
use the following criterion, proved in §5. 

THEOREM. A 2-dimensional leaf L of subexponential growth type in an orientable 
foliation of a compact manifold M satisfying H,(M; R) = 0 must have average Euler 

characteristic zero. 

These properties of leaves are defined in 02 and 93 where it is proved that they 
only depend on the quasi-isometry type. 
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I 2. Infinlte jail cell window 

4. Infinite Loch Ness monster 

3. Infinite jungle gym 
Fig. 1 

tDifferentiability hypotheses: the manifold should be smooth and the foliation tangent to a continuous 
distribution: in particular each leaf is a manifold of class C’. 
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This theorem may be viewed as an analogue on the level of cycles of the well 
known homological fact that a compact leaf K in a 2-dimensional foliation 3 of S’, or 
for that matter of any M satisfying H,(M; R) = 0, must have Euler characteristic 
zero. (The Euler characteristic of K can be calculated by evaluating the Euler class of 
the tangent bundle of 8 on the homology class of K.) 

The proof of our theorem is related to Plante’s idea that leaves of subexponential 
growth are like cycles. For a transversally smooth foliation a proof can be given using 
the curvature form of the tangent bundle of the foliation (a form representing the 
Euler class) and applying the Gauss-Bonnet theorem to a suitable exhausting family 
of submanifolds of L, for instance one constructed from the plaques of the flow-box 
decomposition of 04. (See the remarks at the end of 05.) Our argument is based on 
vector fields rather than curvature in order to avoid the transversal smoothness 
hypothesis. 

This type of question from other viewpoints has been considered by Cantwell and 
Conlon [2], Goodman [3] and Sondow [9]. 

2. QUASI-ISOMETRIES, GROWTH TYPE 

To repeat the definition more explicitly, a Cl-diffeomorphism f: L + L’ between 
two Riemannian manifolds is a quusi-isometry if there exist positive constants k, K 

such that k((v(/ zz Ilf*ulj 5 Kl(v/( f or any vector ~1 tangent to L. (This terminology is 
compatible with “quasiconformal” as defined, e.g. in [I].) 

Now the growth type of a positive function g defined for all positive t is the 
equivalence class of g under the relation of mutual dominance, where gl is dominated 
by gz if there exist positive constants a, b, c, d such that g,(t) 5 ug2(bt + c) + d; and 
the growth type of a Riemannian manifold L is defined to be the growth type of the 
function g(r) = volume B,(x), where B,(x) is the set of points at distance 5 r from x, 
a fixed point in L. The growth type does not depend on X. This feature is well 
known[6] and has been used extensively in studying foliations by Plante [7,8] (see 
also [4]). 

It follows from the inequalities at the beginning of this section that f(B,(x)) C 

B&(X)) and B&(x)) C f(B,(x)) and thereforep, 111 that the growth type is in- 
variant under quasi-isometry. 

We will say that a function has growth type of degree n if it is equivalent as above 
to a polynomial of degree n (these types, for different n, are clearly distinct); and 
subexponentiaf growth type if it does not dominate the exponential function. With 
this terminology the four surfaces of Fig. 1 have growth type of degree 1, 2, 3, 2 
respectively. They are all subexponential. 

3. AVERAGE EULER CHARACTERISTIC OF A SURFACE 

Continuing with the notation above, suppose L is 2-dimensional. We will say that 
L has average Euler characteristic zero if there exists a sequence of connected 
submanifolds-with-boundary Lo C L, C . . . with the following properties. 

(1) The L; are comparable to the B,(x) for some (and consequently any) x E L, in 

the sense that there is a constant Q and a sequence of radii ro, rl, . . . -+ m such that 

B,,(x) C Li c BQri(x). 

(2) lim x(L) _ - 0. (x is the Euler characteristic.) 
;+C= area ( Li) 

Suppose now f: L+ L’ is a quasi-isometry as above, and consider 
f(LJ C f(L,) C . . . of submanifolds of L’. The chain of inclusions 

&JfW c fe%,W c fG) c f&r,(X)) c &u&(f(X)) 

the sequence 
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shows them to be comparable to the B,(f(x)). The equation 

implies that 

lim X(f(b)) = () 

i&m area f(L) ’ 

(We have used the fact that f can shrink areas by a factor of at most k*.) Thus: 
average Euler characteristic zero is a quasi-isometry invariant. 

