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In this paper, we characterize those simplicial complexes

that are locally Lipschitz isomorphic to euclidean space. The

relevant lemmas concerning the conformal model of hyperbolic geo-

metry as the open unit disc have wider implications and appear as

appendices.

The objects of Lipschiiz topology, cf. [9], are metric spaces
X, ¥, etc. and the maps f : X »~ ¥ (morphisms) are (locally)
Lipschitz maps, i.e. each point in X admits a neighborhood U witk

a constant K < = so that for each pair x,y in U, one has

dlflxl, fy)) < K dlx,y).
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The restriction of f to U is said to be uniformaly Lipschitzl or

’
more precisely K-Lipschits.

Intuitively speaking, a Lipschitz map is one that oheys
locally posted (or temporary) speed limits. Of course, on a com-
pact space X, a Lipschitz map obeys a single speed limit, i.e. it

is K-Lipschitz for some X < » (depending omn f).

THEOREM 1. Suppose that a locally finite simplicial complex X
with its baryéentric metric is a LIipschits n-manifold in the sense
that each point adnits an open neighborhood U and a Lipschits iso-
morphism h : U~ R'. Then the link of every simplex of X is
homotopy equivalent to a sphere.

Remark a) : Our proof by Hausdorff measure general position uses
only that, for each simplex o of X, there exist an open UV < X
with U N o # # and a homeomorphism % ; U ~ F' such that the res-
triction 2| (U N o) is Lipschitz.

Remark b) : R. D. Edwards and J. Cannon [4] [1] have shown that,
for a closed triangulated (homoclogy) manifold Hk such that

H*(Hk) = H*(Sk), the double suspension Ezﬂk is always homeomorphic
to the sphere Sk+2. It is an amusing consequence of the above
that when le # 0, the homeomorphism cannot be Lipschitz on as

much as the suspension circle.

Ly 5. Many authors differ as to terminology (Sullivan T17]

ineluded), often preferring to say Lipschita where this article
says uniformly Lipschitz. With the present definition (only '),
the Lipschita property is local so that, for example, every ¢t
differentiable map between Riemarmian manifolds {s Lipschitz, and

every pilecewise limear map between locally finite simplicial

complexes is Iipschits.
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Proof of theorem 1. An open k-simplex ¢ of X has an open neigh-
borhood in X, e.g. its open star, that is naturally Lipschitz
isomorphic to ¢ x ¢(L), where ¢(r; is the open cone on the link I
of 5. Thus local applications of Poincare duality reveal that L
has the integral homology of a (n - & - 1J-sphere and is itself
an integral homology (n - k - 7)-manifold. Hence, when dim L is
4, I or 2, the link L is a triangulated sphere.

In view of the Hurewicz theorem, our task is to show that I
is simply comnected when dim L > 3, i.e. when o has codimension
> 4. To prove this, consider any locop ¥ in L, and regard L as the
base of a small standard sub-cone T, X e, (], of radius e, lying
in some U as hypothesized. The cone on y gives a map f : 72 >

into T, X e (L) contracting v and meeting ¢ at f(0J =, only.

/]

x
2]

g = 0 » {cone vertex)

Fig. 1.
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The general position lemma below shows that if we identify U with
JRnby 7 and jiggle f a tiny bit, we get a map f' : 32 -+ U that
does not meet o; thus vy is nul-homotopic in (¢ x el)-{ov x cone
vertex) = o x (0,=) x L and therefore also in L itself. To apply
this lemma, we must observe that %|(U (1 o) Lipschitz implies that

the Hausdorff dimension of A{U N o} in F'is < dim ¢.

GENERAL POSITION LEMMA. Let A c ¥' be any subset of Hausdorff
dimension < a. Then any continuous map [ i K~ E' of a finite
simplicial k-complex K, with k <n - a, can be approcimated by a
mo;pf”:K-r(Rn-A).

Proof. By simplicial approximation, we can assume (after subdivid-
ing K) that f is linear and injective on simplices. Consider a
closed #-simplex T of K and the projection p parallel to f(t) to a
(n - t)-plane P normal to f{t); since p is Lipschitz, pld) cF
has Hausdorff dimension < & < w-t and hence Lebesque measure Zero
in P. Thus, for almost every t-plane P parallel to f(t), the
intersection P ) 4 is empty. It follows that, for almost every
translation T of En, one has Tf(kK) N A = #. We choose a small
such T and set f' = If.

