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If P is & finitely generated discrete subgroup of linear fractionasl

az + b
cz + d

A= A() to be the set of cluster points of the orbit under [ of any

transformations [z = } . one defines since Poincaré the limit set

fixed point zy €& . One knows A is a closed subset of the Riemanm
gphere & U = which is either everything or a'ciosed nowhere dense sub-
get of B i« .

A famous problem in the tﬁeory of such graups is Ahlfors quastiom

{1965): If the limit set A(l) "is not the entire Riemann sphere, is the

two-dimensional Lebespue measurev* of A"} equal to zero?

This questio§ iz still unresgolved, although Ahlfors himself (1967)
aéttleé the question affirmatively for groups which have a fundsmental
domain of finitely many sides for their action on the 3 - dimensional hyper-
bolic space. More recently, Thurston (1978), has resolved the question
affirmatively for groups which have infinite sided fundamental domains
but Which‘&re limits in a stf;;g sense of grou#s with finite sided funda-
mental domains. These limiting groups play s central role im the study
of finitely generated groups so Thurston's theorem is a deciéive advance.

In this paper we will show on the contrary that for some of these

%
limit groups  the Hausdorf measure of the limit set for the gauge

fugction rzlog 1/x is positive., 1In particular the Hausdorf dimension -

of the limit set is equal to twe. (§6).

*
Those with no short closed geodesics. .

It will be uvseful to remember that plasar measure is Hausdorf wessure using

the gauge function 2 .



The proof makes use of a canonical measure p on the limif set (§5)
which satisfies
L % a2 -
* o vio= fyle v €l

where -|y’] 1is the linear distortion of the spherical metric on s |

the. boundary of the unit ball wodel of hyperbolic 3 - space. We conjecture

that-in these examples p 1is the Hausdorf measure for the gauge function

r2(103 ifr)ifz(iag log log I/r)E!Z .

In the first three sections we develop general estimates concerning

positive harmonic functions on some end of 3 Riemannis menifold. For

‘example, any such pesitive harmonic function which is proper eirher grows

at most linearly or the end of the manifold is infinitely aﬁten arbitrarily

i

i

skinny. (§1). i

§1 growth of Positive Barmonic Functioms

We consider a harmonic functiom h on a complete oriented Riemannian
maniﬁélé M . We assume that M = hﬂl{e,m) has a compact houndary and
that hf&% is proper; that is hui{a,b} is compact £0r< 0za<ha<n,
We Ffurther assume thst ﬁ+ has bounded geometyy locally; that is each
point of M+ {away from the boundary)‘haﬁ a ball meighborhood of radius
1 which is a gecmetricaliy'boundeé distortion of a unit ball in Euclidean

space.

~

Theorem 1: Under the zbove assumptions on h and M, the pradient of

h is uniformly bounded on. M.
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Corollary: The growth of h in M, 1Is at most iinear in the distance

féoﬁli@'fixe& point of M, . .

L

¥Froof of Corollary: Choose a geodesic connecting the fixed point and
the arbitrary point. The change in h alrmg- the geodesic is by the

theorem no more than a constant times the length of the geodesic.

© Proof of theorem 1: We assemble some general facts about harmonic func-

tions. By the *values at distance one" we mean the values in a neighbor-
hood of radius one about some point.

i) The size of the first and second derivatives of a harmonic

function at a point are centrolled by the values at distance one. (This

follows from the average value property and th bownded geometry.}

o

ii) For z positive hammonic function the value at a point p con-

trols the values at distance ome. (This is a form of Harnack's frequality

for bounded geometry.)

if1)} The gradient of a harmonic funciion defines 3 volume:_ presexrving

flow. (Laplacian h = 0 means divergence (gradient h) = 0),
How 4} implies:

iv) The size of the second derivative at a point p is controlled

by the values of the first derivative at distance one. (Subtract off a

constant to make h(p) = 0 . This deesn’t change any derivatives. Now
the values at distance one are controlled by the values of the first deriva-

tive at distance one which therefore by 1) control the value of the second

-_—
-

éerivati\-fe at p . This proves iv}.).

And 1i) implies:

v) - The growth of a positive harmonic function or its gradient is at
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most that of some fixed exponential. (Ey ii) the values control the values
.‘at distance one which by 1) control the values of the derivatives., HNow
integrate,) |
Finaily 1ii} implies:

vi) If A and B are compact hypersurfaces which bound a region

R , then the flux of grad h across A equals the flux of grad h ‘aéross

B - (We mean the integral of the normal components of the gradients are
equal., This follows from Stokes theorem, using iii).);

Now we are ready to prove the theorem:

i} Coneider the level sets of h . These are’compacﬁ since h is
proper and for gimost all values of h they are hypersurfaces. Also the
levels for two values a and S bound the regiom hwl{a,b} . The |
gradient is normal t;.the levels so by vi) we have '&_1. | grad i
is some constant independent of which value .2 we conside(ra)(as long as
hmia is a hypersurface).

