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INFINITESIMAL COMPUTATIONS IN TOPOLOGY
by DENNIS SULLIVAN

This paper was written in the effort to understand the nature of the mathematical
object presented by a diffeomorphism class of compact smooth manifolds. Under
suitable restrictions on the fundamental group and the dimension we find a rather
understandable and complete answer to the question posed with <( finite ambiguity ".

Roughly speaking, our answer (§ 13) is that this mathematical object behaves
up to " finite ambiguity 3? like a finite dimensional real vector space with additional
structure provided by tensors, lattices, and canonical elements.

This algebraic model is derived directly from the differential forms on the manifold M
by the following procedure (§ 5). One proceeds dimension by dimension to construct
a smallest possible subdifferential algebra of forms with the same cohomology. Forms
are chosen in each dimension to add cohomology not already achieved or to create
necessary relations among cohomology classes in the subalgebra. Actually one imagines
the forms chosen generically so that no relation other than graded commutativity holds
in the subalgebra, or practically one replaces the inclusion by a homomorphism from
the free graded commutative algebra generated by the choices. This process may be
discontinued when the dimension of the manifold is reached whereafter it becomes formal.
One arrives at the essential part of the minimal model ^ of M which is a graded vector
space with the additional structure of a graded commutative multiplication and a differ-
ential (respectively trilinear and bilinear tensors).

This object is well defined up to isomorphism. To prove this isomorphism the
algebraic notion of homotopy between maps of differential algebras is developed (§ 3).
We note that the underlying set of the model is not well defined (as it is for the cohomology
ring for example). The ambiguity is precisely described by the inner automorphisms of
a minimal model—those of the form exp[di-{-id) where i is any derivation of
degree — i (§6) .

When M has a nilpotent homotopy system (1) the minimal model has finite type with
finitely many generators x^ in each dimension k. In fact the spaces of generators (or inde-
composables) are naturally isomorphic to the dual spaces over R of the homotopy groups
of M and there are canonical integrals for the homotopy periods { (x—/\~~lsdx ) [

. 1 1 . 0 U sphere )
described in § 11.

(1) TC^ is nilpotent and TT^ is a nilpotent TC^-module, n >
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270 D E N N I S S U L L I V A N

The indecomposable spaces of the model ^l then inherit natural lattices of integral
periods—those functionals giving integral values to the integral homotopy.

Similarly the cohomology of the model inherits lattices from the usual integrals
over cycles. Actually we also have more lattices coming from the fact that the inductive
stages^ of the model ̂  exactly describe (§ 10) the real homotopy theory of the inductive
stages of the Postnikov system of M, { M . . . -^M^ ...->*}. So each ̂  has natural
lattices in its cohomology (2).

To describe this relationship between models and Postnikov systems we need
Whitney's differential forms on general spaces and a cellular de Rham theorem (§ 7).
Actually we make use of a rational polynomial de Rham theory (§ 7) and a spatial
realization construction (§ 8) which canonically yields the Postnikov system of the rational
homotopy type from the stages of the Q^-minimal model.

A manifold M also possesses a natural sequence of real cohomology classes
^eH^M.R) (which are actually integral) with a differential form representative
constructed as is well known from a choice of connection in the tangent bundle. A
connection © assigns to each coordinate system a a matrix of i-forms 6^. One forms
the expressions d 6^—6^06^=^ to arrive at the curvature tensor Q. One then forms
the differential forms {trace Q o 0, trace f loQoQoQ, . . .} representing the Pontryagin
characteristic classes.

Note that in this construction essential use is made of the graded commutativity
of differential forms. For the curvature form is not closed (^^x=^ao8a—-9ao^J
and closed forms result by applying trace, which satisfies trace (AB—BA)=o in
a commutative context. Similarly in the construction of the model the commutativity
of forms plays the important role of allowing simple algebraic models to be used. Finally
this commutativity plays a crucial part in the direct calculation of transgressive fibrations
by the Ghevalley-Hirsch-Koszul formula (§ 7).

Let us now state the main theorems of § 13. So far one has constructed from
the differential forms an algebraic invariant consisting of the minimal model essentially
determined by two tensors on a finite dimensional vector space, some lattices on certain
canonical subquotients (which are fixed by the inner automorphisms) and certain
canonical elements in cohomo^gy, the Pontryagin classes. Then we have {^i=e,
dimension ̂ 5).

Theorem (13. i). — For each positive integer by there are only finitely many dijfeomorphism
types of closed manifolds whose homology torsion is bounded by b and whose algebraic invariant
—model, lattices, and Pontryagin class—is isomorphic to a given one (3).

Using work of Wall and others allows a generalization to the nilpotent case which
we don't state here.

(2) The relevant lattice can be described geometrically in terms of homologies with spherical boundaries.
(3) That is an isomorphism between real models preserving lattices and Pontryagin classes.
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INFINITESIMAL COMPUTATIONS IN TOPOLOGY 271

Theorem (13.2). — Any rational cohomology ring satisfying Poincare duality and H^^o
may be realized by a manifold with possibly one singular point in dimension 4^. Furthermore
the lower Pontryagin classes and rational homotopy type may be prescribed arbitrarily with this ring.

Necessary and sufficient arithmetic conditions for the removal of the singular
point in dimension 4^ may be stated (§ 13).

Theorem (13.5) describes an algebraic group whose arithmetic subgroups are
commensurable with the component group of diffeomorphisms. In particular this
component group modulo a normal nilpotent group is commensurable to those auto-
morphisms of the integral cohomology ring which preserve the Pontryagin classes and
extend to the model.

Again any commensurability class of arithmetic groups (perhaps extended by
an Abelian group) can be realized as the component group of diffeomorphisms in simple
examples (§ 13).

Along the way to these theorems about manifolds one obtains a general picture
of algebraic topology (after tensoring with Q^ R, or C) in terms of differential forms
and minimal differential algebras (§ 2, § 8, § lo).

For spaces with nilpotent homotopy systems there is a perfect replica (4) in terms
of nilpotent minimal d.g.a.'s (§ 2) of the rational (real or complex) homotopy theory (§ 10).
Furthermore the integral homotopy theory is determined up to finite ambiguity by
Q^-minimal models, lattices, and torsion constraints (§ 10).

The additional point beyond this Q^-story is the role played by algebraic groups (§ 6)
and the automorphisms groups of integral homotopy types which are arithmetic groups.
Again all commensurability classes of arithmetic groups occur in this way even for simply
connected spaces of "quadratic complexity 3? (§ 10).

Part of this general picture of algebraic topology is the cc calculability " of minimal
models. We make the general claim that any reasonable geometric construction on
spaces can be mirrored by a finite algebraic one with minimal models. Paragraph 11
contains four examples of this. The papers of Wu [Wu] contain more examples and
develop this philosophical viewpoint further. Such algebraic constructions (following the
geometric) can be justified in the nilpotent case by (§ 10) and the functorial nature
of the construction of § 8.

We have written the paper with the more general non-nilpotent problems in
mind. The reason is that besides the graded commutative product of forms there is
one more important infinitesimal computation relevant to algebraic topology.

Namely certain local systems can be described infinitesimally by matrices 6 of
i-forms satisfying dQ— 606=0. Twisted cohomology can then be described with
ordinary forms (§ i) and the non-nilpotent minimal models (§ 2) enter as canonical
computations (§ 7, § 8).

(4) The possibility of such a picture had already been demonstrated byQuillen [QJ in a more abstract setting.
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272 D E N N I S S U L L I V A N

In effect general non abelian calculations in discrete groups are replaced by the
quadratic equations on forms (above) together with linear equations associated to
twisted cohomology (§ 2).

The domain of validity of this method is quite general (§ 2, [DS], and § 9) but
its actual boundary and range of application is an open problem (§ 14).

For example the nilpotent theory can be applied very well to Kaehler manifolds
whose models are a formal consequence of the cohomology ring. In § 12 we give a
number of corollaries of this for Kaehler manifolds going beyond the (< real formality "
of [DGMS] which in turn is based on the earlier developments of this paper. New
theorems are the Q^-formality of Kaehler manifolds (Theorem (12.1)) and the corollary:

Theorem (12.4). — The diffeomorphism type of a simply connected Kaehler manifold
(dinic>2) is finitely determined by its integral cohomology ring and the Pontryagin classes. The
component group of dijfeomorphisms modulo a unipotent subgroup is commensurable to the auto-
morphisms of the cohomology ring fixing the Pontryagin classes.

The analytic facts about forms (§ 12, [DGMS]), underlying this theorem are
valid on the twisted level for unitary representations and the (non-nilpotent) consequences
are waiting to be adduced.

This paper represents a synthesis and reformulation of old ideas rather than the
invention of new mathematics. The only originality pertains to the naturality of the
classification problem posed with finite ambiguity and the preference for calculations
or coordinates (a choice of model) over the invariant or functorial emphasis.

One could be led to these ideas by the following train of thought. Starting from
the basic problem of classifying manifolds one assumes compactness to achieve count-
ability. One then must hold the fundamental group somewhat at bay because all
finitely presented groups occur. The modern methods of surgery (constructive cobor-
disms) and Smale's homotopy cobordism in the hands of Browder and Novikov ([Br]
and [N]) reduced the problem of classification (^==e, dimension>4) to that of the
underlying homotopy type and a (finite) refinement of the tangent bundle.

This refinement of the tangent bundle can be described exactly [Su3 and SU4J
in terms of real K-theory at odd primes and ordinary cohomology at the prime 2 in
the homeomorphism context (continuous or piecewise linear after Kirby and Sieben-
mann [KS]). However the finite refinement for the smooth classification consists of
a known part (again describable in terms of K-theory) and a part constructed from
the stable cohomotopy of the manifold [Su4], Unfortunately the latter finite group
is not readily calculable and we reach a definite knowledge barrier. Another obstruction
to a complete classification is the homotopy type which had been included as an invariant
up to now. Also the automorphism group of the homotopy type (a group more or
less entirely unknown before 1970) acts on cohomology, K-theory, etc., and the true
invariants are really its orbits.
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INFINITESIMAL COMPUTATIONS IN TOPOLOGY 273

After some struggling with these ideas and difficulties one might decide that a
reformulation is in order. One can be guided in this reformulation by the deep work [K]
of Dan Kan in homotopy theory. One can really see " to the bottom of the well "
in integral homotopy theory of simply connected (or even nilpotent) spaces using Kan's
semi-simplicial groups (in minimal form and made nilpotent) to arrive at the idea

finite homotopy type ~ finite diagram of finitely generated nilpotent groups.

There are tedious technicalities but one can achieve (6) the theorem that the
automorphism group is arithmetic (even after passing to homotopy classes) and the
objects behave like nilpotent groups. For example, Quillen's work of 1968 [Q] on
rational homotopy theory can be viewed in the following steps—tensor the above diagram
of nilpotent groups with Q,, pass to the Lie algebras, shuffle these together to get a
differential Lie algebra. In Kan's terms this is Quillen's equivalence of homotopy
categories:

rational homotopy theory differential Lie Algebras (connected)
of simply connected spaces ~ (or i-connected differential coalgebras).

These ideas inspire one to consider the integral classification problems with finite
ambiguity with the gap between that and the rational classification to be filled in by
arithmetic group theory.

But this is only the abstract picture. To apply these images to manifolds one
would want to compute in terms of geometrical data. Thus differential forms come
to mind.

Of course simultaneously one also has in mind the extensive calculations of algebraic
topology in terms of the Steenrod algebra—an algebraic complexity in the torsion that
arises directly from the non-commutativity of cochain multiplication. This complexity
is due to lack of symmetry in the finite simplicial approximations while the simplicity
of the calculus for forms must come from the infinitesimal nature of wedge product
(one computes at each point).

Thus one might try to connect the general insight of Kan and Quillen's work
to manifolds, starting from the de Rham algebra of forms. However, there is a curious
algebraic obstruction coming from the fact that while the dual of a co-algebra is an
algebra, the dual of an algebra is not a co-algebra unless the algebra is controlled in
some sense.

One is led to replace the large de Rham algebra by a connected d.g.a. which is
smaller and has the same cohomology. This may be dualized to a differential co-algebra
which may then be compared to Quillen's objects.

This comparison turns out to be unnecessary however, because one discovers

ha, • ( i? Th^ T don^•i!i ^7I'. but itseemed to me that the Proof of § 10 was preferable. Recently Wilkersonhas independently applied Kan's method to achieve similar results [Topology, 1976).
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274 D E N N I S S U L L I V A N

instead the minimal model describing in a very transparent way the homotopy theory
of the space. One has achieved instead a more or less equivalent theory to Quillen's
for simply connected spaces starting from the geometrical objects, differential forms,
which are natural and convenient for calculations in manifolds. This theory extends
as it is to nilpotent spaces and somehow beyond using the second infinitesimal compu-
tation f l f6—6o6==o.