In [9], Luukainen and Vaisala derive stronger general position
results from a theorem of Fubini type for Hausdorff measure
[7; 2.10.25]. (We thank Vaisala for making the above proof per-
fectly elementary.)

There is a converse to Theorem 1.

THEOREM 2. {cf. [131) TLet X be a simplicial homotopy n-manifold
(without boundary) i.e. a locally finite simplicial complex in
which the link of every k-simplex is homotopy equivalent to

g k_l. Then ¥ i a Lipschita n-manifold provi%?@ that n # 4.

i
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Remarks: (1) 1If the 3 and 4-dimensional Poincaré conjectures are
true (piecewise linearly), then an easy induction shows something
stronger : isa piecewise-linear manifold (for all »}. But,
they well may be false, see [2]!

(1ii) To 1lift the proviso that n # 4, the reader will find
that it is sufficient (and necessary) to show that for any piece-
wise-linear 3-manifold LS homotopy equivalent to 33, the product
L5 X SI is Lipschitz isomorphic to 33 X Sl, cf. proof of Lemma 4
below.

The crux of Theorem 2 is

LEMMA 3. Let L be a triangulated closed 3-manifold that is homo-
topy equivalent to 5. Then the stmpliaial join L # st {with

barycentric metric! is Lipschitz isomorphic to 55.

From this point on we shall occasionally rely on the basic
results of [17] stating that

{a) a topological manifold Xn, n> 5, 3 = #, admits a
metric making it a Lipschitz manifold and

(b} any two such Lipschitz structures are Lipschitz isomor-
phic by a map that (majorant) approximates the identity map.

We prove Lemma 3 by a hyperbolic version of the 'torus-to-
suspension' trick in [13]. One can also prove it by the Lipschitz
replication techmique of [14, 53]; indeed this might lead to a
proof of Theorem 2 not using [17]. We leave the reader to explore

this alternative.

. . 2
Proof of Lemma 3. Find a homeomorphism x5 80 x 77 where
is a smooth multiple torus with a metric of constant negative

curvature -I. For example, letting L3 = L3 - (open-3-balll, we

0
can identify L/LO = Sz topologically; then, the resulting quotient

'map”L§“x~T3“+”53WX"T2'can'be“approximated“hy“a“homeomorphism'{5}:-““"ﬂ“'

ocne uniformaly squeezes the sets Lg xt, for t e”rl ; by a
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radial engulfing isotopy of LS x T2 and applies the Bing shrinking’
criterion.

One can deform LS X T2 > SS bs T2 to a Lipschitz isomorphism
[17], say ha. The map of fundamental groups is still id!nszg)
up to conjugation.

The universal covering % : L X T2 > S X T of h above 1s
a Lipschitz isomorphism that is TI'-equivariant, where P (T 1.
Identifying TZ isometrically to 82 with hyperbolic metric as in
[17] and applying Appendix A, we find that % extends uniquely to

a Lipschitz 1somorph15m H : EgLS - 2253

3
Here 22L = L3 X B J (BB } has the suspension metric d of
Appendix A. Now, d derives viz the natural composed quotlent
map (of sets) L x [0 1] x SI + L x B®

metric on L x [0,7] x S”I :

-+ I L from the 'join' pseudo-

(m, t,y), (x',t",5 ") > (1-max{¢t, t' Vd(z,x " )+}t-¢ ' |+min{t, £ '}y, y ") .

But this pseudo-metric induces a metric on the join L x Sl that
one can routinely calculate to be Lipschitz equivalent to the
barycentric simplicial metric.

Similarly 35 and ZZSS are both naturally quotients of
SS x Ix SJ by the same relation, the quotient map to 85 being

(e, t,y) > (cos tx, 51n ty) € R X RZ
. . . . 3 2.8
and one checks that a Lipschitz isomorphism S~ = S results.
Thus, in all, we have Lipschitz isomorphisms
L o= Sz %£Z2L3 g 228353 SS as required.