2) Suppose at some point p the gradient is wery large {compared to
constants involved in the bounded local geometry of @%. aﬁd the properties
£y and 1i).) We claim the gr&dient_is either much larger or much smller
-in a unit neighbofhood B of p . (If nmot, consider the "fibring" of
B' by the levels of 'h . Since the gradient is uniform on B the coarea
formula shows that some good level has a definite‘area, But them this
contradiets 1) bedause the integral of lgrad h[ over this plece would
be too large.) |

3) UWe want the first conclusion of 2) that the gradilent is much

—
-

larger at a point of B . So assume the second possibility that it is

much smaller at a nearby point, Now if the value of grad h at p is
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N , the argument above could have used a neighborhood of any fixed size

after taking W large enough to get the contradiction. Thus we see the
!

gradient changes from size N to less than 1/2 § say in a very small

' distance. In order for this to happen, the second derivative must be

much larger than N in the neighborhood. Thué by iv} the gradient
itself must be much larger at a nearby point.

7. &) Using 2) and 3) repeatedly we construct a seéuence of points
‘P o= PgsPysPpaees so that the gradient increases along these at least
by a fized factor (arbitrarily large) and distance {Pi+1’pi) § 1.

This contradicts v} and the theorem is proved.

§2 The Infimum of Positive Superharmonic Functions.

. A
To apply §1 we need to show that certain harmonic f@nctions are

pEOperf In this section we abstract an argument from Thurston's notes
{T, 8.12,31 for this purpose. We suppose %e have a complete Riemannian
manifold @a- with a compact boundary and regiané Ll,Lz,... {called
bands) so that

| i) the bands Ll,Lz,... d;antain unit width neigﬁbqrhoods of compact
hypersurfaces 81,52,... ali homologous to the boundary of E% and which

tend to o= in 'M+ .

S c).

ii) the voluyme of the respective bands is bounded {wl Li




s
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¥ow jet h be any p;asitive superha%moﬁic function on M that is,

h 1is positive and the gradient of h is volume nom~increasing.

Theorem 2: The infimum of h 1is assumed on the boundary of M .

4

Proof: {Thurstonl {»;}“;,, 8.12.31 } 1) Consider the fiow q;t(x) corres-

ponding to the vector field -grad h . If AC {cpt(x) stz 0}, let

A
4

¢ be the time the trajectory spends in A which has Riemannian length

A w
Applying Schwartz,

2

1 Jgrad h d{o)z

fgrad h

@,)

!
s~
e

. s Y :
s(& prrall u&gmd h)

-==T (variation of h en A).

Since h is positive and decreasing for positive time one obtains

-

*) T, (LA)th(x)_ .




2) The inequality (¥) shows the flow P is defined for all time
unless the trajectory exits at the boﬁndary.

Now take any point x and let .B be a small ball about x . We
want to show almost all trajectories starting in B exit at the boundary.
If not there 'is a set of such trajectories of ‘positive measure wnich stay

in M+ for all time. Since the volume is nondecreasirdpg wunder the flow

P and since the rvegions between the bands and the boundary are couwpact,
‘these trajectories must cross infinitely many bands,

The inequality implies each flow line spends time in crossing k-
bandg_g'on the order of kz {since =ach has width = 1). Since the volume
of %k -bands is of the order k and the flow is volume non~decreasing we
have ‘a contra(giction. B .

- 3) Thus ;lmstpall trajectories starting from B ex%\it: at the boun&afy.
S0 choose a sequence of such starting points Xg X Then h(xi} - hix) ,

and h(xi) = h(Yi} for some vy, € oM, . Thus h{x) = inf h{y} for

y e . This proves theorem 2.

