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The idea that one can radially identify Euclidean space R"
with the interior of the finite ball B™ has been very useful. In
de Rham's book of 1955 a smoothing procedure for currents ishbased
on the fact that the translation group of R" damps out to the
identity in a C” fashion at the boundary of B". Thus familiar
convolution in R™ can be coordinate wise placed on agereral smooth
manifold. 1In 1963 Connell's work on approximating a homeomorphism
by a piecewise affine homeomorphism was based on the similar idea
that a homeomorphism a bounded distance from the identity on R"
becomes the identity at the boundary at B". In 1968 the specta-
cular results of Kirby, Edwards-Kirby and Kirby-Siebenmann incor-
porated the Connell idea with the ingenious use of the torusT® to
arrive at periodic and thus bounded homeomorphisms of R". (See

quotation in "radial engulfing" below.)

We now propose the idea that one may further profit from the
idea that the ball B" with its Euclidean geometry is conformally
equivalent to hyperbolic space, the carrier of non-Euclidean geo-

metry.
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Analogous to de Rham, we note that heat diffusion in hyper-
bolic space damps out to the identity at the boundary of 8" and
we can construct coordinate wise on general manifolds a smoothing

procedure with conformal symmetry properties.

Analogous to Connell, we have the simple proposition that a
quasi-isometry'1 of hyperbolic space which is a hounded hyperbolic
distance from the identity determines a quasi-isometry of : (in
its Buclidean metric) which is the identity at the boundary. This
follows easily since the conformal factor is essentially the

Euclidean distance to the boundary, namely,

(hyperbolic elementl,(Buclidean element).(Euclidegn distance to
to boundary)

Similarly, a bounded quasi-conformal2 homeomorphism of hyperholic
space determines a quasi-conformal homeomorphism-of the closed

ball which is the identity at the boundary.

Analogous to the Kirby immersion torus devise we have the
following

i) there are discrete groups of isometries of hyperbolic
space so that the quotient is a compact manifold. (This
is classical but non-trivial for » > 6, see "hyperbolic
space forms' below.)

ii) for each of these there is a finite cover which is paral-
lelizable in the complement of a point. (At the moment
the proof of this fact makes use of deep properties of

etale homotopy theory in characteristic p, see below.)

L)

14 homeomorphism which distorts the metric by only a bounded
amount. Or ¢ and ¢“l satisfy a uniform Lipschitz condition.
ZA homeomorphiem which distorte the conformal geometry by

mlu a bounded amount.
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iii) thus we have desired "hyperbolic manifolds" in each dimen-
sion 2,3,4,.....5 %, ..... to apply Kirby's immersion

device.

Namely, we have Mn so that Mn-pt immerses in Rn, M is com-
pact, and the universial cover of M s hyperbolic space. We note
these manifolds are not related in simple inductive manner as are

the torii 7'. For n = 2, any surface of higher genus works here.

M - ball

/D

Fig. 1.

For » = 3 one can imagine a discrete group defined by reflect-
ing a symmetrical dodecahedion with dihedral angles equal to
/2.

iv) Now following Kirby (see figure 1) we can immerse
M* - ball in Bg and extend a homeomorphism defined near
image (" - ball) and sufficiently close to the identity
to approximately M' - ball. Thinking of the deleted ball
in polar coordination we can furl (see "furling" below)

to obtain commutation with a radial homothety and extend
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over the ball by infinite repetition. We have extended
the quasi-isometry defined near Bl and close to the iden-
tity to a global quasi-isometry of M close to the identity:

We 1ift to hyperbolic space apply the remark above about
bounded quasi-isometries of hyperbolic space to obtain a quasi
isometry of B" which is the identity at the bdry and containing
the original on B,. This is the 0-handle case required for the
construction of isotopies as in the Edwards ~ Kirby, paper (Annals

of Math 93 (1971) pp. 63-88.)

v) For the k-handle case we choose a group as in iv) for
hyperbolic space of dimension (n - kJ. We extend this
group by geodesic perpendicularity to a group in hyper-
bolic n-space. Then the fundamental domain has the form
Dkan"k (k =1, n = 3 is shown in figure 2)

Fig. 2.
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Then we treat a homeomorphism defined near the core of a
k-handle which is close to the identity and equal to the identity
near the bdry. Firstly, we use the Kirby immersion devise as in
iv) to obtain an extension to the (fundamental domain -

(n-k) ball) x Dk compatible with the group. Then since we have
the identity near the bdry we again have an n-dimensional hole
which can be filled in by furling and infinite repetition as in
iv). We extend by the group and apply the bounded quasi-isometry
remark to obtain a quasi-isometry of B" which is the identity at
the bdry and agrees with the original near the core of the k-
handle.