Example. Consider surface 1 above. We may suppose the representative of the 
quasi-isometry class to be such that the B,(x) for n E 2 are as shown in Fig. 2. Then 
x(B,) = 1 - 2n. Any connected subspace of L containing B, must have Euler charac- 
teristic 5 ,y(B,), so for any sequence of Li comparable to the B,(x), each 

where [r] is as usual the greatest integer 5 r. On the other hand there exist positive 
constants a and b such that area Li 5 area B o(,+,) 5 a[ri] + b, since this surface has 
growth type of degree 1. It follows that 

and that this surface does not have average Euler characteristic zero. 

\ I 

4 - - - F-_-.-.-J 
82 4 

Fig. 2. 

Similar calculations show that surfaces 2 and 3 also do not have average Euler 
characteristic zero, but that surface 4 does. Together with the growth type data, this 
shows that the four surfaces represent four distinct quasi-isometry types. 

4. LEAVES OF FOLIATIONS OF COMPACT MANIFOLDS 

We will construct in this section, for a leaf L of a 2-dimensional foliation of a 
compact Mkc2, a covering by closed discs with globally bounded geometry and 
relative geometry. The combinatorial properties of this covering can be thought of as 
giving a concrete form to the relation between the topology of M and the quasi- 
isometry type of L. 

First we remark that under the differentiability hypotheses noted in § 1, in- 
tegrability means that there exist local C’,“-homeomorphisms f: R* x Rk + M 
(homeomorphisms such that aflax, and aflax, exist and are continuous with respect to 

Xl,**., &+2) such that aflax, and af/&x, locally span the distribution, i.e. are tangent to 
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the foliation. It follows that each point of M has a closed neighborhood Co- 
homeomorphic to the product of discs D* x Dk, with each plaque D* x {u}, u E Dk, 
lying on a leaf. Such a neighborhood will be called a closed flow-box of the foliation. 

PROPOSITION 4.1. A compact manifold M with a 2-dimensional foliation admits a 

finite covering B,, . . . , BN by closed pow-boxes such that plaques of different flow- 
boxes intersect generically, namely 

(1) Boundaries of plaques intersect transversely or not at all. 
(2) There are no triple intersections of boundaries of plaques. 

COROLLARY 4.2. Let {P,} be the collection of all the plaques of B,, . . . , BN. Then 
because each flow-box is compact, and because there are only finitely many, there 

exist 
(1) A lower bound l o >O on the distance, measured along the boundary of a 

plaque, between intersection points with boundaries of other plaques. 

(2) A lower bound So > 0 on the area of a non-empty sector of a plaque, where a 
sector of a plaque P is a subset of the form P II P,, II . - - r7 PAj f~ Pij+, n * - . n 

Pii+k, prime denoting complement, for j, k 2 0 (see Fig. 3). 

(3) A positive Lebesgue number cc. for the covering of the foliation by plaques. 

Furthermore, independently of conditions 1 and 2, there exist upper bounds C and 
D on the circumference and diameter of any plaque. 

area of 

0 I 
sector > 6, 

&distance >E,, 

Fig. 3. 

Proof of Proposition 4.1. In codimension one a finite covering by closed flow- 
boxes B1,. . . , BN may be constructed by choosing discs in leaves and sliding them 
back and forth along short arcs perpendicular to the foliation. Then if a plaque of Bi 
and a plaque of Bj intersect generically, the same will hold for every intersection 
between a plaque of Bi and one of Bj, so all non-generic intersections of plaques may 
be removed by suitable small displacements of B1,. . . , BN. 

In higher codimension we must proceed differently, since there rarely is a 
transversal foliation, and what is generic for plaques may not be generic for flow- 
boxes. This is schematically shown in Fig. 4, which illustrates what might happen in 
codimension one without a normal field: no small change in the flow-boxes Al and A2 
can eliminate tangency of plaque boundaries. 