Although most of this work was done in 1971-72 there were many versions and
troublesome points to be worked out, especially the notion of algebraic homotopy. I
am indebted to John Morgan for much help and inspiration in all these matters. More
recently Steve Halperin's critical remarks and general ideas have been helpful and
he has worked out many technical points independently. Similar remarks apply to
Roy Douglas.

Finally, in reading the literature backwards in time: Quillen, 1969 [QJ, then
Kan, 1958 [K], Whitney, 1957 [W], Thorn, 1955 [TG], Henri Gartan, 1950 [C], de
Rham, 1929 [D], Elie Cartan, 1928 [G], and Poincare, 1895 [P], the relevance and
utility of differential forms for algebraic topology became more and more evident while
the ideas presented here seemed be more and more well known to these authors with
a maximum being reached in the period around 1950. The spectacular success of the
spectral sequence in the hands of Serre, 1951 [Sei] and Borel, 1953 [B] for the integral
homology of K(TC, ^'s and homogeneous spaces perhaps accounted for the shift of
emphasis. This progress in algebraic topology has not continued at the same rate
however and we have suggested here that one might therefore recall the older methods
of differential forms, which are evidently quite powerful.
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The notion of algebraic fibration. The infinitesimal condition for the 7^ -action. Various results about two
isomorphisms implying a third, e.g. a map between minimal algebras inducing an isomorphism in degree
one and an isomorphism of sufficiently many twisted cohomologies is an isomorphism (Corollary (4.2)).

§ 5. Building homological models.

The direct method of building a minimal d.g.a. mapping to an arbitrary d.g.a. by an isomorphism of (Various)
cohomologies. The uniqueness up to isomorphism of such tc minimal models " (Theorem (5.1)). Examples
of minimal models of familiar spaces, function spaces, complements of links.

§ 6. The automorphism group of a differential algebra.
The automorphisms of a nilpotent d.g.a. homotopic to the identity are precisely the it inner automorphisms "
—those of the form exp{di-}-id} (Propositions (6.3) and (6.4)). Thus all the groups associated to one d.g.a.
are algebraic matrix groups, having the same reductive parts, which is represented faithfully on the homotopy
or homology (even the spherical homology) (Theorem (6.1)).
Appendix: algebraic and arithmetic groups.
The basic relevant facts are enunciated. For example in § 13 we will use the statement that an isomorphism
over the reals between two nilpotent d.g.a.'s which is rational on cohomology can be changed to a rational
isomorphism of d.g.a/s. This uses A. 2 of the appendix and Theorem (6.1).

§ 7. Differential forms and de Rhombs theorem on general spaces.
Theorem (7. i) is the { t cellular " de Rham theorem (proved directly by the 5-lemma). There are various
constructions of forms on general spaces: simplicial, polyhedral, semi-simplicial, stratifiable. The main
algebraic consequence is a simple d.g.a. formula for the total space of a transgressive fibration in terms of
a d.g.a. for the base (Theorem (7.2)). This formula may be iterated for any fibration and one perceives the
relation between minimal models and homotopy theory.

§ 8. The spatial realization of a d.g.a., its homotopy and cohomology.
The spatial realization, <^<^)>, is the semi-simplicial complex whose simplices are maps of £/ into forms on
standard simplices. In the nilpotent case over Q the homotopy of<(J^)> is dual to the generators of s^ and
the cohomology of<(.^)> is isomorphic to that ofja^via the natural map ^ —> forms on <(cfi/)> (Theorem (8. i)).
In the non-nilpotent case over R (C00 forms) the homotopy and the continuous cohomology <(^/)> can be
computed (Theorem (8.I)7).

§ 9. Poincare's analytic definition of the fundamental group.

Poincare defined TC^ as a universal object for global (multivalued) solutions of locally integrable differential
systems. Theorem (9.1) justifies this idea explicitly. The non-nilpotent theory depends on this infinitesimal
definition of TT]_ .
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§ 10. Integral homotopy theory and minimal algebras.
Combining § 5, § 7, § 8 we derive a computation of the rational homotopy of a nilpotent space by the minimal
model of its de Rham algebra of forms (Theorem (10. i)). Theorem (10.2) explains how space —> minimal
model is finite to one on maps and onto for objects. Theorem (10.3) characterizes the image of automorphisms
as lying in the commensurability class of the arithmetic group determined by the automorphism group of
the model. Theorem (10.4) extends the model to an algebraic invariant determining the integral homotopy
type and its automorphisms up to finite ambiguity.

§ n. Algebraic constructions that mirror topological ones.
The first paragraph gives the algebraic formula for the space of closed curves in a given space. The second
describes (via the path space) explicit differential forms integrands which give a complete set of homotopy
periods. The third describes the higher homotopy of the automorphism group of a space algebraically (it is in
fact the algebraic analogue of a complex considered by Nijenhuis in differential geometry and pseudo-group
theory). The universal fibration with given nilpotent fibre is sketched. The fourth part begins the discussion
of what one must do for general spaces of maps or spaces of sections. One corollary is an explicit algorithm for
computing Gelfand-Fuks cohomology of a manifold. (The algorithm is given, its validity is not proved.)

§ 12 . Formal computations and Kaehler manifolds.

A formal minimal model is one determined (formally) by its cohomology ring. There is a direct proof of the
formality over C for a Kaehler manifold. Formality over Q is equivalent to formality over any larger field
(Theorem (12.1)). The explicit algorithm for constructing the formal model (passing via differential Lie
algebras) is given. Other examples of formal spaces. Integral homotopy types which are formal over Q
have many continuous endomorphisms (Theorem (12.2)). Thus so do Kaehler manifolds (Theorem (12.4)). Thus
Q-maps can be essentially lifted to integral maps (when the range is formal) (Corollary (12.3)). Finite deter-
mination of the diffeomorphism type of a simply connected Kaehler manifold (Theorem (10.5)). Theorem (10.6)
describes the Q-homotopy theory of holomorphic maps. Theorem (10.7) characterizes formality in terms
of grading automorphisms. The vast unstable Q-homotopy of Thorn spaces is quickly computed by formality.

§ 13. Algebraic invariants for the classification and construction of manifolds and dijfsomorphisms.

Manifolds are closed simply connected of dimension at least five. Theorem (13. i) describes an algebraic
invariant constructed from the forms on the manifold which determines the diffeomorphism type up to finitely
many possibilities. Theorem (13.2) gives necessary and sufficient conditions in terms of the homology
intersection for realizing the rational part of the invariant by a manifold. Theorem (13.5) describes the
Q-algebraic group which determines the commensurability class of the component group of diffeomorphisms
(as its " arithmetic subgroup "). Corollary (13.4) asserts that two isometrics which agree on homology are
algebraically isotopic.

§ 14. Questions, problems, and further remarks.
Theorem (14.1) states that a Riemannian metric determines a canonical embedding of the model into the
forms (generalizing the harmonic forms of Hodge Theory). Problems and questions about the above theory
and geometric properties are formulated. Areas for future study might include infinitesimal isometrics,
complex structures, symplectic structures, and sign of curvature. Also the non simply connected (non-
nilpotent) theory adumbrated above might be developed further and applied. There are also interesting
questions in commutative algebra related to minimal models.
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i. Twisted cohomology of differential algebras.

We will define the cohomology of a differential graded algebra (d.g.a.) ^ (6)
with twisted coefficients. The coefficient system consists of a vector space V (in degree
zero) and a twisting matrix V->e^i®V satisfying the integr ability condition. One expression
of this condition is that the natural ^-derivation d^ on j^®V defined by © on V and d
m^/ {dQ{a®v)==da®v+aoQv) is a differential, ^0^=0. In terms of a basis {v^}
of V write ©^^^ap^ Sap^i? and the integr ability condition becomes the familiar
equation:

6?6^=S;9^Ae^ or 6 f © — © o © = = o .

We can define the twisted cohomology of ^ with coefficients in V (tensor version)
to be that of the complex (e^®V, d^).

We can also consider the complex Hom(V, ̂ ) which has two degree +i maps
obtained using din ̂  and the composition of © and multiplication in s/. The difference
of these (called d and ©) is the differential d^. In terms of the basis { ̂  } of V an element
of Hom(V, ^) is a set {^} taken from s/. Then ^=rf—©, that is:

^{^}={^-Se,p^},

and we have the horn version of twisted cohomology.
The definitions of twisted cohomology extend immediately to differential modules^

over ^ (e^ is a module over ^ with a differential satisfying d{a.m)=da.m+adm,
ae^/, meJ^).

Now we mention a method for showing the twisted cohomology vanishes. Let

^/->^/ (or e^f-^) be a contracting homotopy, i.e. ds+sd=i. Let 0, denote the
subspace of eQ^ whose left multiplication operators anti-commute with s.

Proposition ( 1 . 1 ) . — The twisted cohomology ofs^ {or J^) vanishes if the twisting matrix
has entries in 0^

Proof. — Consider for example the complex Hom(V, c^). Let 7 denote the map
of degree —i induced by s. Then we have ©y+y©=o because the entries of © lie
in 0,. Then dQr+7dQ=[d-@)7+7{d-@)={d7+rd)-{@r+7@)=d7+rd=i. The
other cases are similar.

(6) Throughout the paper (except § 10) the ground ring is a field of characteristic zero—usually Q, R or C:
^^(—-i)^111^.
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278 D E N N I S S U L L I V A N

Topological Example. — Suppose ^ is the deRham algebra of forms on some
manifold M (or space, § 7). Suppose (V, ©) is a finite dimensional coefficient system
for ^. Then:

Theorem (1.2). — © determines a local system over M in the topological sense. The local
differential forms for this system with the corresponding differential are isomorphic to Hom(V, e^)
with the differential d@. Thus the algebraic and the topological definitions of twisted cohomology
agree for finite dimensional coefficients over the reals or complexes.

Proof. — The movement of V along paths in M is described by the differential
system dv=@{v). We can allow each VQ in V to develop along any path in M by this
rule. Going around small closed paths brings VQ back to itself because d@ = © o © (see § 9).

We obtain in this way a foliation of MxV transverse to the vertical factor V
so that each leaf covers M evenly. Note the movement of V is linear because the rule
is. So we also have a linear action of TT^M on V.

A <c form " for topological twisted cohomology is an equivariant linear map of V
into the forms on the universal covering space M of M (relative to the action of n^ M
on each).

We can view such a " form 39 as a form on M xV only defined in the M direc-
tions—depending linearly on V and invariant under the TC^ symmetry on MxV.

Passing to the quotient we obtain forms on MxV (by the above) only defined
in the leaf-directions. The twisted d is the geometric one along the leaves.

Now such forms on MxV defined in the leaf directions are the same as forms
on MxV defined in the M directions since the tangent plane to a leaf is canonically
identified by projection to the tangent plane below in M. M-direction forms in M xV
depending linearly on V are just Hom(V, M) and under this identification the d along
the leaves goes over to dQ=={d—@) (see Deligne's and Katz's Springer notes for more
details).

Remark. — A finite dimensional local, system over M can be given by a global
matrix of i-forms © iff the corresponding vector bundle is continuously trivial. A
trivialization precisely determines such a © and the above calculation downstairs on M
is valid.

It is a theorem [DS] that any finite dimensional local system over C on a compact
polyhedron is continuously trivial on some finite covering space. Thus the above
explicit d.g.a. formulation is valid after passing to a finite cover.

2. On the structure of differential algebras.

We will study the structure of differential algebras ^ which are connected in degree
zero (7) sindfree of algebraic relations besides graded commutativity. From the theorem

(7) That is, degree zero consists of the ground field A; and ^=k@^+ where ̂ +is the part in positive degrees.
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below we can reduce our study to those satisfying the further condition of mini-
mality'.

d^ c ̂ +. ̂ + (minimal condition).

These minimal algebras constitute a natural categorical closure of classical Lie
algebras relative to the concepts of cohomology and representations. They also provide
efficient algebraic models for topological spaces.

Degree one case:

By a dual Lie algebra we mean a free-connected differential algebra which is generated
in degree one. The minimal condition is automatically satisfied. The differential
j^->A2^ in terms of a basis {^} of ja^ has the form:

(2 .1 ) ^=S^AA:,.

Dualizing d yields a Lie algebra with structure constants .̂, [^5^]=^^.^. The
Jacobi identity comes from the condition that dod==o.

Going from a Lie algebra to a dual Lie algebra is the construction of the complex
for Lie algebra cohomology. One uses the structure constants (as above) to define
the differential in the exterior algebra on the space dual to the underlying vector space
of the Lie algebra.

The classical structure theory for finite dimensional Lie algebras when read on
the dual side implies in particular that ^ is obtained in two stages:

(i) One first forms a tensor product of simple algebras (those having no proper
differential subalgebras generated in degree one, and such that d is injective in degree
one). This is the semi-simple part.