Using a fine handle decomposition and iv) and v) inductively
we find that in the context of quasi-isometries or quasi-conformal

homeomorphisms of any smooth manifold

THEOREM 1. a) A homeomorphism near a compact domain and pt wise
close to the identity can be extended to a global homeomorphiem
which is the identity outside a elightly larger neighborhood.

b) Sufficiently elose homeomorphisms are connected by a path
of homeomorphism, that ie they are isotopies.

e) The construction of isotopice ies loecal, relative, com-
patible with parameters, etc., that is we have the Cernavekii,
Kirby-Edwarde isotopy theory)

To have the proof for quasi-conformal also we note that
everything works the same. We note also there is the stronger
extension fact (Gehring) that any quasi-conformal mapping of
interior B" extends to the quasi-conformal on the closed B" and
the boundary maps is also quasi-conformal in dim »n - I
Remark. The schoenflies theorem (a collared (n - 1) sphere in 5"
bounds a ball), the Annulus theorem (the region between two col-

lared (n - 1) spheres is Sn"Z x I) and the component problem (an
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orientation preserving homeomorphism of a hall into R’ is connected
to the identity by a path of homeomorphisms) come out nicely in

these quasi conformal and quasi isometric contexts.

The isotopy extension of Theorem 1 shows a) connected sum
is well defined which allows one to easily give Mazur's proof of
Schoenflies with the infinite bad point being homothetic and all
right for the quasi contexts, b) the component problem follows
since we have derivatives at almost all points. Thus we can use
Milnor's isotopy {e+'¢e—ﬁ- near a point to change the map to
nearly its derivative and extend this change by theorem 1. First-
ly, as usual Schoenflies and the component problem implies the

Annulus theorem given isotopy extension (Theorem 1). So we have

COROLLARY 1. In the quagi-conformal and quasi-igometry contexte
we have the Schoenfliee theorem, the Anmulue theorem, and the com-
ponent problem in all dimensions.

Of course in the topological context the Annulus theorem is
unknown in dimension 4 (while Schoenflies is known) and in the
pl or smooth context Schoenflies is unknown in dimension 4 (while
the component problem is known). Only part of the corollary is
new (see Viisila).

Another corollary is the following - by the above quasi-
conformal homeomorphisms of R* are stable and thus (using Connell)
approximable hy piecewise affine homeomorphism in dimensions > &,
(which demonstration we have reached without using Kirby's Annulus

theoren).

Now we will change terminology and refer to quasi-isometries
as Lipschitz homeomorphisms. We want to discuss approximating
arbitrary homeomorphism by Lipschitz homeomorphism. For dimen-

sions less than 4 there is a good classical theory (Moise).
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Dimension 4 is unknown and remains so. For dimensions greater
than 4 we get full positive results using Connell's radial engulf-

ing and Kirby's Annulus theorem.

As usual it will suffice to study a homeomorphism of a handle

Dk x Dn_k into K" which is Lipschitz near (3 Dk x pt). Using
Connell's radial engulfing (see below) we spread the Lipschitz
property across the k-handle at the cost of an ¢ discrepancy on
nghd (Dk-l c? Dk). This discrepancy is Lipschitz and can by
Theorem 1 or v) be extended to a Lipschitz homeomorphism which is
the identity outside a small nghd of the discrepancy. The compo-
sition of the latter with the former gives the desired relative

Lipschitz approximation on the handle.

Applying this result inductively to a fine handle decomposi-

tion we have the

THEOREM 2. A homeomorphism defined near a compact connected
region L of Rn, n # 4, into E' which ie Lipschita near a non void
sub compact K can be approximated pt wise by a Lipschitz homeo-
morphiem which is unchanged near X.