We now can prove

LEMMA 4. Let L4 be a compact simplicial homotopy 4-manifold that

18 homotopy equivalent to 34. Then the simplicial join L4 « 57

b

. - 5]
18 Lipschitz isomerphic to 5 .




On Complexes That Are Lipschitz Manifolds 509

Proof of Lemma 4. 5% x B is homeomorphic to 84 x R, see [13;
p. 83, Assertion] or [12, App. Il1. Hence, by wrapping up [15],
L4 X 81 is homeomorphic to 84 X Si. Also, Lemma 3 shows that
L4 b Sl is a Lipschitz manifold (since LS * Sl contains cone
(Lg) x 51 Lipschitz embedded}. Thus [17] shows that L4 X Sl is
Lipschitz isomorphic to 34 X SJ.

There results, on passing to universal coverings, a Lipschitz
isemorphism 81L4 252134 for the suspension metrics. (This is a
trivial case of Appendix A.)

Thus L4 * SO = EIL4 = 2154 == 35.

Proof of Theorem 2. For m = 5, note that every point lies in the
open star of some vertex v, which is the open cone on the link L4
of », a Lipschitz 5-manifold by Lemma 4.

For n = 6, the link L5 of any vertex v is, by the case n = &
just proved, a Lipschitz 5-manifeld. By the topological Poincaré
theorem, L5 is homeomorphic to 35, so by [17] L5 is Lipschitz
isomorphic to SS. Thus v # L5 is Lipschitz isomorphic to D6,
which proves Xa is Lipschitz 6-manifold.

The proof continues in this fashion by induction on n.

This completes the proof of Theorem 2.

Parallel triangulation theories of T, Matumoto and of D.
Galewski and R, Stern (see [10][8]) have shown that a necessary
and sufficient condition that every topological manifold (without
boundary) of a fixed dimension # > 5 be triangulated by arsimpli—

cial homotopy n-manifold is that

(%) There exist a closed smooth homotopy 3-sphere i with
Fohlin invariant 1 in Z/27% such that the cownected sum z 4 1°
bounds a smooth contractible 4-manifold.

e COMDININE - this.with Theorems 1 and.2.and [17], we immediately i

get
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LIPSCHITZ TRIANGULATION THEOREM 5. Fir n > 9. Every Lipschitz
n-manifold Cwithout boundary) of dimemsion n fs Lipschita <somor-
phic to some locally finite simplicial complex if and only if ()

ig true.
Concluding remark: Theorems 1, 2 and 5 admit fairly obvious gen-
erdlisations for manifolds with boundary. See [13, p. 84] and

[3] for some assistance.

PROBLEMS

1) Is Theorem 1 true replacing Lipschitz embeddings by quasi-

conformal embeddings ([11]) ?

One can observe, looking back to Theorem 1, that if g is an
open k-simplex, k < »n - 3, and &|(U N ¢/ has a non-singular dif-
ferential Dﬁx at at least one point %, then Link(c) is simply
connected. Indeed a small (nm — k - 1)- sphere centered at h{x)
in any (n-kJ-plame cutting transversally across the k-plane
Image(Dﬁm) at h(x) misses h(U I ¢) and maps with degree #1 onto

Link(c) proving it to be simply connected.

Image (th)

hic U}

(n-k-1) sphere

~——_  k{x)

Fig. 2.
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However a generic quasi-conformal homeomorphism of the com-
plex plane seems to map the z-axis to a curve that has no tangent
line at all!

2)  Analytic spaces have (locally defined) Lipschitz struc-
tures. For example, the Lipschitz structures of the cusps
x2 = y2k+1 in the plane 32, k=1,2,... are all non-isomorphic.

Up to (local} Lipschitz isomorphism are there only countably many
such objects? Is there Lipschitz equisingularity along the strata
of a suitable Whitney stratification of apalytic spaces?

3) Define the Pontrjagin classes locally in terms of the
Lipschitz structure on topological manifolds.

4) Is Rohlin's theorem on signature of 4-manifolds true for
Lipschitz 4-manifolds? Perhaps an analytic proof?