(ii) One then forms an iterated sequence of extensions of the form j^(^i, x^ . . ., x^)
where ^=S^^+^? th6 a^ ^d ^ ^e taken from ^. The (<^) describe an action
and the (^) a twisted cohomology class for ^ in degree 2. This is the solvable part.

Note that step (i) is several uncoupled systems of quadratic equations (2.1) and
step (ii) is a triangular system of linear equations.

We will see that the further structure of a minimal algebra is described by linear
equations generalizing step (ii).

The general minimal case:

Suppose now ̂  is a minimal differential algebra whose structure has been described
for the differential subalgebra ^fc-l generated by elements of degree < k where k—i
is at least one. Let {^} be a complete set of algebraic generators of ^ in degree k.
Since d^ C ̂ +. ̂ + we can write equations:

^==Se^p+^
where the ©^==(6^) are taken from degree one and the a^ lie in ^k~l.
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We claim that (6^) defines an integrable local system ©fc and that {a^} is a (horn)
cocycle of^"1 for these coefficients (§ i). To see this one differentiates the equations
and uses d2=o with the freeness of j^.

Writing the structure equations in vector-matrix form we have (© = ©&):
dx==@[x)+a.

Differentiating:
^x=o={d@){x)-@{dx)+da

^(d@){x)-@{@{x)+a)+da
={{d@)-@o@)(x)+{d-Q){a).

Since ^/ is free of relations besides graded commutativity, we obtain two equations
d@—@o@=o and (rf—©)(^)==o. Since:

(rf-©)(rf-©)(y)=(rf2-©o^-^o©+0o©)(y)--(rf(e)-©o©)(y),
we define d@=d—© and conclude:

(i) d2 = o implies d^od^^o and d@ a == o;
(ii) dx==@{x)-\-a may be rewritten d@ x = a.

Also note if we change (in all ways) the generators x^ then {dy} changes by (every
possible) fi?Q-coboundary in j^""1.

Now the differential algebra s/ is the union of the canonical subalgebras:
j^Cja^C . . . C^C^.

Thus we have proved the

Theorem (2.1). — A minimal differential algebra j^==U.a^ is determined up to
isomorphism by\

(i) the dual Lie algebra ^Cja^ defined by the quadratic equations'.

^^A^^
giving d on the one-dimensional generators \

(ii) an inductive sequence of twisted cohomology classes:

^+1=^J in H^+^-SQ^) k==2,3, ...

determining the differential algebra extension j^^e^"1^). The cohomology class and twisting
matrix in ^/k~~l are determined by (and determine) the linear structure equations',

dx^==^Q^x^+a^ or d@x=^a

giving d on the new generators of ̂  over j^"'1.

Remark. — The sequence of twisting matrices ©2, ©3, ... define representations
of the Lie algebra in dimension one on the spaces dual to the indecomposable spaces.
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Analogy to topology:

The analogy between a minimal d.g.a. and the homotopy theory of a space is
striking:

fundamental group : dual Lie algebra j^1

k-th homotopy group : space of A-dimensional generators of ^
action of fundamental group

on higher homotopy : twisting matrices ©2, ©3, . . .
cohomological ^-invariants of

the Postnikov system : cohomology classes of structure <23, a4, . . .

We can pursue the analogy further:
Massey products : Massey products
Whitehead products on

homotopy : dual graded Lie algebra defined by all the quadratic
terms in d.

Note a Massey product <^, 6, c> can be computed (modulo ideal (^, c)) by solving
a A b==d7] and b/\c==dv. Then ar\^^c represents <a, b, cY.

Relation to Lie algebras:

(i) We can define nilpotent minimal algebras. We suppose the dual Lie algebra ^/1

and the twisting matrices ©fc are nilpotent. This property is equivalent to the existence
of a refined sequence of differential subalgebras j^i C ja^ C . . . so that

a) each dimension is exhausted by some ̂ ,
b ) ja^ is a linear extension of ^,_i without twisting terms in the rf-formulae.

(Thus dx==Qx-\-a becomes dx=a.)

Note nilpotent algebras are structured by ordinary cohomology. If ^ has no
generators in degree one, then s/ is nilpotent. This gives many examples.

Dropping the finiteness condition a) leads to the notion of generalized nilpotent
algebras.

We will see that these nilpotent algebras give canonical models for the algebraic
topology of spaces whose homotopy system (71:1, 7^3, . . .) is nilpotent (§ 10).

(ii) We can define solvable minimal algebras. This means ^ can be built up to
any dimension by a finite number of linear steps. It is clearly enough to assume this
for dimension one. For then each dimension can be achieved in one linear step.

If ^1 can be built in a longer sequence of linear steps, we have the notion of
generalised solvable algebras.

(iii) In the general case, the part of ^ above dimension one behaves like an
enlargement of the solvable part of ja^1, though this enlargement has the new ingredient
of symmetric algebra.
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Reduction to the minimal case:

Define a contractible algebra to be one isomorphic to a tensor product of those
of the form A(^, dx), Then we claim the

Theorem (2.2). — Every free connected differential algebra is isomorphic (with differentials)
to the tensor product of a unique minimal algebra and a unique contractible algebra (8).

Proof. — The differential in ^ induces one d ' on the graded spaces of generators
or indecomposables. ^ is minimal if and only if d ' is zero. If d ' is not zero, write this
complex as a direct sum of its homology and an acyclic subcomplex (a linear version
of the theorem).

It is easy to lift the acyclic part back to ^ so that it generates a contractible differ-
ential subalgebra, ^ C c .̂

Then ^ /ideal (S+ is our desired minimal algebra ̂ . Since ^ is free we can
write j^^^®^ as algebras, but ̂  need not be closed under d. However, it works
at the beginning. Let ̂  be ^^(A2^). Then e^1 is the algebra generated by^i.
Using d2=o and the freeness of ^ one sees that e^1 is actually closed under d.

Suppose inductively we have chosen a splitting ^k~lCs/ closed under d. If:

^a-^o^P+^a

are the structure equations for the extension ^k~l C ̂ fc, k>i, then {a^} is a cocycle
in ^ which is exact in ̂  (and therefore ̂ ) and our problem is to show it is exact in s^\

For this we have

Proposition (2.3). — Suppose ^/==^®^ as algebras where V is a differential subalgebra
which is connected and contractible. Then c^—^j^/ideal ̂ + is an isomorphism on cohomology
for all coefficients. (Proof below.)

Granting this we can solve the desired equations in j^, namely, {^}is a coboundary,
and we have our lifting on ̂ . Thus ̂  lifts to ^ and we have a tensor product
decomposition of differential algebras ^c^^®%7.

Uniqueness will follow because the generators of ̂  and ^ correspond to the
homology and acyclic part respectively of the complex of indecomposables for j^. Let
us call this < ( indecomposable homology 39 the dual homotopy spaces of^/ (Definition (2.3)).
See [QJ for similar definition.

If we choose the splitting ^Cc^ differently resulting in M' = ̂  /ideal ^+, the
composition e^———>s^ —>^' induces an isomorphism on the dual homotopy spaces and
is therefore an isomorphism of differential algebras.

We now prove the proposition (2.3). For simplicity assume ^=/\[x,dx) has
only two generators. Write j^^:.^®^ as ^-modules and consider the sequence of

(8) The generality of this theorem is due to a conversation with Richard Body.
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powers of the ideal of ^+, ^ 3 3D 32 D .... The successive quotients S^/S^1 are
isomorphic to ^T®(^,^-1^) with the product differential. So it is easy to define
a contracting homotopy for ^/S^1 commuting (up to appropriate sign) with the
operations of left multiplication by e^T. By Proposition (1.1), S^4-1 is acyclic for
all twisted coefficients. Since degree x>o we're done by applying the 5-lemma finitely
many times.

3. Algebraic maps, deformations, and obstructions.

We study maps from ^ which are fixed on some subdifferential algebra SS. The
receiving algebra ^ as well as S3 are arbitrary; but we assume ^ is built up from S8
by successive extensions (c < adding new generators 5 3):

dx^ = S 6^p ̂  + a^, degree ̂  > o,

where {6^} and {^} belong to earlier stages. The ^ are free generators.
After proposition (3.1) we assume the twisting coefficients {6^} lie in 3§. Note

that ^==P^p) is a polynomial in earlier x^ with coefficients in ^. We call the linear
spaces of ^ the dual homotopy of the pair (jaf, ^). (Definition 3.1)

Proposition (3.1). — The inductive construction of a map ^-»^ extending SS^^g is
obstructed by a sequence of classes in the cohomology of ̂  with coefficients in the dual homotopy
of (ĵ , S§) (twisted by the inductive map applied to {6^}).

Proof. — To build a map / we have to successively solve the structure equations
in <^. The obstructions are then {/(<)} which defines a hom(6/—/(6^)) cocycle (§ i).

We will define a notion of deformation of map or homotopy having some advantages
over that described in earlier reports ([SuJ, [DGMS], and [S-V]). There a homotopy
was a d.g.a. map ^-^^(t, dt) in analogy with the topological definition XxI—Y.
Now we describe a notion analogous to the topological one expressed by X->Y1.

Let us write ^=^J, ^^^-^(^Ja), and ^^^(^j^SJ. Here
^ is a new generator in degree one less than 8^= 8(^,j^)==^—^. Note that

^a-f9ap8p+Pa(^)-Pa(^).

Proposition (3.2). — We can define a differential in 38{x^y^ 8J extending that on
^(^a?A) °f the form:

dS^ == S^ + S 6^8p + earlier terms.

Moreover, ideal(8^, 8J=ideal(8^, dS^) has vanishing cohomology for all coefficients in 88.
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Proof. — The proof goes by direct induction on the new generators using the
vanishing of cohomology for the ideal. Note for the induction this vanishing follows
from the equality of ideals and the isomorphisms:

^ ̂  S8[x^ ® algebra(^, rf8J and ^/ideal(^, 8J ̂  ̂ .

Also Pa(^p)—Pa(73) belongs to the ideals, we can solve in the ideal:

^a}={Pa(^)-PaW}

and let T]^ be the <( earlier terms ".

Remark. — One also sees inductively two such differentials differ by changing bases
8^l->8^+ decomposable from ideal. We give explicit formulae in § 6, proposition (6.3).

Definition (3.1). — Two maps of ^ into ^ extending SS^^ are homotopic (rel v)
if the combined map of s/®ggS^ into %7 extends over j3^1.

By the remark following proposition (3.2) the homotopy relation is independent
of the choice of d in j2^1 (mod decomposables).

Proposition (3.3). — The inductive construction of a homotopy between two maps of ^
into ^ is obstructed by a sequence of classes in the cohomology of ̂  with coefficients in the dual
homotopy of (̂ , 3§}.

The proof is the same as proposition (3.1).

Corollary (3.4). — Homotopy is an equivalence relation^ and we can add homotopies.

Proof. — With obvious notation, we use the obstruction theory to extend the
inclusion:

^(^, ̂ ) -^ ̂ ,ĵ , ̂ , 8(^,j^), 8(^, ̂ ))

over S9{x^y z ^ y 8(^3 •2'a)) using the vanishing of the cohomology of:

ideal (S(^J, 8(^, ^), 8(^a), 8(ja, ^a)).

This proves transitivity by adding homotopies.
Symmetry follows by transposing the d in S8{x^^y^ 8J by the involution:

^a^a. Ja^a. ^h»-^

and using the uniqueness remark about d in the proof of proposition (3.2).

Now consider a map <^'-7^ and a lifting v' of SS^^S up to ^", ^^><^'.

Proposition (3.5). — The construction of a lifting of s^—^^ into <^' up to homotopy
is obstructed by a sequence of classes in the relative cohomology of (<^/-><^) with coefficients in
the dual homotopy of (̂ , ̂ ?).
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Proof. — Now ^->^ is determined and Vy.—^^' and 8a->%7 are to be found.
The obstructions are obtained as usual by examining the structure equation:

Ax ={^-^} + ̂ M^-^) +0<a(^^p)-
As an application consider the equivalence classes of maps up to homotopy

[ja^ ^v]. Assume V-^<^ induces an isomorphism of cohomology with coefficients
in the dual homotopy of (^, SS).

Corollary (3.6). — [ĵ , ̂ '; v'j -^ [ĵ , ̂ ; v] is a bijection.

Proof. — Proposition (3.5) applied to maps of s^ fixed on 8§ [s^1 fixed on ^ / ® ^ ^ / )
implies n is surjective (injective) since the relative cohomology vanishes.

Remark. — This proof prompts the observation that homotopies of homotopies,
homotopies of homotopies of homotopies, etc. are special cases of ordinary homotopies
with varying Si and s/.

Now assume that the number of x ^ s is finite and that ^f is finite dimensional in
^

each degree of an x^ and one less. Fix SS—^^.