Begin with a finite covering A,, . . . , AL of M by closed flow-boxes with the 
property that each one is contained in the interior of a larger flow-box: for every 
i=l,..., L there exists Ai and qi: D* X D’ +A{ such that Ai = qi(Df X DF) for discs 
0; C Int D* and DF C Int Dk. 

Set B, = A,. Suppose flow-boxes B,, . . . , BK have been defined satisfying 1 and 2 
and covering A, U - * * U A,_l. For each v E Dpk, construct a flow-box as follows. If 
the boundary of the plaque ‘p,(Dp2 x {v}) has no tangencies or triple intersections with 
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plaque 

c tangency of plaque boundaries 
at this level 

Fig. 4. 

boundaries of plaques of B,, . . . , BK, set D,Z = Dp2. If it has a non-generic intersection, 
choose 0,’ C D* to be a disc concentric to and containing DP2, and which has none. 
Now since the boundary of (pp(Da’ x {II}) intersects boundaries of plaques of 

B,, . . . , BK either not at all or transversely, and has no triple intersections, the same 
will hold for cp,(D,*x {t}) for every t E D,’ C D’, a sufficiently small k-ball of 
positive radius about V. Set A, = cp,(D: x D,k). A finite number Dulk,. . . , D,,nk of these 
k-balls cover D,” with their interiors. Set BK+, = A,,, . . . , Bk+” = A,,. Now by con- 
struction the Bk+i-plaques intersect the Bj-plaques generically for j 5 k, and since the 
DUf are all concentric, there are no intersections between boundaries of Bk+i-plaques 
(unless it should happen that D,,k fl DUlkf 0 and DO,* = DO,*; this can be eliminated by 
expanding say D,f slightly). Furthermore A, C Bk+, U * * 1 U BK+“. Proceed in this 
manner until Ap+,, . . . , AL are covered. (See Fig. 5.) 

tangency has been eliminated 

Fig. 5. 

An easy modification of this argument proves the following proposition, which will 
be useful in establishing our main result. Suppose that M carries a continuous 
vectorfield V 

C M. Any non-generic tangency of Z with the foliation may be 
eliminated by an isotopy of the foliation small enough to preserve (*). Then V = p( V’) 
has the properties claimed.) 

PROPOSITION 4.3. Given a compact manifold M with a 2-dimensional foliation and a 
vectorfield V as above, then M admits a finite covering B,, . . . , BN by closed flow- 
boxes such that plaques of different flow-boxes intersect generically (as previously 
defined) and such that no zeroes of V occur on plaque boundaries. 

Definition. Given a continuous, non-zero vectorfield W defined in a neighborhood 
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of the unit circle S’ in R*, and two points B0 and 8, on the circle, we will say that W 
has a flip between 8,, and t9i if W is a positive multiple of J/&3 at & and a negative 
multiple of a/de at el, or vice versa. 

Let F represent the total number of consecutive flips of W counted around the 
circle. If Rot (W, S’) is the total angular rotation of W with respect to the tangent to 
the circle (i.e. 2~ times the winding number of W(e) e-” when Wlsl is represented by 
a complex-valued function on [O, 27r]), then IRot (W, S’)j I rF. In fact for any 
segment A C S’ and for any parametrization, we have 

(Rot (W, A)( 5 n(F + 2). 

Recall that the vectorfield V is nonzero in a neighborhood of the boundary of any 
plaque P of the flow-box covering given by Proposition 4.3. 

COROLLARY 4.4. For the flow-box covering of Proposition 4.3 there exists, besides 
the bounds l o, So, p, C, D established above, a bound p on the rotation of V along any 
segment of a plaque boundary. 

Proof. For any plaque P the number F(P) of flips of V around aP is finite, and 
n(F(P) + 2) bounds (Rot (V, A)/ for any segment A C JP. The Corollary follows from 
continuity of V, compactness of the flow-boxes and their finite number. 