Now we assume in addition that the bands Li are conme cted, have
bounded diameters and the local geometry of Ivi+ is bounded for points in

the bands. Then we have the

Corollaxy2.1: I1f h 1is a positive harmonic function on M+ then either

h is bounded or h{x) = » if x#mgg ﬂ_y;that“i;g, h is proper.

g Using the

additional assumptions om Li and properties 1) and ii) in the proof

Proof: Considei the minimum mi of h in each band 1L

of theorem 1 we can get a constant ¢ 50 that the maximum Mi cf h

satisfies M, < cmi' . {Namely igr&d h\ < ch .)

in the band Li
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By the maximm principle if the M, are bounded h 4z bounded on
ﬁ+ . Otherwise Mi - » which implies m -+ © , Applying Theorem 2 o
the part M+(i} of M, outside the band L, shows m is the minimum

of h festricteﬁ to ﬁ+(i) . This proves Corollary 2.l.

Now suppose we have a manifold with at least 2 ends and bounded

volume homologous bands golng to < in both directions.

gorollary 2.2: Under these assumptions M admits no positive non constant

superharmonic function.

Proof: The {nfimum of h is approached by the values of h 1in the

part of M on one side or another of a given band. Applying Theorem 2
to this side shows the minimm@ is achieved in this band. This violates
the minimum principle which is valid for positive superharmonic functions.

So corollary 2.2 is proven.

Bistorical Note. Variants of the corollary were proven by Ahlfors

(C.R.A.S. Paris, 1936) in the context of Riewann surfaces.
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§3 Positive Harmonic ¥unctlons on Quasi-cylinders
£

. b
Now we make more gé&m&tric assumptions about our manifeld with
boundary ﬁ . Not only is the geometry of ¥  locally bounded but
for each n the hypersurface at some distance d from 3M in the

interval [n,n 4 1] has bounded diameter. We call such menifolds

"quasi~-cylinders",

—

i % 5 K
Any manifold obtained from the product V X [0,») , whexre V is a compact

closed Riemannian manifold, by a bounded distortion of the metric {s a

quasi-cylinder.

Theorem 3: A "guasi-cylinder™ M admits a non-constant positive harmonic
Zheorem A A P

o

function, Anv such function 'h satisfies for some constant ¢ < @ s

% distance (x,oM) < h{x) £ ¢ distance {x,3M) .

E522§3 1} The construction of such an h is quite general and uses
nong of the geémetric hypotheses. Fof each n construct a harmonic
function which 1s § on the boundary and n on the nth surface 8, Such
e function is = O b§ the minimum principle.

Multiplying by constants we obtala h(p) = 1 for some fixéé peEM.,

By Harpack's inequality applied tc fixed compact neighborhood of P we
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have a famlly of functions with bounded gradiént. There is then a conver-
gent subsequence on this neighborhood. Taking larger and larger neighbor-
hoods and subsequences yields a global nonnagati§e harmonic.function which
is zero on oM -and 1 at p . Y¥ow add a positive constant.

2} By corollary 2;1 such a function is éither proper or bounded. By
theorem 1 or Harnack the gradienﬁ cf h is bounded. This proves the
nﬁgér boumnd.

To get the lower bound we use the additional gﬁameﬁric hypotheses.

We suppose the function h is non-constant. Then almost all trajec-
tofies exit at the boundary by theorem 2. In particular the flux of
-grad h éf the bbuadary, I (grad h) -(nﬁrmal) , 1s non-zero. Then the
flux-at each of the hom@logéls sﬁrfaces Sn is this same non-zero con--
stant. Since the Sn's have bounded area the function lgrad h| must
have a definite value at some point p € S~ (otherwise j; | grad hl
would be too small). 8o if Rn denoktes the region betwgenI%aM and Sn
we have Eki(gra& h)2 = cn because we gebt a definite contributiai around
each p_ . .Applying Green's formula

‘f (grad h).2 = f.£ «grad h + I h-grad h
3 S

R
n o n

vields h omn Sn must be at least cn because the first term is bounded
gnd grad h 1is bounded. Since diametey Sn igs bounded and grad h 1is
bounded h only varies by a bounded amount on S, « This proves

theorem 3.
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§4 The Critical Exponent of Certain Hyperbclic Manifolds

We consider 3 - dimensional hyperbolic manifolds M which satinfy

1} ﬂl(Mj is isomorphic to the fundamental group of a compact sur-~
face of genus g . |

11} the limit se;‘of I'= nIM in E{}d is nee all of the Riemann
sphere.

-Niii) there is a separating surface in ¥ so that the part of

M on one side is a quasi-cylinder . (§3) .,

guntace | "
e ,f"““m~“'“-m“¢,ﬂ--ﬂ'"”’p-“d’Mh
T

T

?$uxg£ - cyfﬁuﬁef‘

™M

We'will explain in §7 how such manifolds (which we refer to as

hyperbolic half cylinders) arise in Thurston's discussion of limies of

geometrically finite quasi-fuchsian groups. There are uncountably many

such manifolds so that no two have metrics related by a bounded distortion,

~ We xecall the critical exponent §(F}) of T mMC {z - cz5+-2} .
By IS, §2, Corollary 4] this may be dcfined as the infimum (which is
achieved ) of real numbers o so that there is a finite measure  on

the limit set A(I') satisfying

(*’} ‘ Y*p' 2 lV:iQ’p’ N v £ T .