Remark. We need K to be non void to do the zero handles. If there
is no K we use Kirby's annulus theorem for the zero handles to

obtain
COROLLARY 2. Theorem 2 ig also true when K ig void
COROLLARY 3. Topological manifolds of dimension # 4 have Lipschitz

coordinate systems. Such locally Euclidean Lipschitz structures

are unique up to homeomorphism close to the identity.
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Corollary 3 follows by standard arguments using Theorem 2
and corollary 2 and fine handle decompositions in coordinate
neighborhoods.,

CONCLUDING REMARKS

The unique Lipschitz structure on topological manifolds allows
one certain geometrical and analytical methods. The discussions
in Whitney's book "Geometric Integration'" and Federer's book
"Geometric measure Theory' are invariant under Lipschitz changes

of coordinates.

Thus we have the theory of Hausdorf measure and dimension on
k-dimensional subsets 0 < k < n. Thi's implies general position,
(intersection empty) and complementary dimension transversality
(zero dimensional intersection) and almost everywhere transversa-
lity (general dimension) on the level of cycles or currents,

(federer).

We have also a class of differential forms closed under wedge
product, exterior differentiation, and transforming by Lipschitz
mappings. These Whitney forms (called flat forms in his book)
provided the original motivation1 for wanting a Lipschitz struc-
ture. Locally Whitney forms are defined by the property that they
and their exterior derivative (in the sense of distributions) are
forms with bounded measurable coefficients. Dualizing Whitney

forms give us currents.

On a Lipschitz manifold the L2-spaces of forms are well de-

fined (as pre-Hilbert spaces) with d as a closed unbounded

1AZso very important was Siebenmann's observation (1970) that
hie counterexample to the pl Hautvernutung was not a counter-
example to the analogous Lipschitz statement.
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operator. One can contemplate an index theory which would lead to
a new analytic proof of Norvikov's theory about Pontryagin classes.
There is a local Gauss Bomnett formula X, = [, U/diagonal where U
is a locally defined n form on ¥ x ¥ defined for example by smooth-
ing the diagonal current (p. 80 de Rham). Furthermore, this
equation can be proved directly and analytically taking as X , the

M
Euler characteristic for Whitney form cohomology.

There are many other mathematical contexts with a topological
component where hyperbolic space and its bdry plays an interesting
and important role. One might mention

i) Nielson theory - providing a natural homeomorphism
Aut (ﬂl (surfaces)) + (quasi-conformal homeo Sz)

ii) Teichmuller space and its boundary
iii) Thurston's canonical surface transformations
iv) Kleinian groups and non-compact hyperbolic 3-manifolds
v) Thurston's canonical hyperbolic structure on many compact
3-manifolds
vi) Anosov flows (geodesic flow on negative curved manifolds)
their structural stability, ergodicity, etc.

vii) Mostow's theorem on the rigidity of hyperbolic space
forms of finite volume (n > 3) and Gehring's quasi-con-
formal mappings in space

viii) Fefferman's theorem on complex analytic homeomorphisms

being smooth up to the boundary.

ix) Margulis and Gromov theorems in discrete groups and
Riemannian geometry

x) Furstenburg's work on random walks and Poisson boundary
(Corresponding to the beautiful fact that a random con-
tinuous path hits a definite point at « with probability
1.)
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At the time of the research it was mainly i), vi), and vii)
which motivated the ideas here. It is a pleasure to acknowledge
the inspiring discussions with Gromov and Thurston on hyperbolic

geometry and Edwards and Siebenmann on homeomorphisms.

Further topological references may be found in the body and
bibliography of the book by Kirby and Siebenmann '"Foundational
Essays on Topological manifolds, smoothings, and triangulations.”
Annals of Math Studies Princeton Univ. Press 1977. For quasi-
conformal mappings the body and bibliography of Mostow "Quasi-
conformal mappings in n-space and the regidity of hyperbolic space
forms" Publications Mathematiques I.H.E.S. No. 34 (1968): (is a

good source).

FURLING: M. Brown 1964 unpublished. Also L. Siebewmann, 'Pseudo
Ammuli and invertible cobordisms", Archiv der Math. 19 (1968)
28-35.