5} Can the basic Lipschitz isomorphism extension theorem of
[17] tef. App. A, below) be proved by elementary means? By
A, V. Cernavskii's methods? Or can one construct almost paralliz-

able hyperbolic manifolds directly?
APPENDIX W . LIPSCHITZ CONTINUATION

Recall that the open unit ball %n c E' is a model for hyper-
bolic¢c #-space when we replace the euclidean Riemannian metric
ds, on g by the hyperbolic Riemannian metric dS, = dSE/(lurz)
where » : B& + [0,=) is euclidean distance from the origin in R
We recall that the hyperbolic isometries of En are the restrictions
to gn of the Mobius (splere preserving) transformations of 7 U e
that respect B [11, 51].

THEOREM OF LIPSCHITZ CONTINUATION TO 3F'. Let h : 5 » B be a
self-map that is K-Lipschitz, K < =, for the hyperbolic metric,
and of hyperbolic distance < § from the identity map (Z.e. for all
x in B the hyperbolic. distance. d(x,hiz)) ie < 8). .

H

Then, for the euclidean metric, h is uniformly Lipschitsz;
in fact, 1t is L-Lipsehitz where L < = {3 q constant depending
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only on K and §. Hence, h extends uniquely to a Lipschitz self-
map B : g5 8

sl
Remark: Since the euclidean radius of a ball in B" of fixed hyper-
&
bolic radius r and variable center x ¢ g tends to zero as x tends

to aBn, it is clear that the extension h : B > ' s the Tdentity
Sn—l _ aZph
[o743 = ab .

Remark: It is amusing that % need not be a bijective map, al-
though it must be surjective, and that even, if it is bijective,

its inverse need not be Lipschitz.

2]
Proof of Theorem. Let D and D5 in B" be the compact balls cen-
tered at the origin, of hyperbolic radius 7 and 1 + § respectively.
As a map from hyperbolic to euclidean metrics, the identity map

f= id|D5 is a Lipschitz isomorphism, and as D  is compact, both

g o
f and frj are uniformly Lipschitz. Hence h[D : D +'D6 = B% is
LO—Lipschitz for euclidean metric where L
on K and § only.

0 is a constant depending

Next, we prove
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ASSERTION: If @ and =* in B" lie in any ball D* of hyperbolic

radius 1,
() |&alx) - B(x')] < Llz - x'| ,

where I, is a comstant depending on K and § only, i.e. h|D' s
IL-Iipschitz for the euclidean metrie.

From this, note that the theorem follows; indeed (*) holds
for any x,z! in B as one can see by cutting up the euclidean
segment x to ' into finitely many segments of Ayperbolic length
< 2.

To prove the assertion, let o be a hyperholic isometry that
carries I onto D'. The conjugate A' = adﬁ a verifies the same
conditions as f, hence is LawLipschitz on D (for the euclidean
metric).

Observe that if o were a euclidean similarity, we would have
that #' is La—Lipschitz on D<=h is La—Lipschitz on D! = oD

In reality, a is only infinitesimally such a similarity, but
we prove an almost similarity lemma (read it's statement below)
that lets us deduce the assertion as follows.

Write y,y' for o (x}, o Lz '], a pair in D, and write z,3'

for B'{y}, R'(y'), a pair in D

5
x - a oy

hi k’l inD(S
Rz} - & i .oz

When A(x) # h{z'), we have

Alx)=h(z')|  _ lala)-alzt] | |B'GI-H'(Gy| ly-y |
z-x '] [2-2"] lg-37] lalyl-aly ]|

i

< Loa
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where @ is the approximate similarity constant for the disc 2
Thus % is L-Lipschitz on D' where I = Laa.

5

We have made essential use of the
. - o
APPROXIMATE SIMILARITY LEMMA. Given a compactum A B, there
exists a constant a < = such that, for every quadruple x,m', y,y
of distinet points in A and every hyperbolic isometry v of B

one has

1 - r_
Y(:X:') - y(:cf" “ !.’L" -z

Proof of lemma. Without losing generality, we assume that A is

a ball centered at the origin ¢ € En- Each hyperbolic isometry

vy is naturally a product v = 18 where 1t is the hyperbolic trans-

lation along the line 0 to y(0} carrying ¢ to (@), while & is the

rotation T-IY fixing ¢. Since, 0 is an euclidean isometry and

respects A, it suffices to prove the lemma for translations as

described. Further, by symmetry, it suffices to deal with the

translations along a single ray from 0 toward z, € g = Sﬂ~l.
There is a Mobius (sphere preserving) diffeomorphism