Proposition (3.7). — The set of deformation classes of maps [ĵ , <^; v] has the structure
of an affine algebraic variety modulo an equivalence relation which is the image of an of fine algebraic
variety.

Proof. — Consider the array:

J^ap^^^ 8J, ^) ^J(ap^^\ ̂ )x^(^J, ̂ ) ̂ > [̂ , ̂ ; v]

where ^ap{-, V) means the set of all d.g.a. maps. Now E is onto and each of the ^(ap
sets are subsets of linear spaces Hom((^), ^), etc. described by the algebraic conditions
commutation with d.

Remark. — The actual structure of [j^, %"; v] is somewhat better because the
homotopies between two maps f and g are parametrized by a space of cocycles of ^
Thus the image of R is obtained by dividing an affine algebraic variety by a linear
foliation.

4. Algebraic Fibrations.

Let § be a differential algebra and 3SC S a differential subalgebra. We assume S
is a free module over 3H so we can write S^'88®^'. Then \S SS is connected (or provided
with an augmentation 3S —^ground field) ^ inherits the structure of a differential
algebra via the identification ^^ <^/ideal ̂ +.

This situation is the algebraic analogue of a fibration and we refer to <^, S8^ ^
respectively as the total space, the base, and the fiber.
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If 3S is not connected we will have to assume later that the differential in € has
the form on ^ in degree i:

^C^+i+^®^+^-l®^2+---

We call this property the infinitesimal condition (namely ^4.1 instead of e^^i®^o).
With this condition the ^r®^ part of d^ defines twisting matrices in S8 for H*<^.
These are called the action coefficients of the fibration.

We study the cohomological relationships between ^, <?, and ^. Note that
proposition (2.3) is an example and may be paraphrased here as: if the base is connected
and contractible then € and ^ have isomorphic cohomology for all coefficients.

We begin with an application of the algebraic analogue of induced fibration.
A map between fibrations is a map of pairs (<?, 38}->^€'\ S § ' ) and one sees easily

that maps can be factored so that the base is the same for one factor and the fiber is
the same for the other. Namely:

g=ss^y ^gs'^y^s'
equals the composition of ( c < equal bases " and then " equal fibres 5 ? ) :

g s ^ y ^ s s ' ^ y and s s ' ® ^ ' ̂  s s ' ^ y ' \
g is essentially (/ [ SS) ® Identity and h is the product of (/1 ̂ ) and the identity on 8 S ' . The
differential algebra structure on S S ' ® y is obtained by pushing forward that on S§®y
by/|^ ("the induced fibration'5).

We study these two types of maps in turn. We prove four propositions and state
in the proof of each which type of twisted cohomology (tensor or horn) is meant in the
statement.

First the case of equal bases SS®^ -^ SS®^.

Proposition (4.1). — If W^^W^ (ordinary coefficients) then WS^WS' for
all coefficients coming from S8.

Proof. — The subcomplexes degree (^-coefficients) >_k are closed under d. The
quotient complexes are just the SS^ with zero differential tensor the fiber complexes.
The conclusion for either horn or tensor twisted cohomology follows easily from the five
lemma.

From now on we assume the infinitesimal condition concerning d^'. We can then

speak of the action coefficients. Again we assume equal bases, SJ®^ -> SS^y.

Proposition (4.2). — Suppose the fibers y and y are generalized solvable ( § 2 ) ; and

H<^H(?' for all inductive action coefficients (see proof). Then the fibers 3F and y are
actually isomorphic as differential algebras. Thus the total spaces € and S' are isomorphic as
differential algebras.
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Proof. — In the first non-zero degree of the fiber y, the y cocycles ^ C <^'
satisfy d^ C ̂ ®^+S§^^. Thus ^ 'C<? determines a twisted (horn) cocycle in
the relative complex (<?, SS\ the coefficients being part of the action coefficients.

Using H'^-^H1^" is onto for ^' cohomology (horn version) implies <^-^' is
onto.

Similarly, if j is the first non-zero degree of ^r, K^== kernel of C^--^) defines
a (horn) cocycle going to zero under/. Applying injectivity of W€->WS' with
Kj coefficients (horn version) forces K to be zero.

Being generalized solvable the fibers have cocycles in this first non-zero degree.
We conclude j=i and <^/^<^'.

We amalgamate the subalgebra generated by ^^^ into the base and repeat
the argument as often as necessary to reach our conclusion that y^y and € ^ € ' .

Note we keep meeting new action coefficients in the aggrandizing base (these
are the inductive action coefficients).

Corollary (4.1). — A map between two generalized solvable algebras which gives isomorphisms
on all cohomology with homotopy action coefficients (§ 3) is an isomorphism of differential algebras.

Corollary (4.2). — A map between two minimal algebras (§ 2) which induces an isomorphism
in degree i and an isomorphism on cohomology with coefficients in the higher homotopy action is an
isomorphism of differential algebras.

Now we treat the case of (c equal fibers 35, 8§®y-4- 3 S ' ® y .
Let 2 be any collection of coefficients which is closed under tensor products and

contains the appropriate action coefficients (for both fibrations).

Proposition (4.3). — If H^^H '̂ {coefficients in 2) and d=o in the common fiber,

then H(^H<T {coefficients in 2).

Proof. — When rfis zero in the fiber e ,̂ degree (^-coefficient)^ k defines a filtration
by rf-subcomplexes. The successive quotients are the complexes for computing the
(tensor) cohomology of the base with coefficients in the action. We tensor this picture
with the various coefficients from S, apply the 5-lemma, and we're done.

Remark. — Proposition (4.3) is valid for generalized nilpotent fibers if 2 contains
the homotopy action (which is then defined in S9).

Proposition (4.4). — Suppose the common fiber is solvable. Then H<?^H<?' for
^-coefficients implies H^^H '̂ for coefficients in 2^ {those of S coming from SS).

Proof. — Consider the case when d==o on ^ and the subsequent filtration by
degree ^ as in Proposition (4.3). Let (<?)„ denote the hypothesis up to n and (^%
the conclusion up to n. Now assuming (<?)„ we prove {38\ for k<_n by induction.
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If {S8\_^ is true, since y is connected in degree zero, we have isomorphisms of tensor
cohomology with S^ coefficients on the successive quotients (other than OS itself) up
to k. The five lemma a number of times and {g\ then give [SS\ for k<_n.

Now we turn to the solvable fiber. We have the natural interpolating differential
algebras g8=g^C <^C ^C . . . g determined by the solvable series. Assume S
contains the inductive action coefficients. Since the series is finite in each degree,
H(^~H^ i11 degree <_n for all coefficients and N sufficiently large. Now assuming S
contains the inductive action coefficients we apply the above to deduce:

Wn^^-l^n^-^Wn

which is {^S)n- This completes the proof for the tensor version of twisted cohomology.
We can combine these statements in various ways. For example let:

/ /ff c^\ / ( /8' ^s'\
^ G , e^J —> ^ 0 , SO )

be a map of algebraic fibrations with finite type nilpotent fibers and S be a collection
of coefficients containing the homotopy action and closed under tensor product.

Consider the statements

(i) H^H^' for S-coefficients
(ii) H^H<r for 2-coefficients
(iii) y ^ y as differential algebras.

Theorem (4.5). — Any two of the above assertions implies the third.

Remark. — The proofs and statements of propositions (2.3), (4.1), and (4.3)
can be expanded into a spectral sequence theory H*(^?, H*^) => H*<?. We have
instead chosen the direct computational path because we already have commutative differ-
ential algebras.

5. Building Homological Models.

First Case (ordinary coefficients):

To each differential algebra ^ we will associate a homological model e^(^).
^(J^/) maps to ^ inducing an isomorphism on cohomology. e^(J^) as a differential
algebra is free, connected, minimal, and generalized nilpotent. ^[^) is characterized
up to isomorphism by all these properties. The map Ji{^}->^ is well defined up
to homotopy.

The construction of ^{^/)->^ is straightforward. For its description we refer
to the algebraic operation ^y->^[y) where dy is a cocycle c in ^i as c( killing 5? the
cohomology class of c. {^i{y} means Jl with the new generator^ added.) If c=o,
we say we have < c added " the cohomology class ofj/.
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PL
Suppose now that «^;->j^ has been constructed so that ̂  induces an isomorphism

on cohomology in degree <_k and an injection in degree k +1. Then we " add " cohom-
ology to ̂  (if necessary) and map accordingly to "make ^" onto in degree k+i.
Then we add variables to <( kill " the kernel on cohomology in degree k + 2 and map
accordingly. If there are terms in degree one we may have to again kill the kernel
in degree ^+2, and again, and again... The union of these constructions in the

Pr. . ii • i ^ ^A; +1 ,ydesired ^;+i—> ^/ .
To start the induction we assume H°J^ is the ground field and take:

^O=H°J^= c( constants of ^ ".

^=\]J^k is the desired model, ^(e^).
If ^f ->s^ is another homological model, we can lift ^->j^ (up to homotopy)

to ̂ ' by applying the obstruction theory for homotopy, Proposition (3.5). The map
^'->^ induces an isomorphism on cohomology and is therefore an isomorphism of
differential algebras (which is well defined up to homotopy) (Propositions (4.2) and (3.6)).

If in the construction of ^(ja^) ->j3^ there are only finitely many steps in each
degree, then ^f(ja^) is nilpotent. Otherwise ^{s/) is generalized nilpotent, being
formed by an infinite number of (c nilpotent steps 59.

Example (nilpotent spaces).

If ^ is the de Rham complex (over Q^ or R) of a nilpotent homotopy type X,
e^(j^) is nilpotent and the realization of^(^) (§ 8) is the rational or real form of the
homotopy type X. In particular, the dual homotopy spaces of e^(J^) are the dual
homotopy groups of X. If the Betti numbers of X are not finite, one has to take into
account the natural topology on dual spaces and cohomology. (See Remark (ii), § 8.)
Also for an arbitrary space we can associate a generalized nilpotent model well defined
up to isomorphism.

Example (Computations).

Ifj3^ is the de Rham algebra ofX, then ^(X)==^(e^) in the following cases is:
(| A* | means degree x, /\{x, y, . . .) means free graded commutative algebra on x, jy, . . .)
for:

X==Si AO/), |^|=i, dy^o;
X==S2 A(^), | x | =2, dy=x2;
X==CP2 A(^,j0, H=2, dy=x3;

X==Lie group A(A;i, x^y ...,;vJ, |A:Jodd, rf^=o;

X == Grassmannian of 2-planes in C4 A(^, c^ u, v), \ c^ \ = 2, | c^ \ == 4,
du=c^—2c^, dv==c^—c^;
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X=Riemann surface of genus g>i A(^,j^, .. ., ̂ ,^; . . . $ . . . $ . . . ) ,
l^ l^ l -^ l^ ' 1? dXi=dy^=o, and the number
of i-dimensional generators between the k
and (A+i)-st semi-colon is ^^ (actually
UC?—1)--! for k=i);

(See § 12 for the computation.)
X = Maps (S1 into S2) /\{x, x , y , y ) , |A;| =2, |^|=i, ^=o, rf;<==o,

^=;v2, ^j^^^ ^§gg § n for the reaso-
ning);

X == complement of Borromean rings ^{x,y,z;u,v,w),\x\=\y\=\z\=i,
in S3 dx = dy = dz ==o, du=xy, dv==xz, dw=yz\

X=K(7r,7z) A(Hom(7r,R)), d==o, |Hom(7T:, R)| ==n.
(See § 8 for the proof.)

Second Case (Twisted Coefficients and Relative):

We assume we have differential algebras ^ and 3S, a map Si->^ and a col-
lection S of coefficients in 88 for which I-P.^—^H1^ is injective.

Theorem (5.1). — We can minimally (9) extend 88-^^ to 88{x^-^^ where:

degree Xy>o

so that f induces an isomorphism of Ti-cohomology. Any two such extensions 88 (x^) and 88 [x'^

are isomorphic as differential algebras. The isomorphisms 88{x'^ -^ 88{x^) are well defined up
to homotopy by the condition that foi is homotopic to f.

Proof. — The construction of 88{x^) and the map i are the same as the nilpotent
case using the propositions of § 3. A useful device is to form the direct sum of all the
coefficients in S and work with this one (horn) cohomology theory.

That i is an isomorphism of differential algebras is proposition (4.2).

Definition (5.1). — We call 88(x^) the model of^/ over 88 relative to the coefficients S.

Example 1 (semi-simple case). — If 88 is a dual Lie algebra (generated in degree i
and free of relations) which is finite dimensional and semi-simple (namely 8&\->1^88^
is injective) then IP^^H^^o for all finite dimensional coefficients S [WhJ.
So any 88—>^ can be extended to a model 88[x^—>^ for any collection of finite
dimensional coefficients S in 88.