~.
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Theorem 4 (Sullivan and Thurston): The critical exponent of a hyperbolic

half cylinder is equalito two, 6(I) =2 .

Proof:- The proof makes use of one of the ideas from the existence proof
of Thurston's hyperbolic structures on 3 - manifolds which fibre over the
circle.

Bamely, we consider base points R T which‘travel out the
eylindrical end of M . Geometrically, a reglon of fixed radius about

%, converges to a region of that radius in a hyperbolic full cylinder

i
{at least for 'a subsequence) (see [T, 9.1}1).

We can apply éorollary 2,2 to see that the full cylinder supports
n& non-constant positive superharmonic functionm.

On the other hand ;%gégsure satisfying (¥) for C <y <2 deter-
mines 2 positive eigénfunction of the Laplacian with eigenvalue ofg - 2) ;
see [S, §7]. Such a function may be normalized to be one at Xy > and
we can take a limit to obtain a positive eigaﬁfﬂﬁﬂtion on the hyperbolic

full cylinder. Since wlx - 2) # 0 this 1limit function is not constant

and superbarmonic (since o(y~2) < 0 ), a contradiction.

Rémark:- The critical exponent O&8(T') is origimally defined (see {8} for
connections to previous work) as the critical expoment of the Poincaré
series gS{x,y) = Ej exp{~s distance (x,yg) where x and y 1lie in

e
hyperbolic 3 -.space and gs(x,y} converges for s > §(T') and diverges

for s < H(T) .

—
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§5 The Canonical Mrasure Associated to a Hyperbolic Half cyvlinder

We assume [ 18 the discrete group of linear fractional transfor-

mations determined By & hyperbolic half cylinder as defined in §4.

Theorem 5: There ir On the limit set of I one and only one probability

measure satisfyving

o 2
| Y*;L”1Y!\t~¥’ yer .

‘proof: Since the critical exponent &6(T') equals 2 by theorem 4 at

least one such measure exists (see §4, and [S, §1, §2})-

For uniqueness we show that any suc%%if I .1-5 ergodic. PFor then if
v is another, so is M "“’%"(u + v} s whxch is also ergodic. Then the
Radon ratio of ‘aﬂé 'm is constant, 'Ifhus w = m since beth are

probability measurcn. Similarly v =m and se p =y .
Wow such a y determipes a T - invariant positive harmonic function h on

hyperbolic 3 -spaces If A is a T - invaviant subset of the limit set

which has positive # » then w/d also defines a positive T -dinvariant

harmonic fumetion N, - If W) <1, then along a 4 positive set of

*

rays the ratio hA/" tends to zero, (More generally hA/ﬁ - ¢haraeteris-

tic functien of A for p almost all rays.)

But this contyadicts theorem 3 which impllies any two non-constant
positive harmonic gunctions are in a bounded ratio at all points of
¥ (which for definiteness we take to be the convex hull of the limit

+
set of T modulo the actiom of T .) This proves theorem 5.

.

f a bypexrbolic half

The area of the limit set

Coroliary (Thurston):

-

cylinder is equal i« Z8I0.
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Proof: If the area were posltive then the unique measure of theorem 5
would be Lebesgue measure. But then the associated positive harmonic

function would be bounded, contradicting theorem 3.

§6 The Hausdorf Dimemsion of the Limit Set

We continue studying the limit set of a hyperbolic half cylinder M

' usiﬁg the canonical measure p of §5 and the estimate on positive

harmonic functions of §3. Let u(E,r) denote the y mass of a disk

of radius r on the sphere centered at £ in the limit set AT -

Theorem 6: We have the inequality

- w{E,r) s constant r210g r

for all E, r.,

Proof: TLet the centeyr of the ball model of hyperbolic 3 ~ gpace corres-

ponds £o p € M . We consider geodesics emanating from p . Let d{v(t))
denote the hyperbolic distance from p to wvw(t) , the point achieved
after traveling time ¢t starting in the direction v . Let § = E(v)

be the point on the sphere in the divection of v and r = r{t)} be

Al
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Using the definition of h yields wlg,r) s czzh{v(t}) . Bince
h{vle)) = fiy’\zdg vhere ¥"1 is théVhyperboiic isometry woving p
along the geodesic towards £ a distence t .)

| ﬁince d{v{t)) £ £, hi{vi(t)) = ct by theorem 3 vhich implias
h{v{t)) < c log 1/r . Thus u(g,r) « constant rzibg 1/r for all £

and T . This proves theorem 6.m

Cééaliagz: The Hausdorf dimension of the limit set AT) 1is equal to

two. In fact the Hausdorf measure of AET) reiatiﬁe_gg the pauge func-

zion rziog 1/r s positive.