Fo -ty > > B x lo,e) with flzy) = (0,00, F(0) =

(0,1), and sending dSE,to Poincardés Riemannian metric dSp = dSE@h

where ¥ is the projection to [g,~J . In the Poincaré model (see

Figure 4 below), the hyperbolic translations Y from f(0) towards

fﬂr ) are euclidean s1m11ar1tles, multiplication by Y for

g0 <Y =1, Set Y = fo and & = fix), etc..., and let X be a

Lipschitz constant for both f and frl on the compacta,frlﬁ and A

respectively, where A is the convex hull of f(4) and f(xo). Then

¥ty - ¥(
.?‘

I I = 4L - gg . by similarity,
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while |y’ -y| < kly'-y| ,

" - 2] > Zla’ - al
ad  |¥GY - W@ = Pt - frw | > Ly - v,
|y(x') - Y(z}| = |Fy(xz’) - fyla)] < klylz') - y(x)|.

Thus, the similarily equation gives

-1

k" lyty') - y(y)] kly’ ~ yl

kly(x?) - y(x)] k_1|m' - x|
4

so, the lemma is proved with a = k.

Quasi-conformal remarks, cf. [11]. The composition of a K-quasi-
conformal homeomorphism with a conformal homeomorphism is a
K-quasi-conformal homeomorphism. This makes immediate the proof
of the above theorem with quasi-conformal in place of Lipschitzl.
The quasi-conformal version of the continuation theorem of the
next appendix is almost as immediate.

As for the last appendix B, beware that if f: T x X I x ¥
is an open quasi-conformal embedding respecting projection to I,
i.e. a quasi-conformal isotopy, then f is necessarily a Lipschitz

isomorphism onto its image, i.e. alLipschitz isotopy.
APPENDIX-A. - LIPSCHITZ CONTINUATION TO SUSPENSION

We prove (for Theorem 2) a result whose statement and proof
are direct generalizations of the theorem for Lipschitz-¢ontinua-
tion from gn to B’ as proved in Appendix ¥ . It also lets us
deform Lipschitz isomorphisms of polyhedra and discuss Lipschitz

isotoples (Appendix B).

YAt boundary points, the ewtension is l-quasi-conformal;

elsewvhere it is K-quasi conformal.
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Given any metric space V of diameter < 2, there is a

SUSpPEnsTon pseudo—metricl ds on 7 x B' given by
(0,2), (v'ax') B (1-maxi|e|, |z’ |Vd(v,0") + d (z,27)

. . noo. . ) -
where dc is the cone metric on B~ given in polar co-ordinates

[0,11 x 38" > B, (A,%) A by

d, : (M,2'%") 1> [A-af| #min{r, A7} |£,27].

Remark: One is tempted to simplify ds’ replacing dc by the
(Lipschitz equivalent) euclidean metric. However, as J. Viisily
pointed out to us, the triangle inequality would then not quite
hold for the simplified distance function dcr' By identifying
points of V x 5" whose ds distance is zero, we obtain a genuine
metric ds on the suspension TV =V x Bn/~ where -~ identifies to
points the sets V x x, = € aBn,- these points 'Y - 7 x E‘n_, natu-
rally and isometrically identified to aB", form the suspension
sphere.

Observe that the restriction of ds to each disc {v} x Bn_,

v € V, is the cone metric of B,

Observe that, if f : V -~ W is a K-Lipschitz map of metric
spaces of diameter < Z, the induced map an‘ A
E-Lipschitz, .

Concerning metric spaces of any diameter < =, recall that the

modified metric d)\ s A >0,
(x,z?) > min (A, d(x,z')}

is (locally) Lipschitz isomorphie to the old one and has diameter
< A. The metrics d?\ are all mutually uniformly Lipschitz isomor-
phic. Again, the scaled metrics Ad, X > 0, are all uniformly

Lipschitz isomorphic to d.

lThe triangle inequality would fail for diameter V > 2.
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Q
We shall consider also the metric on V x B” that is the pro-
o
duct of the metric on V with the hyperbolic metric on B':

{(v,xz), (v'x') bdv,v’) + dlz,x').