Example 2 (solvable case). — Suppose 88 is just the exterior algebra on one generator 6
in degree one and 88—>sS. Suppose 6 is not exact and let S be the set of non-zero

(9) With twisting coefficients taken from S.
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elements of the ground field so that Q^df—aQf for o-eS and fe ̂ o. Writing ^==i-|-q/
this is equivalent to aQ^dgfg, g in <^o-

Then for {06} coefficients SS—^s^ is injective on HP and we can form a (solvable)
model ^(^) ->^ inducing an isomorphism for these coefficients.

Example 3 (spaces).—We can apply examples i and 2 to the de Rham complexes §
of spaces. We need the local systems embodied in SS->§ and model-building begins.
The non-nilpotent examples require real coefficients, and G00 forms.

6. The automorphism group of a differential algebra.

One knows those self-mappings of a chain complex homotopic to the identity
are just those of the form i + di' + id where i is any degree —i mapping of the complex.
We show here that those self-mappings of a finite type nilpotent differential algebra ^
homotopic to the identity are just those of the form lJ^{di-\-id)-\-^{diJ(-id)2-{-. . .,
namely, exp{di-{-id) where i is any degree —i derivation of the algebra. This is the
basic result, proposition (6.4). Now we discuss some consequences.

We term these exp(di-{-id) automorphisms (see Remarks) inner automorphisms
and the homotopy classes of automorphisms outer automorphisms, because of the basic
result. We refer to the group of automorphisms acting on the cohomology, the dual
homotopy (the spaces of indecomposables) (§ 3) and the spherical cohomology (cocycles
mod. decomposables) as the homology automorphisms, the homotopy automorphisms, and the
spherical homology automorphisms.

Say that an automorphism G of a graded vector space is unipotent if o-—I is
nilpotent in each degree, (o-—I)N=o for some N. A group of automorphisms is
unipotent if each of its elements is unipotent. (On a finite dimensional vector space
a (conjugate of a) unipotent subgroup is contained in upper triangular matrices with
one's on the diagonal [BH].)

The reductive part of a group of automorphisms is by definition the quotient by
the maximal normal unipotent subgroup. (See Appendix on algebraic groups.)

Theorem (6.1) . — a) The symmetry groups associated to a nilpotent differential algebra, ^\
(i) all automorphisms,
(ii) outer automorphisms (homotopy classes),
(iii) homology automorphisms,
(iv) homotopy automorphisms,
(v) spherical homology automorphisms,

differ from one another only by normal unipotent subgroups.
b) If the differential algebra ^ is finitely generated, then each group above is naturally an

algebraic matrix group and each has the same reductive part. Therefore, each has the form G(ja^) ̂ U'
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where G(J^) is reductive and the (normal) unipotent factor U' varies as we go down the list (10).
Case (ii) is the non obvious case.

c) Ignoring products with multiplicative groups^ every connected algebraic group occurs as
p varies in the example ^==A(^, . . ., ̂ ; dy==p(x^, . . ., x^)) where the x, are closed, have
degree 2 and p[x^, ...,.yj is a homogeneous polynomial of some (large) degree. Note the
groups (i), (ii), (iii), (iv), and (v) are equal in this case.

In the appendix we discuss some facts about algebraic groups relative to our theory
and applications to topology.

Now let G be any group of outer automorphisms (perhaps coming from topology
—like the fundamental group acting on the universal cover of a compact manifold).
Let II, H and (IIH) denote the irreducible pieces (irreducible subquotients) of the
representation of G on homotopy, homology, and spherical homology, respectively.

Corollary (6.2). — For the abstract group G of outer automorphisms of the nilpotent d.g.a.
j3 ,̂ the representations II andH. are constructed by finitely many algebraic operations (tensor product,
subspace, etc.) from the common representation (IIH) on spherical homology—the specific algorithm
being provided by ^.

The proof of the corollary can be safely left to the reader of the ensuing propositions
(especially (6.4)).

Remark. — These results are true when ^ is obtained by finitely many linear
extensions from 38 which contains the twisting coefficients, if we consider only auto-
morphisms which fix S8. In the propositions below we assume the d.g.a. is minimal
nilpotent.

Remark. — Note that in the case of a not necessarily nilpotent dual Lie algebra,
i may be regarded as an element in the Lie algebra, di-\-id reduces to id which is ad(i),
and exp[di-}-id) is induced by conjugation in the Lie group. Also di-{-id is nilpotent
for all i iff the Lie algebra is nilpotent (EngePs Theorem) and exp[di-\-id) makes sense
algebraically (without consideration of topologies) only in this case. Since inner
automorphisms are very much (cohomologically) the identity, the first result rings true
even in the non nilpotent cases where it is unformulated.

Remark. — In case ^/ consists of forms on a manifold, think of i as given by a vector
field; di-{-id is then the Lie derivative on forms, and exp[di-{-id) generates the induced
flow on forms. This provides the geometric motivation for algebraic homotopy. In
the propositions below, however, we assume that s^ is a nilpotent minimal d.g.a.

Proposition (6.1). — The inner derivations^ those of the form di-^-id where i is a derivation
of degree —i, commute with d and form a Lie algebra under bracket [X, Y]==XoY—YoX.

(10) G^ H means the semi-direct product of the two groups G and H; H is normal and G acts on H.
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Proof. — One calculates [d, dj -}-jd]==o since d2==o. Then:
[id+di.jd+dj] - d [ i , j d+d j ] + [i,jd+ dj]d

using [d,dj+jd]==o.

Proposition (6.2). — The exponentials of inner derivations (called inner automorphisms)
make sense algebraically and form a subgroup of automorphisms of ^ commuting with d.

Proof. — In a nilpotent minimal algebra, d increases the monomial weight and i
preserves it. Thus di-\-id is nilpotent in each degree and:

exp{di + id) == i + {di + id) + i {di + id) 2+ ...

makes sense algebraically. It is not hard to see we have algebra automorphisms
commuting with d. Composition is the classical Baker- Campbell-Hausdorff formula
and Proposition (6. i) :

exp Xoexp Y=exp(X+Y-|[X, Y]+^EX[X, Y]]+. . .).

Proposition (6.3). — exp{di-{-id) is homotopic to the identity with a canonical homotopy
provided by i.

Proof. — Write ^/=^{x), ^=SS{x, u, du) (see § 3) and let 8 be the derivation
of ^ defined by 8(x)==u, ()(u)==i.i{x) and 8{du)=idi{x). Calculating modulo
decomposables {d8 + 8d)x E= du, {dS + 8d) du == o, {d<)+ 8d) u = o.

Thus e==exp{d8+Sd) is defined, and ^^(^(A;)®^^))^). Soifjy==ex and
^/I->^/ is defined by x[->x, u}->ix, then i.n=n.(), jy[->exp{di-}-id)x and TT is a homotopy
of exp{di^-id) to the identity.

The case i'.= o provides j^1 with a canonical differential, as promised after
Proposition (3.2).

Proposition (6.4). — An automorphism of a nilpotent minimal algebra is unipotent if and
only if the corresponding automorphism of spherical homology is unipotent.

Proof. — By induction, (r(new generator x) is defined modulo cocycles by a[dx)
which is already defined.

Remark. — A unipotent automorphism a ( (T==I+X, X nilpotent) can be written
uniquely as exp D where D is a derivation of degree zero commuting with d. Namely,
use D^ogc^log^+^^X-iX^...

Proposition (6.5). — If an automorphism a is homotopic to the identity^ we can write
a==exp[di-{-id).

Proof. — The homotopy to the identity H provides us with the preliminary infor-
mation that (T is the identity on cohomology and so is unipotent by Proposition (6.4).
Thus we can write a = exp D and our problem is to write D == di'.-\- id.
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Solving for i inductively meets cohomology obstructions like those for constructing
a homotopy. (For a new generator we have to find ix in d{ix)=Dx—idx. Since
d(Dx—idx) = dDx—didx =D{dx)—di(dx) == id{dx) = o we have a cohomology obstruction.)

To insure these inductive obstructions vanish we combine the given homotopy H
of (identity, a) with the homotopy n{i) coming from i (Proposition (6.3)) via the
transitivity argument (Corollary (3.4)) to obtain H+7c(i) a homotopy of the identity.
Inductively we solve for i so that this self-homotopy of the identity is homotopically
trivial (see Remark after Corollary (3.6)). This is possible because the cohomological
ambiguity in solving di-{-id==D is the same as that for constructing a homotopy
(Proposition (3.3)). Since H exists, the inductive cohomological obstructions to
constructing i subject to « H+rc(z) is homotopic to the trivial self homotopy » will
vanish.

Proof of Theorem (6.1). — The first assertion follows from proposition (6.4).
For the second part use the Levi-decomposition (see the Appendix) for the group

of all automorphisms Aut(j^)=G(^)^U(<^) where U(J^) is the maximal normal
unipotent subgroup of Aut(^), G(^)=Aut(cQ/)/U(^) and ^ denotes semi-direct
product. Clearly Aut ^ is an algebraic group of matrices and [B-HC] applies. Then
since the surjections (i)^((ii), (iii), (iv), or (v)) have full unipotent kernels we can
easily form the quotients G(^)^U/U' by looking at the action of G{a) on the nilpotent
Lie algebra of U. (The word full means exp of a Lie subalgebra. This is obvious
for (i)^((iii), (iv), or (v)) and is a consequence of Propositions (6.3) and (6.5) for
(i)->(ii).)

We leave the third part and Corollary (6.2) for the reader.

Appendix (Algebraic groups and arithmetic groups)

The labeled statements below are used in what follows. The others yield cor-
ollaries about the structure of automorphism groups of spaces and manifolds (after
sections 10 and 13 are completed) which we don't reiterate.

A useful reference for most of the remarks below is Borel-Harish-Chandra [B-HC].
An algebraic group is a group in the context of algebraic varieties. Each one is

an extension of an Abelian variety which is a projective variety by an algebraic matrix
group which is an affine variety. Only the latter concern us and we define them now.

Let k be a sabfield of C (for us usually k==(^y R, or C) and let V be a finite
dimensional vector space over k. GL(V) denotes the linear automorphisms of V and
one refers to the group of matrices with entries in any field K containing k as the K-points
of GL(V).

An algebraic matrix group G over k is determined by any subgroup of the C-points
of GL(V) defined by polynomial equations in the entries where the coefficients of the
polynomials lie in k. We can speak of the K-points of G for any field K between k
and C.
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A unipotent group U is an algebraic matrix group which for some representation
above lies in the subgroup of complex matrices with ones on the diagonal and zeroes
below (in some basis). This condition is independent of the representation. Moreover,
there is essentially one Q^-algebraic group structure on the underlying Q-points of a
Omnipotent group.

Every algebraic matrix group G has a unique maximal normal unipotent sub-
group U which is also defined over k,

The quotient G/U has the structure (over k) of an algebraic matrix group Gy
called the reductive group associated to G.

There is a semi-direct product isomorphism G^G^U of algebraic groups called
the Levi decomposition. Two Levi decompositions are related by inner automorphisms
from U. All this is defined over k.

Unipotent groups have (nilpotent) Lie algebras from which they are constructed
algebraically by the Gampbell-HausdorfF formula—which has only finitely many terms
in this case.

Thus if U' C U is normal and invariant under the action of the reductive group Gy
the semi-direct product G^U/U' is also an algebraic group (even an algebraic matrix
group).

Suppose G->G' is a homomorphism of algebraic groups defined over 0 with
unipotent kernel. Then Q-points of G' which come from C-points of G already come
from Q^-points of G.

Here one speaks of a < c principal homogeneous space " ^~~l{x) of the unipotent
group p""^) where x is a rational point at G\ If p sends a C-point of G to x then p"1^)
is an algebraic variety defined over Q^ which is one free orbit of the unipotent group p~1^)
(in the sense that this is true for the C-points). Then the theorem is

(A.I) <( A principal homogeneous space of a unipotent group (all) defined over Q^
has a rational point33 [Se 2].

Arithmetic groups are defined in Q^-algebraic matrix groups G by choosing a
lattice (a finitely generated subgroup of biggest rank) in the rational vector space V.
Then let G^ denote the automorphisms of G which yield isomorphisms of the lattice
(not only preserve it).

A different choice of V or lattice in V leads to a commensurable subgroup G^.
Namely, G^nG^ is a subgroup of finite index in each.

Any subgroup of the Q^-algebraic matrix group G commensurable to a G^ is called
an arithmetic group.

Any finitely generated torsion free nilpotent group is an arithmetic group in a
unipotent group over Q^ (and this structure is essentially unique).

The Levi decomposition induces on some subgroup of finite index F in an arith-
metic group a semi-direct product decomposition F^r^N where N is a finitely
generated nilpotent group and Fy is arithmetic for the reductive part.
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Arithmetic groups are finitely presented. Any isotropy subgroup of a vector in
an algebraic representation is also arithmetic and thus also finitely presented. (Compare
the free group example (§ 10).)