5. AVERAGE EULER CHARACTERISTIC OF SUBEXPONENTIAL LEAVES 

THEOREM. A 2-dimensional leaf L of subexponential growth type in an orientable 
foliation of a compact manifold M satisfying H,(M; R) = 0 must have average Euler 
characteristic zero. 

Remark. The “infinite Loch Ness monster” has average Euler characteristic zero, 
as already noted: it has homology growing like r and area growing like r2. The 
appendix exhibits examples, for each n 2 2, of a foliation of S3 containing leaves with 
homology growing like r”, and area like r”+‘. 

Proof of Theorem. We may suppose that the foliation carries a tangent vectorfield 
V satisfying the hypotheses of Proposition 4.3. Let {PA} be the set of plaques of the 
flow-box covering given by that proposition. 

Let us pick a point x E L, set Ho = P+ a plaque containing x, and for i 2 1 set 
Hi = U PA, the union taken over all A such that PA fl Hi-1 Z 0. 

Assertion 1. The Hi are comparable to the B,(x). 

Assertion 2. limiinf area H, 
length dHi = o 

. 
1 

These assertions will be proved later. Using Assertion 2 and the method of 
Plante[7] we may extract from the Hi a subsequence H6 = Lo, Hi, = L,, . . . satisfying 

(*) lim 
length aLj 

0 
j+m area Lj = 
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Li 
and which defines a real 2-cycle lim- jra area Lj 

representing 

class of L. 

21s 

an asymptotic homology 

The Euler characteristic x(Li) is given by applying to Li and V the rule 

27rx(N) = - Rot (W, dN) + 27r c Index (W, p) 
PEN 

which holds for any surface N carrying a vectorfield W nonzero along 8N and with 
isolated zeroes 
exercise.) 

at points P in the interior. (The derivation of this rule is an easy 

Assertion 3. lim 
Rot (Vy dLi) 

= 
0. 

i- area Lj 

Assertion 4. lim ___ ’ x Index(V,p)=O. 
j-00 area Lj p E ~~ 

X(Lj) 
These two assertions imply that lim ___ = 

j- area Lj 
0. Since Assertion 1 implies that the 

Lj are comparable to the B,(x), the theorem is proved if the four assertions are true. 

Proof of Assertion 1. We use the constants 0, p from Corollary 4.4, and observe 
that B,;(X) C Hi C B,(X). 

Proof of Assertion 2. We use the constants C, 6,, from Corollary 4.4. First remark 
that 

length aHi 5 $ area (Hi - Hi_,). 

In fact, in the set of new plaques added to Hi-1 to form Hi, the only ones contributing 
to the boundary are those “independent” plaques which are not covered by any other 
plaques intersecting Hi_,, and each of these contributes to the area of Hi -Hi_, at 
least one sector which is contributed by no other plaque. Thus length JHi 5 C(number 
of independent plaques) and area(& - Hi_,) 2 G&umber of independent plaques), 
yielding the desired inequality. 

Next we observe that limiinf 
area (Hi - Hi_,) _ 

area Hi 
- 0. If it were otherwise, there would 

be an iO and an (Y > 0 such that 
area (Hi - Hi_,) 

area Hi 
> LY, for i > iO. Consequently 

area BDi > area Hi > (1 + a)‘-” area Hh, 

and L could not have subexponential growth. 

Proof of Assertion 3. We use the constants l o, p from Corollary 4.4. The 
boundary of Lj is made up of segments of plaque boundaries separated by corners. 
Since the corners are at least l o apart the total number of corners (and of segments) 
appearing in dLi is bounded by l/e0 length dLi. The rotation along any segment is 
bounded by p. The rotation at any corner is bounded by n. The assertion now follows 
from (*). 
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Proof of Assertion 4. Here is where the hypothesis on the Betti number is used. 
The index of V at p is defined as usual by Index (V, p) = I+ (1/2~) Rot (V, JD) where 
D is a disc about p containing no zeroes in D - {p}. The intersection number of L and 
2 at p is defined by approximating L in D with a surface intersecting 2 transversely, 
and counting the intersection numbers so obtained. It is not difficult to see that these 
two numbers are equal. Consequently 

lim ~ ’ 2 Index(V,p) 
j-+x area Lj p E ~~ 

is the intersection number of Z with the asymptotic cycle lim 
Li 

j- area Lj’ 
Since the 

manifold has no real 2-dimensional homology or cohomology, this number must be 0. 