We shall call this, for short, the product-hyperbolic metric.

THEOREM OF LIPSCHITZ CONTINUATION TCO A SUSPENSION SPHERE. Considen
amap b 2 Vx B s wx B where V, W are metric spaces of diameter
< a. Suppose that, for the product-hyperbolic metric on source
and target, h is K-Lipschitz, K < o , and that ph : V x B » 5"
t8 of bounded hyperbolic distance < § < w from the projection
py ¢ V x B %n .

Then, h ig L-Lipéchitz for the suspension metrics where L ig
a constant depending on K and & only. Hence, a L-Lipschits map
Bo: S o> DR de induced.

Remark: The extension h : TV » T'W is necessarily the identity
on the suspension sphere. This follows from the parallel remark

in Appendix ¥ applied to

R+ [ [s] p o

' v x BBy x B T2

The argument proving the theorem is strictly parallel to that
in Appendix ® and we are content to give an outline discussing

the new technical points. V¥ is metric of diameter < 2.

APPROXIMATE SIMILARITY LEMMA. Given a compactum A C il , there
exiets a constant a < = such that, for every quadruple x,x',y,y"
of distinet points of V x 4 and every hyperbolic isometry o of
Bn, one has, writing y = (id|V) x ar

d (y(y),y{y')) ds(y_,,y') L
7 # RS = s i »
as(y{:c),y{;c oy dsL.'Jc,a: b
o :
for the suspension metric cZS on Vx B -
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Proof of Lemma. In imitating the argument in Appendix N, one

uses the enhanced comparison with Poincaré™s model:
(idlv) x £ 2 v x (8" - {w,)) >V x (B x (0,0}

and checks that on each set ¥V x (compactum), it is a uniformly
Lipschitz isomorphism, when, on the left, we use the suspension
pseudo-metric ds’ and on the right, we use the 'wedge' pseudo-

metric
(V,,8), (V' t') > min{t, £} dv,v') + |e-x’] + [t-t7]

where p is projection to [0,»). To check this, one needs only to
know that f (from Appendix %) is a Lipschitz isomorphism.
The pseudo-metric just mentioned is designed to make

(vy&,E) B> (v,Ax, At) a similarity.

Proof of Thecrem. Form the metric space X from the disjoint union
of the two metric spaces V, W of diameter < 2 by decreeing the
distance between v in ¥V and w in ¥ to be 2. Then, X has diameter
< Za.

By applying to X this approximate similarity lemma and imitat-
ing faithfully the argument of Appendix ¥, one shows that there
exists a constant L < = depending on XK and 8§ only, such that, for
each ball D' c B of hyperbolic radius 1, the map % is L-Lipschitz
on ¥ x D' for the suspension metrics.

Finally, one deduces that A : V x jo’3n > W X E,n is likewise
L-Lipschitz by using the fact that, for any pair of points (v,z),
(v',z') of Vx B with |z| < |z'], the d, distance is exactly the
sum of these from (v,x) to (v,x') and from (v,x'}) to (v',x'}). Note
this is false for |z| > |x’].

Now, for the pair {v,z’), (v',x'), the map % has just been

proved L-Lipschitz, while, for the pair (v,z), {(v',x}, it is prov-

—reeee—gd--K-bipsehitz-using-the—-euclidean-segment a-to-x-'-as-in-Appendix—-—

R.
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APPENDIX B. - LIPSCHITZ 1SOTOPY EXTENSIONS

Here, exploiting Appendix A, we describe extensions and im-
provements for the Lipschitz isotopy extension constructed in
[17, Theorem 1}. One is that the theory of [16] for deforming
open topological embeddings of complexes can be carried out for
Lipschitz embeddings. Another is that the isotopy extensions can
preserve a Lipschitz condition with respect to parameters.

A Lipschitz isotopy of open embeddings of X into ¥ is an open
embedding 7 : 7 x X » I x ¥ that respects projection to I = [{,1]
and is a Lipschitz Isomorphism onto its image. One sometimés
allows I to be a disc or a general metric space.

Note that, with X = ¥ = R, the map F : (t,x)] & (t,% + /T) is
not a Lipschitz isomorphism, although, for each #, the self map
xt>x + /¢ of R is one.