Proof: If $(x) = rziog 1/r and Tys¥psees 8Te the radii of any
covefing of A() by balls of radii TysTgsees and centers gi,gz,... .

then i
\

1= (AR)) & u(E;HTy) S 1 4(ry)
i i

By definition the Hausdorf measure H, , which is constructed frcm\

¥

infinium of such expressions, is = 1 ,

Clearly if ¢ >0 ¢{(x) = rzmg eventually so tle Hausdorf measure
with gauge function r2-£ is also 2 1 , Thus the Hausdorf dimension

>2-¢ forall ¢>0 . This proves the corollary.

Remark: We suppose the Hausdorf measure for the gauge funciion rzlog ifx

is actually infinity. We conjecture in fact that a finite positive Haus-

‘dorf measure can only result using the gauge function

/ 2

«r?(log ilr)i 2(103 log 1§g 1/r)1
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§7 Existence of Hyperbolic half Cylinders

A &iscreté subgroup of hyperbolic isﬂmetries isomorphic to Ty (compact
surface) is called quasi-fuchsian if the 1imit set is a topological circle.

Bcwen {1978) ?roved this circle is actually round of the Hausdorf dimension

is >1.

Now such groups ave determined up tﬂ isomﬁrphisﬁ,.ﬁers {1965), by
t%a.pnlnts in Tezchmuller space of the surface (corvespcndmng to the two
-éamalns of discontinuity module the group)}. Moreover Lif one of the points
in Teichmuller space approaches = limit groups wete canstructed by Bexs.

For éxample in Jorgensen's descriptign [J} of tha punciured torus |
case, Teichmuller space‘is the Poincare disk and the geometry of the
hygerbolxc 3 manifold correspond1ng to the limit group is controlled by
tha tail of the continued fraction expansion of a limiting point on the
boundary of the disk.

A hyperbolic half cylinder results {Wé ignore the cusp) iff the partial

convergents are bounded., Thus there are uncountébly many distinct examples

but they form a set of measure zero in the space of all possible limits.
For the hxgher genus comnéét surface case there is an exactly analo-

gous picture thanks to the geometric work of Thurston., The limit groups

ere labeled by an ending lamination on the 6g-7 dimensional sphere

Thurston boundary of Teichmuller space. There is a generalized continued

fraction expansion for this ending lamination (see Kerchoff's proof of

M. Keane's conjectura). A hyperbolic half cyiinder conjecturally results

when the convergents are bounded, and .this is proven in infinitely many

cases (e.g. pericdic cases corresponding to fibred hyperbolic 3 -manifolds).

-
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Finally, how does the Hausdorf dimension of the gquasi-fuchsian limit

sets behave as the group limits on one of these hyperbolic half eylinders.

Theorem 7: 1f f‘t s 3 family of quasi~fuchsian surface groupe varying

continuously and converging algebraically When' t = » to a hyperbolic

half cvlinder, and if Dt is the Hausdorf dimension of the guagi-circle

1imit set correspornding to I‘t , then D, varies continuously and

Pl

i)t-bZ as tea® .,

Proof: If I‘t © and I‘t are quasi confermally comjugate by a 4qc
1. 2

* homeomorphism ¢ with small dilation, then Dt ig close to Bt

' i "2

because there is a Holder estimate for ¢ with exponent nmear 1 .

This is what we mean by continuous variation of D, - |

How we prove i)& -+ 2 , It is enough by [S, Theorem 7] to prove
the critical expenents &(T t) <2 . By [T, ﬁeerem 9.-2] the 1imit sets
of T p Comverge in the sense of the Hausdorf metric to that of the limit

group. If sup 6(I‘t) <2 , we could construct a weasure y on the limit
. . % }

set of the limlt group satisfying v u = W"\mp, for o< 2 . This contra-

dicts theorem 4 of this paper. .Thus in fact for any sequence of ¢, 4 &

sup 5(Ft Y =2, This proves theorem 7.
. i
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