THEOREM. If X and Y are compact Hausdorf spaces and h is a almost
vertical homeomorphism of X x I onto a nghd of Y x 0 in Y x R,

then there is a homeomoz-zﬁhism g so that the following commutes
h

XxI[' —2*—» ¥YxR
Vi vj
xx 8§l —4— yx sl

Remark. The proof is ingenious but only two lines. If X and Y
are metric and % is a quasi-isometry so is g. Similar remarks
apply to the quasi-conformal context. Here I is an interval,
is a smaller interval, I'’is determined by an inclusion I’ c 6’1

and § by the projection R -~ Sl.
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HYPERBOLIC SPACE FORMS (Compact and almost parallelizable)

i) Let T denote matrices preserving the quadratic form

2 2 2 2 . R
7 HF Tt T -_Jﬁ'xn+1 with entries of the form n + mv/2,

x
n,m integers. Then T is a group of isometries of hyperbolic space,
which is discrete and has compact quotient. All this follows
easily using the field automorphism of §¥2, and the compactness
criterion for lattices in X' - minimal separation bounded from
below and volume bounded from above. (Algebraic group theory is
not required as it is for the more general result of Borel's paper

in the first volume of Topology.)

= aij mod 3)

in I' will have no torsion and define a manifold. This type of

A subgroup of finite index (e.g. (n + m/E)ij

construction is the only known way to get compact hyperbolic space

forms in n-dimesnions.

ii) It is not clear when such manifolds are almost paralle-
lizable. They are not parallelizable in even dimensions and their
analogues in complex hyperbolic space have non-trivial rational
Pontryagin classes. However, there is a fortunitous general re-
sult which saves us. Namely, '"Over a finite polyhedron a vector
bundle with diecrete structure group in a real orthogonal group
becomes continuously trivial in some finite cover." We can apply
this result because a real line bundle over our manifold is the
quotient of the positive light cone by the group. Thus its tan-
gent bundle is trivial in some finite cover by the general result.
It follows that some finite cover of a hyperbolic space form is
stably parallelizable (which is even more than almost paralleliz-

able by an elementory obstruction argument).

Now the general result follows because the complexification
of a real orthogonal group 0(p,q) has the homotopy type of
Q(nl, n=p + q. Etale homotopy
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theory in finite characteristics can be applied (as in Deligne,
Sullivan "Fibres complex ..." Compte Rendu t. 281) p. 1081 (1975),
to study principal 0(n,{) bundles with discrete structure groups

(and see they become trivial in finite covers).

The role of the orthogonal group here is crucial not only for
the proof but also for the truth of the assertion about bundles.
For Millson has recently constructed flat bundles with group
S1(n,r) so that the second Stiefel Whitney class is non-trivial in

every finite cover.

CONNELL 'S RADIAL ENGULFING: This is lemma 3 of E. H. Connell
Approximating stable homeomorphisms by piecewise linear ones."
Annals of Maths 78 (1963) pp. 326-338. It is stated there for
n > 7 where engulfing in codimension 4 follows from straight-
forward general position and induction. The result is just as
true for n > 5 by the more complicated double induction argument
needed for engulfing in codimension 3. This was explained to me

by Siebenmann but I don’t know a reference.

THEOREM. On Euclidean space of dimension > 5 there is a Homeo-
morphien which ie the identity om ome ball and stretchee a larger
ball over a third larger ball, which almost preserves radii, and

which ig piecewise linear relative to any given structure.

It is perhaps historically interesting to add the last para-
of this prescient and relevant paper.

"Suppose 7, and T, are two arbitrary pl structures on 2. 1t

is known (excepi in diiension 4) that 7 a homeomorphism %2 : E + F
which is pl from Tl to T2 (see Stallings and Moise). If & could
be chosen as a hounded homeomorphism, then by Lemma 5 % would be
stable and it would follow that all orientation preserving homeo-

morphisms are stable. Thus the annulus conjecture in dimension »
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would be true. Conversely, if the annulus conjecture were true in
all dimensions it would follow from the procedures of this paper
that (for n > 7) h could be chosen to be hounded. Thus the annulus
conjecture is roughly equivalent to thie strong form of the
Hauptvermutung for Euclidean space where %k is to be chosen as
bounded from the identity."

In light of the fact that five years later Kirby (1968)
reduced the Annulus conjecture to a ''periodic Hauptvermutung' for
Euclidean space (and the latter was sufficiently true by surgery

(1966) to finish) these remarks of Connell seem almost prophetic.