We shall show, for example, that if we write the Lipschitz
isotopy F(Z,xz] = Ct,Fthji and suppose I = [(,1], while X, ¥ are
Lipschitz manifolds, or locally finite simplicial complexes, and
FU is inclusion X <, ¥, then, for any compactum ¢ — X, we can find
a bijective Lipschitz isotopy ¢ + T x ¥ > I x ¥ such that ¢ = F
near 7 x  and GO = id|Y. This is the Lipschitz version of

R. Thom's smooth isotopy extension theorem.

DEFORMATION THEOREM FOR LIPSCHITZ EMBEDDINGS FOR COMPLEXES. FLet
X be a locally finitte simplicial complex. We assert the property,
ef. [16, 54]:

For each open set U< X and each ecompactum B c U, the
Jollowing holds: [£(X ; B ; UI'| If h : U+ X is an open Lipschits
embedding sufficiently near to the idemtity 1 : U + X, there is g

rule assigning to h a Lipschitz isomorphism h' : X + X equal to
kh on B and the identity outside of U. For h near i, the rule
hi>h' can be contimuous (for the compact open topologyl : it

sends i to id|X.
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The rule h 1> h' can be such that, if h respects a subcomplex
Y < X and ile complement, then h' will too; and if h' fixes Y < X,
then h' will too.

Remark. An equivalent property |£7(X ; B ; U) | is obtained by

assuming B — U to be closed (not compact) in X, with closure

(X - B) compact, and then relaxing the condition that %' = identity

outside . Still other equivalent statements are sometimes help-
ful - see [16, §§50,2,4].

Remork. Unfortunately this result does not apply to analytic
spaces with their natural Lipschitz structure, since cusps prevent
their triangulations from being Lipschitz (compare Problem 2 in

main text).

Proof of Deformation Theorem. The proof, when X 1is a Lipschitz
manifold, is given in [17] (except of course for the statement
concerning subcomplexes}. We now indicate how to generalize this
argument by combining the proof of the topological analog of
given in [16], with the technical theorem of this appendix.

Here is the recipe. After reading [17], read [16, §2] to
get the plan of proof by induction on depth (the depth of an open
subset V of a complex is d = A - h' where h is the maximum simplex
dimension met in ¥ and %' is the minimum). Then solve the rele-
vant handle problems making two important changes in the argument
of [16, §3]. These handle problems ‘amount to provimg
SH x oL ;s B ; U) for any B M xow assuming inductively
£(H" x (el - v)), where L is any finite complex,

Recall that

el = Lx [0,=)/{L x 0 = v = vertex}

- wren—iS-the--open--eone-and-that-e.L-the-radius-1-cene-is-the-quotient of ———f

7
L x [0,11. The metric can come from the pseudo metric on

I

i
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L x {0,=) given hy
(x,t), (x',t'] » min {¢, ¢t }d(x,x’) + [t-t'] .

The barycentric metric for the standard triangulation of cIL
is Lipschitz isomorphic to this one.

CHANGE 1. Imstead of wrapping up to derive a torus problem, use
Eirby's punctured torus immersion idea in its hyperbolic form,

This requires a capping off proecess as in [17]; beware that
;f}im X (eL-v})) is required to make it a problem of type
S*(CK s ¥x [2,») ; Kx (1,=]] on an open cone ¢k on a complex K,
which can be solved by wrapping up as in [17]. (The complex X will
be a link in A" x eL of 0 x v, t.e. K = L)

CHANGE 2. Adjust the 'horn device' at the unfurling stage of the
proof (construction of Ggs 95 in [16, 531} so that it functioms
for Lipschita.

One is faced with a Lipschitz isomorphism gz * EnxcL-*gmxcL
that is the universal covering of a small Lipschitz isomorphism
gy ¢ ™ x oL > 7" x eL, where 7" is a closed hyperbolic m-manifold.
One has arranged that gq is the identity outside ™ x clL where
CJL =1L 2: [0,11/{2 x 0 = v} and that correspondingly gz = identity

outside F" x e,L.  The horn modification of gz

]
94:BmxeL—>§mxcL,

is g, = Ggs(ﬂ”l where @ is the Lipschitz automorphism of B x er
defined by

0: 8" x [0,%) x LD (x,t,y) b (zm,9(lw|)t,y) € & x [0,*) x L.