(A. 2) "If G->G' is a homomorphism of Q^-algebraic matrix groups defined
over Q, then the image of any arithmetic group in G is commensurable to the image
of the Q^-points of G intersected with any arithmetic subgroup ofG' [B-HC]. "

7. Differential forms and deRham's theorem on general spaces.

There are several variants of what we now consider. To fix ideas we may think
of forms (11) on simplices and compatible collections on these simplicial complexes.
(Example (i) below.) Thus in two triangles with a common edge a one form is a pair
of one forms (one on each triangle) agreeing on vectors in the common edge. (See
Figure 7.1.) Any such partially continuous one form can be integrated along any
reasonable path on this complex.

FIG. 7. i

More generally we can integrate nxn matrices of i-forms to move B^ along
paths and construct local systems (Theorem (1.2)) and integrate single k-forms over
^-chains to obtain ^-cochains. This integration is the reason that the construction is
valid topologically. The advantage for topology comes from the good algebraic proper-
ties of infinitesimal calculation—notably the (graded) commutative multiplication of
forms.

We will define the general situation in familiar but (as yet) undefined terms (the
italicized words). We treat spaces made up inductively of cells of increasing dimension.
Cells have boundaries of lower complexity which are attached by admissible maps to
the inductive space.

We must have the notion of form on a cell. We build up the notion of form on a
space inductively by extending over a new cell an inductive form pulled back to the
boundary of that new cell. For simplicity let us further assume we have an ((integration
map " to ordinary cochains on the space giving a chain map and an isomorphism
between form cohomology and ordinary cohomology for cells. Only one more property
is needed for a deRham theorem.

(n) This idea is due to Whitney (1956) and Thorn (1959).
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This is the extension property—any form in the boundary of a cell extends over
the entire cell. Then we can state and prove the (( cellular deRham theorem ".

Theorem (7.1). — For any such notion of cell, space, form, and integration map, form
cohomology is isomorphic to ordinary cohomology—the isomorphism being given by the integration map.

Proof. — We are tacitly assuming ordinary cochains satisfy the extension property.
Then for both forms and cochains we have short exact sequences (and natural maps
between them defined by integration) corresponding to X^_i ->X^-> (X^, X^_i), where
X^ is the union of all cells up to k. The calculation of (X^, X^_i), namely, forms or
cochains on X^ which vanish on X^_i, breaks into a product over the k-celh (whose
interiors are disjoint). Then we have the sequences corresponding to:

boundary -> cell -> (cell, boundary)

and now the middle is good by hypothesis while the boundary term is good by induction.
We apply the 5-lemma to the long sequence of cohomology, take a direct product, put
this in the first sequences on the right, apply the 5-lemma again, and we're done.

Remark. — Since this discussion is equivariant with deck transformations we also
have implicitly obtained twisted cohomology in terms of forms on covering spaces.
(Compare Theorem (1.2).)

Example (simplicial complexes).

Take simplices and simplicial complexes (of arbitrary cardinality) for the notions
of cell and space. A form on a cell is a form on a neighborhood of the simplex in the
affine space it generates. Compatibility is defined by restriction to the affine spaces
of various faces.

(i) (polynomial forms). — One example is to take forms on a ^-simplex which
are polynomials in the affine coordinates x^, ...,^ times the various constant forms
dx^t\. . ./\dx^. We let the coefficients of the polynomials lie in any field containing
the rationals, Q^. Integration over simplices is a rational operation defining simplicial
cochains with values in the same field.

The extension property is a non-trivial fact (12). The idea is to fix attention on
one face of the boundary and let TT be the (singular) map which projects from the opposite
vertex. Let x be the linear coordinate which is i on the face and zero on the vertex,
and co the form to be extended from the boundary. By subtracting off^Tc'co (which
is a polynomial form for large N since co is) we obtain a new extension problem which
is zero on that face. We move to an adjacent face and repeat the process. Since TT*
preserves zero we are eventually reduced by this process to a trivial extension problem.

The acyclicity of the simplex can be done by pure algebra—for the forms on a

(12) An elegant proof was given by a talented young mathematician in an M.I.T. seminar of 1972. He was
Bruce Renshaw (1946-1974) whose primary interests were number theory, geometry, and music.
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^-simplex are just (the contractible algebra) polynomials in x^, .. ., x^ (in degree zero)
tensor the exterior algebra on dx^, . . ., dx^ (in degree one).

(ii) (G00 forms). — Another example (needed over the reals for non-nilpotent
considerations and for relating to classical deRham) is to take smooth forms (of class C°°)
on neighborhoods of a simplex in its own affine space. The extension goes through
as in example (i) although ^N is replaced by a C°° function which is one near the face
and zero near the vertex (Griffiths). The acyclicity of the forms on a simplex is the
classical Poincar^ lemma (13).

(iii) (polyhedral forms). — We can take forms on a simplex to be the direct limit
(under rectilinear subdivision) of either of the previous examples. The extension lemma
is proved by coning the subdivision on the boundary into an interior point. In the
polynomial case we can let the subdivision (for example, rational subdivision) respect
the field and continue to work over that field. The remainder of the verification is
formal.

(iv) (flat forms). — These comprise a maximal geometric class of forms relevant
for topology. This discussion is the body of Whitney's book (( Geometric Integration ".

Example (semisimplicial complexes).

We may repeat the discussion of example (i) for semisimplicial sets. We take
collections of forms on the (abstract simplices) compatible with the face and degeneracy
structure. The role of cell is played by non-degenerate simplices, and we can interpret
this discussion literally on the Milnor geometric realization [M^] which has one cell
for each non-degenerate simplex.

The discussion can be enhanced with notions of continuity or measurability on
the collection of A-simplices and the corresponding collections of forms on ^-simplices.
The basic operations, for example extension above, preserve this structure.

Example (stratified spaces).

In the above cell-space abstraction we didn't require that cells be contractible.
Thus these notions can be extended to stratified sets—thought of inductively as obtained
by attaching manifolds with boundary with a careful statement about the geometry of
the attaching map.

It would be interesting to carry this out in detail—the basic idea being that a
form should have values only on multivectors tangent to the strata.

Remark. — The local nature of the multiplication of forms means that it agrees
(cohomologically) with any other locally defined notion of cup product (or Massey

(13) According to deRham — this lemma is due to Elie Cartan who referred to it as the(< converse of Poincare's
lemma" that dod=o.
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product) for cochains. (See Whitney's book, p. 286, Theorem i8A— although we
don't use this identification but rather define cup product by wedge products of forms.)

Now we illustrate the advantages of commutative multiplication in a fibration
formula. This is the (twisted) K(TT, /^-analogue of the Chevalley-Hirsch-Koszul formula
for principal Lie group bundles which was current in 1950 and ignored later in topology
(see [B] and [C]). The evident power and simplicity of the CHK formula helped
prompt me to the present theory after Armand Borel kindly explained it to me in 1970.

We explain our hypothesis in concrete (but lengthy) terms which makes the proof
self-evident and obviates (14) the need to choose a technical definition of topological
fibration. We concentrate on the twisted case over R. The untwisted case over 0
is also valid and simpler.

Assume we have two spaces E and B, for which forms are defined, and an admissible
map E->B satisfying a certain cohomological fibration property. Since we want to
treat the twisted case, assume we have an n X n matrix of one-forms © on B satisfying
the integrability condition d@—Qo@=o. We then assume we have a ^==(rf—©)-
cocycle in the forms on B, ^==(q, . . ., ^) so that n*c=d@^ can be solved in E. We
further assume that the solution ^==.(^1, . . ., Sn) has been chosen so that over each
cell or of B the multiplication map (with TT*) :

^(0, ao)(Si, . . ., Sn) m> ̂  ̂ ), (T.^^O.S,

induces an isomorphism on cohomology. Here ^(a, So) and <^(cr, ^cr) denote respect-
ively the forms on a vanishing on ^(T and the forms on ^~1 a vanishing on 7r~1 80. The
differential on the left is defined by:

d{b.^=db^+~b.@^)+~b.c^

where b belongs to ^?(cr, 8 a), c^ (resp. ©^) denotes c (resp. ©) restricted to CT, and
^(cr, ^(J)(Si, . . ., SJ denotes ^(cr, ^o-) (the ring without unit) tensor the free commuta-
tive algebra (with unit) on ^, . . ., ̂ . Note that c^==dQ^ on o so in the new basis
(S-T])=(^-^, . . . )=(Si, . . . ) we have d(b .^)=db^-@{b^). So our condition
is that <?(cr, 8a) (in a coherent way) looks homologically like (fibre) X (<r, 8a) where
the fibre has cohomology the free commutative algebra on ^, ...,^. (Note the
twisted cohomology of (a, 8a) agrees with the untwisted, see Theorem (1.2).)

Then let S8 denote either the forms on B or any d.g.a. mapping to the forms on B,
so © comes from 89 and the map is an isomorphism for all finite dimensional coefficients
defined in 35.

Theorem (7.2). — The natural map S8^, ..., ̂ ) -^ forms on E defined by multipli-
cation induces an isomorphism on cohomology for all finite dimensional coefficients induced by twisting
matrices in S8. The d on the left is defined as usual by d^ = ©^ + c.

(14) For our track.

299



300 D E N N I S S U L L I V A N

Proof. — First let S3 be the forms on B and go by direct induction over the cells
or skeleta. Then replace the forms by any other g§ using Proposition (4.3).

Example. — Suppose E is a fibration over B with fibre K(TT, n). Suppose TT®R==V
is a finite dimensional real vector space and the representation of 71:1 B on V is injinitesimally
given by a twisting matrix © of one forms on B. (This is often true, see Remark after
Theorem (1.2).) Then the primary obstruction to a cross section gives a cohomology
class represented (tensor R) by a ^-closed form c so that the above holds. Thus the
cohomological formulae for E in Theorem (7.2) can be written. This is an exemple
of the generalized GHK formula.

We conclude with some geometric remarks about the simplicial or polyhedral
forms.

(i) There is a natural chain map inverse to integration due to Whitney. Essentially
a vertex becomes the name of the barycentric coordinate on its star and we extend
inductively using d. An explicit formula is the following—the basic cochain <A:o, . . .. ^>
goes to S (—l^x^dxQ^... A d x ^ t \ . . . A dx^. For the geometric interpretation see [Su^]
or [W].

Two applications are: Since the cocycles are carried precisely onto the locally
constant forms we have on the simplicial cocycles a canonical commutative associative ring
structure. Since a form can be integrated over any tiny chain we have a canonical
extension of cochains on one triangulation to all finer subdivisions (commuting with d
and only defined over Q, or R).

(ii) It seems the polynomial forms make up the smallest natural, commutative,
associative d.g.a. containing the simplicial cochains and giving the correct homology.
One can argue on the unit interval that the variable t satisfying no polynomial relation
must be there in degree zero to make H° correct. In particular, there is no commutative
associative multiplication on the cochains themselves or on any other finite dimensional
model (compare (i) above).

(iii) The polyhedral forms are exactly multiplicative for compact polyhedra
^KXI^^K®^ as one readily sees by considering the product of two affine spaces.

8. The spatial realization of a differential algebra, its homotopy and coho-
mology.

If ^ is a differential algebra, define an ^-differential system on a space X to
be a d.g.a. map of ̂  into the forms on X (§ 7). We can define a space <e^> carrying
the universal ^-differential system. <c^> is defined by the sets of all ^-differential
systems on standard simplices A°, A1, ... which form a semi-simplicial set with face
operators, degeneracy operators, and a topology induced by one on differential forms.
Note we have various definitions of <j^> depending on type of forms used on standard
simplices.
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There is a natural mapping:

^—?- forms on <J^> (see § 7)

which we use to compute the cohomology of <J3^> when ^ is a minimal d.g.a. (§ 2).
For the nilpotent case we work over Q^ or R and define <^> using polynomial forms
on the standard simplices. In the non-nilpotent case we work over R and define <e^>
with smooth forms (of class G00) on standard simplices.

The rough statement about <J^> that we want is that the homotopy corresponds
to the generators of ^ and the cohomology is computed by ^ (via n).

We will first give the statement for ^ nilpotent and minimal over Q^ of finite type.

Theorem (8.1). — (i) ^/->(^-polynomial forms on <J^> induces an isomorphism of
cohomology over Q,.

(ii) The fundamental group of <^> is the ^nilpotent group defined by the Q^Lie algebra
'dual to j^1.

(iii) The higher homotopy groups of <J^> are naturally the dual spaces of the indecomposable
spaces of ̂  in degrees > i.

Proof of theorem (8.1). — First the homotopy of <J^>.