Remarks. (1) The hypothesis H,(M; R) = 0 could be replaced by the weaker 
requirement that the Euler class X of the tangent bundle of the foliation (which is 
PoincarC dual to Z) be zero in real homology. (2) Under stronger differentiability 
conditions one can be more explicit. Let us fix a Riemannian metric on M. Suppose 
for example that the foliation is Cm, so that it makes sense to talk about the geodesic 
curvature of the boundary of a plaque and so that the class X may be represented 
along the leaves by the Gauss-Bonnet integrand w. Then there will exist, besides the 
bounds E,,, &, p, C, D given by Corollary 4.2, and the upper bound A on the area of 
any plaque, global upper bounds ~~ and K. on the absolute value of the geodesic 
curvature of plaque boundaries and of the Gaussian curvature of the leaves of the 
foliation. 

Choose x E L and let B. = B,(x) C B, = B,(x) C - * * C L be an exhausting 
sequence defining an asymptotic cycle in the sense of [7]. This means in particular 
that 

lim length a& = 0 
i+m area Bi * 

Define Li to be the union of all the plaques intersecting Bi. Then the sequence 
Lo C L1 C * - - satisfies 

(a) &Jx) c Li C B,+&) 

(this implies that the Li are comparable to the B,i) 

Suppose now that 

1 r 

(b) area (Li - Bi) I A2 length 8Bi 
CL60 

(c) length JLi I cA length JB, 
MO 

I. 

B. 
the value of X on the asymptotic cycle lim A 

i-m area Bi 
is zero, i.e. 

that limA 
i-un area Bi I 

w = 0. By the Gauss-Bonnet Theorem, 
~~ 

x(Li) may be evaluated by 

the Euler characteristic 
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where K is the geodesic curvature and 0, is the exterior angle at a corner p of 8Li. 

Note that 
II I 

K ds Cr KO length aLi and that 
aLi I I 

c 0, 5 $ length aLi since the 
p E aLi 

minimum distance between consecutive corners is l o. 
Finally, 

and 

1 
lim ~ If I 1 
i+E area Li B, 

0 slim 
i+s area Bi Bi @ = I! I 0 

1 
lim ~ 
j+ area Li & & so length aBi = 0 

I 

length 8Li 5 lim & $$ length dBi = 0 
i-co I 

so L has average Euler characteristic zero. 
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APPENDIX: EXAMPLES OF LEAVES 

For each n z 2 we exhibit here a class-c” foliation of S3 containing leaves L, with 
homology growing like r”, and area like PI. 

Let D, represent a closed 2-disc less the interiors of n distinct discs in its interior. 
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Draw a set yl,. . . , -yn of non-intersecting arcs, so that each hole is joined to the 
outside boundary. Parametrize S’ by 0 I t < 1. 

The Cartesian product S’ X 0, is foliated by the {t} x 0,. Modify this foliation by 
slicing along S’ x ‘yj and joining the t-level on one side of the cut to the (t + e’)-level 
on the other; and do this for each i = 1,. . . , n. The new leaves in S’ x D,, are all 
identical. Their area and homology both grow like polynomials of degree n: each leaf 
can be placed along an n-dimensional lattice in the way shown in Fig. 6 for II = 2. 

Fig. 6. 

The next step is to modify this foliation by drawing the leaves up so as to make 
them tangent to the boundary. Then add n Reeb components to fill the interior holes; 
this gives a foliated solid torus. Joining one more Reeb component will then yield a 
foliation of S3; and this can all be done smoothly[5]. 

The quasi-isometry class L, of the modified leaves can be represented for n = 2 by 
adding a half-plane along each of the edges in the figure, and for higher n similarly. 
The area in L, will now grow like a polynomial of degree n + 1, since a ball of radius r 
will encounter edges of total length proportional to r”, and will cut into each of the 
added half-planes to a height proportional, on the average, to r. 