Here ¢ ¢ [0,7] » [0,1] is Lipschitz, decreasing and satisfies
p(t] =1 for ¢t near 0 and () = (I - £] for t near I.
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t o

It is easily seen that 94 extends to a homeomorphism
gz * A" x el »H" x eL

0.
that is the identity outside o(F" x clLZ .
ASSERTION. g 5 is a Lipschita {somorphism.

Procf of Assertion, The technical theorem of this appendix shows
that

(-] ]
g3|:Bmxc31L+meclL

extends to a Lipschitz isomorphism
gz ¢ Zm(clL) -+ Z.m(ch).

But there is a canonical Lipschitz isomorphism
ar: Zm(_clL) > o(E" x e L) U 38" x v

induced by the map 6. This shows that 9g gives a Lipschitz auto-
morphism on the compact target of 67; since g5 is the identity
elsewhere, the proof is complete.

The verification that the standard map o' is indeed a

Lipschitz isomorphism is left to the reader.

i

The isomorphism 94 essentially solves the handle problem.

This completes our outline of the proof of £(XJ.
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We now turn to Lipschitz isotopy extensions, and show that
the deformation rule A3 %", as already construeted in [17] and

above, to satisfy £(X ; B ; U/, enjoys a further:

PARAMETE‘J? PROPERTY. If h cU=X, ¢t ¢ I, gives a Lipschits
wotopy 80 near to the znclumon U > X that the rule By b Ft‘ :
X > X is defined for all ¢ € I, then (autematically) h' : X —>X,
t € I, likewise gives a Lipschitz isotopy.

This property is to‘be checked by looking back over the solu-
tions of the finitely many handle problems that yvield the defor-
mation rule z 5 2f. In each handle problem, one has to check that
both capping off and unfurling preserve Lipschitz isotopies, using
the

THEOREM OF LIPSCEITZ PARAMETERS. FLet F » T x J x g’n > I xdx %?1
be a self-map that respects projfection to the metric space I,
while J is a metric space of diameter < 2. Suppose F ig K-
Lipsehits, K < =, for the product metric on T x J x gn B whereoﬂn
carries the kyperbolﬂc metr-ic, and suppose alaso that

PzoF : I'xdx E - B 1.3 of bounded hyperbolic distance < §
from the projection pg to B Let 7% = J x B U (EY carry the
suspengion metric and gu)e T'x 77 the product metric. Then F
extends to a map G : T x ©J + I x £ that is L-Lipschits where
L is a congtant depending on K and § only.

Remark (cf. Appendix A): Necessarily, G is the identity on
I'x (38%) and respects projection to J.

Proof of theorem. This variant of Appendix A is fortunately an

easy corollary thereof.

r,—lrl’hatrris,- 7 (t,m)»é-('t_-,'h%(x'))vmap ing - FX-U=+Fx¥teaq

Lipschitz isomorphism onto its image; here I is any metric space.
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To lighten the notation, we prove only the extreme case where
J is a point s0 thatIxeI?l:IxEnande T =Ix B
Let Py and p be the projections from I x gn to I and %ﬂ respec-
tively.

Since, it is a local question whether a Lipschitz extension
of F exists, we can assume that diameter I is < 2. Appendix A

then asserts that ¥ extends uniquely to an I-Lipschitz map
H: TxB +ITxB

for the suspension distance funciion
(t,2), (t',z") B {1 - max(|x], |x!|)¥d(t,2") + |x - x|

and that H|(I x 38") = id. It sufficies to check that ¥ is
2L-Lipschitz on I x B for the product metric

d ((tyx),(th,x')) = dt,¢') + |z - =’ .

We can assume I < L < =, so that

dS(H(t,x),H(t',x’) 1Lds((x,t),(x',t’)).
Hence

\pH () = pH(E ,2") | < Ld(t,t7) + te—a7}) =:Ldﬂ((t,:c)_, (&2t

But, since H respects projection to I,

d(plﬁ(t,x),piﬂ(t’,m')) =d(t,t"') ifd“((t,x), (tfax')) .
Thus, .adding,

dﬂ(H(t,m),H(t',:c’)) < 2Ldﬁ((1;,x), (t',a')).
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