First case. — Let ^/1 be a nilpotent minimal algebra generated in degree one.
Then j^1 determines a dual Lie algebra (over QJ which determines a nilpotent Lie
group by the Gampbell-Hausdorff formula. The Q^-points in the group and the Lie
algebra correspond bijectively under the log and exponential maps (which are poly-
nomial). Integration of a Q^-polynomial form ja^-simplex (defining a simplex of <^1))
determines a ^-polynomial map of a simplex into the Lie group. In fact <^1) is just
the ^-polynomial singular complex of the group modulo the action of left translation.
Since the ^-polynomial singular complex is the same as that of the Q^-vector space
of the Lie algebra (using log) and the latter is clearly contractible it follows that n^^y
is as described in (i) of Theorem (8.1).

Second case. — Let s/ be a general minimal nilpotent differential algebra. Then
using the fact that the higher cohomology of the circle vanishes we obtain 7Ti<^> =7^;l<J^l>.
Similarly, for higher spheres we can reduce the question of maps S^—^j^) to ordinary
cohomology and the A-dimensional generators of ^ using remark (i) below.

This completes the homotopy computation—which is rather close to the definition
of <J^>. We note one further case, namely, <c^> is contractible ifj^is contractible (§ 2).
This follows by the same argument.

Now we turn to cohomology which is essentially more non-trivial making use
as it does of the commutativity of differential form multiplication.

Suppose (in general) that ^ is obtained by a linear extension of 83 \

^=g9{x^ ...,^)
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where {x^, . . ., x^) is a basis ofV in degree k. Then we claim the natural map <ja^> 4- <^>
is in a very precise sense a fibration with fibre <V, A>.

Actually, we say the following: if A is a non-degenerate simplex of 88^ (A) denotes
the semisimplicial set generated by the standard simplex of dimension dim (A), (^A) is the
semisimplicial subset carried by the boundary, then the quotient of the pair (n^A),
TT'^^A)) is isomorphic as semisimplicial set to the quotient of the pair <V,^>x((A),
(BA)) (^).

This follows by looking at the structure equation of the extension, dx=b, see § 2.
An j^-simplex is a ^-simplex A together with a solution of the structure equation on A.
Two solutions differ by a solution of dy==o. If we add the important remark that
the degeneracies of a non-degenerate simplex in 38 are all distinct our isomorphism is
established. In this sense <^>-><^?> is a fibration with fibre <V, ^>. Now when
one computes cohomology of a semisimplicial set (as it is or realized) one can ignore
the subcomplexes generated by the degenerate simplices (in the Milnor realization [MJ
for example, there is one cell for each non-degenerate simplex).

So we filter <^?> by the skeleton

<^)^=={ non-degenerate simplices of dimension <_k plus all their degeneracies}.

Similarly we filter <^> by <J^>^==7T~~1<^?\. Then we study the map:

forms on <^?>(A:i, . . ., A-J -> forms on <J^>

by induction over k using the five lemma. We obtain (assuming for the moment the
computation is valid for <V,^»:

Proposition (8.2). — f is an isomorphism of rational cohomology.
Compare Theorem (7.2).

Note Proposition (8.2) is the analogue of Proposition (4.1).
The next step is to use Proposition (4.3) to replace forms on <^> by S8^ namely:

Proposition (8.3). — 38 [x^ . . ., x^) —> forms on <^>(^i, . . ., x^) is an isomorphism
on rational cohomology if S8 -> forms on <<^> is.

The argument will be completed in the nilpotent case over Q^ by using Prop-
osition (8.2) and (8.3) over and over. This uses the knowledge of rational cohomology
of the Eilenberg-Maclane spaces <V, A>, which is well known since Serre—being one
of the main applications of the spectral sequence of a fibration.

We have in hand a direct argument. Namely, the description of <V, i> above,
knowledge of the circle, direct products, and direct limits takes care of <V, i> over Q^.

Considering the contractible algebra ^ so that <J^> fibres over <V,^+ 1 ) with

(15) This is the key step in the proof.
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fibre <V, A>, the remark above that <e^> is also contractible, and finally Proposition (8.2)
to put us in a position to use Proposition (4.4) to give a converse of Proposition (8.3)
in this case, provides an induction k->k-{-i. This computes < V , A > as desired.

Note that a key point in Proposition (8.2) is that forms on ̂ \ —^ forms on <^>fe_ i
(similarly for <^)/<;-> <^>/c-i) is onto. This is the extension remark (§ 7).

Remarks. — (i) If we consider maps of ^ into (forms on X) == <^X, divided into
deformation classes—a deformation being a map of ^ into the forms on Xxl—then
one can prove by basic subdivision and cellular approximation arguments that:

homotopy classes of maps (X—-<j^»^ deformation classes of maps (J^-^<?X).

(Note there is a natural map from right to left.) This is one sense in which <J^>
carries the universal ^-differential system.

(ii) In the infinite nilpotent case over Q^, topologies in another form must be
remembered in the study of homologically infinite spaces. Then ^ will have an inverse
limit topology and < ja^> should be defined by continuous maps of ^ into forms. Then
Theorem (8.1) is true using continuous duals.

(iii) Note that ja^1—^^^1) provides a direct construction or definition of the
simply connected Lie group associated to the dual Lie algebra ĵ 1. Also since Tr^e^1)
always exists and is a group, we have a group construction for ANY (dual) Lie algebra gener-
alizing the classical one. Diff°°(M) arises in this way—in the continuous version of ^e^1)
where ^/1 is the (continuous) dual of the Lie algebra of C°° vector fields on M, assumed
compact.

(iv) It is rare to have spaces where both the homotopy and the cohomology are
known explicitly. Other cochain contexts lead to constructions of spaces like <^>
where the homotopy groups are known almost from the definition, but the cohomology
is elusive. We only succeed here because of the commutative product on the level
of forms (essentially Theorem (7.2)).

(v) We have analyzed in the course of the proof the characteristic zero cohomology
of Eilenberg-Maclane spaces—a key particular case of the statement.

(vi) Extending the remark (v) further, one sees in the construction <J^> natural
(< Postnikov systems 5? over Q^ or R for spaces—defined canonically once algebraic
models ^ are built from the deRham complex.

Now we give a statement about <^> in the non-nilpotent case over R (which
we don't use in the sequel and thus we only sketch the proof). For simplicity assume
j^ has finite type over R and let G^ denote the real simply connected Lie group deter-
mined by the Lie algebra dual to J3^1.

" Theorem" (8.1)'. — (i) The fundamental group of <^1) is the real Lie group G^
{whose topology is determined by the topology on the simplices of <J^1».
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(ii) The higher homotopy groups of <^l> are isomorphic to the homotopy groups of G^
(which of course are finitely generated Abelian groups).

(iii) The map ^l—>• forms on <^1) induces an isomorphism on the cohomology of s/1

(which is by definition the Lie algebra cohomology of G^) and the continuous cohomology of <eQ^l>
[for all finite coefficients coming from j^1).

(iv) The natural map <J^> -> <^1) has a simply connected homotopy fibre ^'. The
homotopy groups of^ are real vector spaces dual to the indecomposable spaces of^/ in degrees'>i.

(v) The map ^-> forms on <^> induces an isomorphism between the cohomology of ̂
and the continuous cohomology of <^> {for all finite dimensional coefficients coming from ^/1).

Sketch proof of theorem (8.1)':

We begin with the remark that most of the theorem is harder to state than to
prove. For by integration an j^-simplex is just a C°° map of the simplex into G^r
defined up to left translation. Thus <^1) is just the C00 singular complex of G^ mod
the (discrete) action of G^ on the left. Thus (i) and (ii) are immediate, (iii) is a
reformulation of the theorem of Van Est [VE], (iv) follows as in the proof of (iii),
Theorem (8.1) above, (v) follows from the inductive fibration argument used in the
nilpotent case (Theorem (8.1)) based on continuous cohomology. We have not developed
the details of continuous cohomology required to finish this outline so the proof of (v)
should be regarded as incomplete. Note however that (v) is a plausible generalization
of Van Est's theorem from Lie algebras to minimal d.g.a.'s.

9. Poincare's analytical definition of the fundamental group.

In his first remarks on topology, the Gomptes Rendus note of 1892 (< Sur P analysis
situs ", Poincare asks to what extent the Betti numbers determine a closed manifold
up to continuous deformation. He then introduces the " fundamental group 3? by an
analytic construction and constructs infinitely many 3-manifolds with distinct funda-
mental groups and equal Betti numbers.

cc ... Soient maintenant F^, Fg, .. ., F p p fonctions quelconques... 59

66 Je ne suppose pas que les fonctions F soient uniformes, mais je suppose que si
Ie point (A:i, A:2, • • - 5 ^n+i) d^crit sur la surface un contour ferm^ infiniment petite chacune
des fonctions F revient a sa valeur primitive. Gela pos^, supposons que notre point d^crive
sur la surface un contour ferm6 fini, il pourra se faire que nos p fonctions ne reviennent
pas a leurs valeurs initiales, mais deviennent :

F' F' F'
•l•l9 •^29 • • ' 5 ^p

ou, en d'autres termes, qu'elles subissent la substitution :
(V F F • F' F' F^ "
^rl5 ^ 25 • • • ? •••P? -••I? • • •25 • • • 5 ^pJ•
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" Toutes les substitutions correspondant aux divers contours fermes que Ron peut
tracer sur la surface forment un groupe qui est discontinu (au moins en ce qui concerne
sa forme). "

(< Ce groupe depend ^videmment du choix des fonctions F .̂; supposons d'abord
que ces fonctions soient les plus generales que Fon puisse imaginer en ne s'imposant
pas d'autre condition que celle que nous avons enonc^e plus haut; et soit G Ie groupe
correspondant... "

(c Le groupe G peut done servir a definir la forme de la surface et s'appeler Ie
groupe de la surface." And then in "Analysis situs93 (1895):

c( Mais pour mieux fixer les id^es et bien que cela n'ait rien d'essentiel, supposons
que les fonctions F soient definies de la maniere suivante. Elles devront satisfaire a
des equations differentielles de la forme :
(i) ^=X^^+X,^^+...+X^A,
ou les coefficients X, ^ seront des fonctions donnfes des x^ et des F,. Ges fonctions devront
etre uniformes, finies et continues... "

"Je suppose egalement que..., les equations (i) satisfassent aux conditions d'int6-
grabilit^, qui peuvent s'ecrire :

^fc , ^fcy , ^fcy , , ^fcy

^+7i7xl'ff+7F7 2•^ +•••+^Fr ^

^g , ̂ gy , ^gy , . ^gy
^-d^^-d^ ̂ ^~d^ x21fe+•••+7F^ M '

" Si alors le point M d^crit sur la vari^te V un contour infiniment petit, les fonc-
tions F reviendront a leurs valeurs primitives. "

From this analytical situation Poincar^ then deduces the considerations about
curves which have come down to the present to define the fundamental group.

In the current language we could say that Poincare was considering representations
of the fundamental group of V which were given infinitesimally by a rule:

(2) </F=co(^,F).

F is a quantity which evolves by this rule and u{x, F) is a i-form depending on the
point A: in V and the quantity F, with values in the space where d~F resides.

As Poincare described it the rule of development for F was to be globally given (16)
and globally integrable. The first condition means the bundle with fibre ^={F}
is actually the product bundle. While the second means that Vx^ is foliated by
leaves (of evolution of F) which cover V evenly. The resulting diffeomorphisms of
y—the holonomy in the foliation—are the substitutions (mentioned by Poincard)
of the representation infinitesimally given by (2).

(16) The x^ in (i) are global coordinates for a neighborhood ofV in some Euclidean space.
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If we begin with a differential rule like a?F=co(;v, F), satisfying the integrability
condition, the global integrability is a subtle question unless F moves in a compact
space or one has some estimate like \c^{x, F)|^[F[ which insures the growth of F
along paths is at most exponential.

For example ifF belonged to a finite dimensional linear space and (^{x, F) depended
linearly on F, then d¥=w{x, F) would be globally integrable and u{x, F) agrees with
the twisting matrix discussed in § i which defines a flat connection on the product bundle.

One knows that finite dimensional matrix representations do not detect every
fundamental group {e.g. a finitely generated group with no subgroups of finite index)
but of course bounded linear (even unitary) representations in Hilbert space detect
any group {e.g. the regular representation on the square summable functions in the
group). We claim

Theorem (9.1). — Any representation of the fundamental group ofV into the bounded linear
operators on Hilbert space y is given infinitesimally by a Poincare one form u{x, F) via the rule:

dF=^{x,F), FE^-.

Moreover ^{x, F) is determined uniquely by the representation up to deformation {any two are related
by one on Vxl).

Proof. — The representation determines a bundle with discrete structure group
and fibre ^. This bundle admits a differentiable trivialization (which is unique up
to deformation) inside the structure group of all bounded operators with the norm
topology (we smooth Kuiper's trivialization [Ku] by approximation).

Writing down the inclination of the leaves of the foliation given by the discrete
structure group relative to the Kuiper product structure yields u{x, F).

Remark. — Conversely, any rule on V:
d¥==^{x,F)

satisfying the local integrability condition when c^{x, F) is a continuous (in x) family
of bounded operators on Hilbert space (or Banach space) can be integrated to yield
representations of the fundamental group of V into the bounded linear operators on
the space of the F.

10. Integral homotopy theory and minimal algebras.

If the homotopy system (^i; TTg, 713, . . .) of a space X is nilpotent there is a clear
relation between its homotopy theory and the algebraic theory of nilpotent differential
algebras over Q^.

We will think of the process, for any space:

rational homological spatial ,. -. » -,space -> p -> , ° -> r . (§7, § R, 88).
forms model realization vo / " J " n
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as the passage from integral homotopy theory to (nilpotent) rational homotopy theory.
In notation, we write:

X->(^X=forms on X)->(^= model of ^X)-><^>.

Now assume X is a nilpotent homotopy type having finite type over the integers.

Theorem (10.1). — IfS" is the minimal model of the Qj-polynomial forms of some complex
representing X, then

(i) T^X®Q^ is dual to the indecomposable spaces of °K.
(ii) H^X, Q,) is the cohomology of X.
(iii) The homotopy classes of maps of a space Y into the rational homotopy type of X are

computed algebraically (§ 3) by mapping SC into the forms on Y.

Proof of Theorem (i o. i)

The natural map X-><<^> has certain properties derived in § 8, Theorem (8.1),
namely: t induces an isomorphism of Q^-cohomology and the homotopy groups of SE
are dual to the indecomposables of X (assuming X is nilpotent). Also, the homotopy
classes of maps of a space Y into <^> are just the d.g.a. maps {S'-> forms on Y} up
to homotopy (Remark (i), § 8).

It follows easily by an argument we give below (17) (or Theorem (2.1) [SuJ)
that X-^<^*> tensors homotopy groups with Q^, ^<^>=7r,X®Q,, and this is also
true for TT^ which is a nilpotent group. In summary <(^*) is properly the rational
homotopy type of X and those properties of X reflected in its rational homotopy type
are expressed clearly in terms of the minimal model 2K.

Now we relate maps into X and maps into its rational homotopy type, the auto-
morphisms ofX and the automorphisms of^*, and finally the classification o fXin terms
of S£. The proofs are at the end of the section.

Theorem (10.2). — (i) If X is nilpotent of finite type over Z and Y is a finite complex^
then on homotopy sets the induced map:

[Y, X] -> [Y, rational homotopy type of X]

is finite to one.
(ii) Any nilpotent differential algebra ^ of finite type over Q^ has a Zi-form. Namely,

there is a space X whose homotopy system (7^$ T^, ^3, . ..) is nilpotent and of finite type over Z
and a map ^-> (rational forms on X) inducing an isomorphism on cohomology.

Now assume in addition to the above that either X is a finite complex or that
the homotopy system vanishes after some point. Recall a commensurability class of
groups is one generated by the operations of : (i) passing to a subgroup of finite index,

(17) "Uniqueness of the model" argument, see note before the proofs of Theorems (10. i)-(io.4).
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and (ii) passing to a quotient with finite kernel. Also see the Appendix to § 6 on algebraic
and arithmetic groups.

Theorem (10.3) (Automorphism groups are arithmetic). — Consider the discrete
group of homotopy classes of self-equivalences, Aut X. Then Aut X and the naturally associated
(^•algebraic matrix group AutQ X== Aut 3£\ (inner automorphisms) have the following
properties'.

(i) Aut X is commensurable with a full arithmetic subgroup of Autn X.
(ii) The natural action of Aut X on the integral homology is compatible with an algebraic

matrix representation of Autq X on the vector spaces of rational homology.
(iii) The reductive part of AutQ X is faithfully represented on the natural subspace of

homology generated by maps of spheres into X.
(iv) As we vary X through finite complexes, Aut X runs through every commensurability

class of groups containing arithmetic groups. In fact, it suffices to take X a skeleton of spaces with
two non-zero homotopy groups to realize all classes.

Consequences of Theorem (10.3)

a) Because of (i) we have that Aut X is finitely presented.
b) Because of (i) we have up to commensurability a semi-direct product decompo-

sition of Aut X as N^r where N is a normal finitely generated nilpotent subgroup
of Aut X and F is the arithmetic subgroup of some semisimple Q^-algebraic group—like
SL(%, Z) or the automorphisms of some quadratic form. Much is known about these
latter groups—the "semisimple part" of Aut X.

c ) Because of (ii) we know that the subgroup of Aut X which fixes any cohomology
class is again arithmetic and thus finitely presented. This rules out such a situation as
Aut X==free group on k ̂ 2 generators and Aut X->H,X is some representation such

[i o i" |"i i o1
as {;v,j/}CAutX which acts on H*X=Z®Z®Z by x\-> o i o and y\->\o i o .

o o i _ LO o U
Here the isotropy group of the vector (o, o, i) is the commutator subgroup of {x,y}
which is not finitely generated (18).

d ) Because of (iii) we know that F, the <( semisimple " part of Aut X, is faithfully
represented on the spherical homology (again up to commensurability). Thus we can
(< see " the difficult part of the group theory of Aut X acting on the homology (even
the spherical homology and thus we also <c see ?? the semisimple part of F acting on
the homotopy). For example, all eigenvalue considerations for elements of Aut X are
generated in the action of F on the spherical homology.

Now we can study classification. Note that a Z-form (X, j^->forms on X) of
a finitely generated nilpotent d.g.a. ^ determines natural graded lattices (a finitely

(18) I owe this example to P. Deligne.
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generated subgroup of maximal rank in each degree) in the indecomposable spaces
ofc^, n^ and in the structure space ofj^, y{^)= ©PP4-1^""1). We call these
lattices the structure lattice of the Z-form X of s/.

Subject to a torsion constraint, and assuming ^ is finitely generated nilpotent,
we have

Theorem (10.4). — There are only finitely many integral homotopy types with given model ̂
and given structure lattice in y[^) (DT^,^.

k

Note. — A torsion constraint is the obvious proviso arising from the fact that there
are infinitely many (torsion) homotopy types with the rational homotopy type of a
point. Thus a torsion constraint is any condition on the homotopy types in question
to restrict the torsion in the integral homotopy (or the integral homology) to a finite
number of possibilities (19).

The idea of the proofs of all these Theorems (10.2), (10.3), (10.4) is that the
Postnikov system of X is precisely mirrored in the algebraic structure of ^ (or SE}.

Recall a Postnikov system is (first for any space X) a sequence of spaces
. . . -^X^->.. . -^Xi—»-* receiving a map from X which identifies the homotopy system

of X^; with (^i; TTg, . . . ,7^ ,0 ,0 , . . . ) , and (second for nilpotent spaces) a refined
sequence:

X V/c—l .\rk—l . . 'vfc—1 v"
k^^n "^^n-l""^- • • ~^ll ==^-1

so that the induced map of homotopy systems Y^->Yj_i is onto, the kernel K^ is only
non-zero in degree k, and the corresponding fibration is principal, i.e. T C ^ Y . ^ acts trivially
on the kernel K^..

We will have the exactly analogous picture for the d.g.a. °K\ (first) the sequence
of d.g.a.'s ^PC ̂ C .. . (generated in degree <_k) which exists because of the minimal
condition (§ 2) and then the refined sequence S'k~l=^~~lC .. . C(3^~l=S'k which
exists when 3C is nilpotent (§ 2).

Just as the fibrations Y^->Yj_i are structured by ordinary cohomology classes
(ofYj_i) , the extensions ^_^C^ are structured by ordinary classes (of%_i) . In
the passage from X->^ (and Yj->^) the only change is that the coefficients of the
structure classes have been tensored with Q^ (Kj-^J^). This follows because X-><^>
tensors homotopy with Q^.

Note. — Actually, it is easy to prove this last fact about I directly (without the
spectral sequences of Theorem (2.1) of [Sug] which also worked for prime localizations).
One merely applies Theorem (7.2) inductively to the Postnikov system of X and then
appeals to the uniqueness of the model (§ 5) to relate the homotopy of X and 9E.

(19) If ^ is fixed a torsion constraint in homology is equivalent to one in homotopy—up to some fixed
dimension.
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This c( uniqueness of the model " argument can work in non-nilpotent situations
over R (where [Sug] definitely doesn't apply) to compute (homotopy groups) ®R.

Note. — The minimal Z-refinement of X^->X^_i, such that ordinary cohomology
structures the Y,^Y,_i, may refine the rational picture. This causes no real problem.
Actually, there is a possible extension of the discussion because it is enough to assume
the action of T^Y^i is trivial on K,®<^ and the above point is obviated.

The proofs. — To prove Theorem (10.2) (ii) we merely walk along the algebra ^
and replicate a space inductively choosing Z-forms of the structure classes of§2. Induc-
tively, given Y,_^ we pull back the structure class c of ^_iC^ to Y^._i and let K.
be any finitely generated abelian group (for example, without torsion) mapping with
finite kernel onto a lattice of X;. containing the image of H^ i(Y^, Z) 4- jf. Then
the pulled back c lifts (in finitely many ways) to a class on Y,_i with coefficients in K.
to structure Y,->Y^i. ^ serves as a model of Y, using Theorem (7.2) (in th^
untwisted form over Q^). This proves Theorem (10.2) (ii).

Now we prove Theorem (10.4) assuming for the moment Theorem (10.3) (i).
Consider the Z-forms of ^ {(X, ^ -> forms on X)} compatible with the given structure
lattice subject to a torsion constraint.

The difficult point in the finiteness result is to control the arrows/. In particular
for two such arrows the induced maps of structure lattices differ by an element in the
group r consisting of those lattice isomorphisms coming from an outer automorphism
of ^ (uniqueness of the model, § 5).

The group of homotopy equivalences of X, Aut X, acts on F dividing it into
finitely many classes. (By Theorem (6.1) and Theorem (10.3) (i) we can apply A. 2
of appendix, § 6, to the homomorphism of Q^-algebraic groups:

(outer Aut s/) -> (aut e^(j^) © 71, ̂ )
k

to conclude the image of Aut X has finite index in F.)
Now we can finish by Postnikov induction. To prove Theorem (10.3) (i) we

note that Aut Y .̂ is constructed from AutY._^ by three operations:

(i) product with the <( arithmetic 53 group Aut K.;
(ii) pass to the subgroup of the product preserving the (( structure " a*c==^c,

a in AutY,_i, ^ in Aut K,, c in H^^Y^i, K^.);
(iii) extend by an abelian kernel a quotient of IP(Y._i, K.).

This picture passes smoothly to Aut ̂  and Aut^_i over Q^ showing the
condition (ii) and the extension of (iii) are of an algebraic nature and straightforward
induction is possible. This proves Theorem (10.3) (i).

Theorem (10.3) (ii) follows from the definitions.
Theorem (10.3) (iii) follows from Proposition (6.4,).
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Theorem (10.3) (iv) follows from Theorem (6.1), part (iii), since the arithmetic
points of product of multiplicative group Q* is finite, and we can realize that model
by an odd sphere fibration over a product of CP^ 's and then take a large skeleton.

We prove Theorem (10.2) (i) by a similar but more elaborate induction. One
proves the desired assertion together with others by induction. The others are that
(up to homotopy) homotopies between two maps (an orbit of a free nilpotent group
action) and homotopies of homotopies (an abelian group), etc., are just <( tensored
by Q/' in the passage to Q^-homotopy theory. An extended 5-lemma involving groups,
orbits, and sets carries the induction. This scheme is used twice in [SuJ; the first part
is in fact part of Lemma (2.8) there. This scheme proves other things (analogous
to the Hasse principle for maps in [Su^]) such as going from Q^ to any larger field is
injective on maps (up to homotopy). For this last point and for a direct proof of the
above without [SuJ we can use the work of§3 (see the remark after Proposition (3.6))
to build the rational (or larger field) form of the required long exact sequence (corre-
sponding to the homotopy sequence of Y^—^Y^Li) by algebra.

ii. Algebraic constructions that mirror topological ones.

We give algebraic constructions for the space of all closed curves on a given space,
the path fibration of a given space, the universal fibration with a given fibre, the space
of all cross sections of a given fibration and topological applications of each. The third
is sketchy and the fourth needs more work.

Assume ^ is a minimal nilpotent differential algebra. We leave to the reader
the relative case (<a/ is a linear extension of S8 which contains the twisting coefficients)
and the details of duality and (algebraic) continuity in infinite dimensional vector spaces.

Space of closed curves. — Write ^/==/\{x^)==/\{x) and form /\^/==/\{x,y) where
[ j / | = = [ ; v [ — i . Let s be the derivation of degree — i defined on generators by x\->y,
y\->o. The differential in /\^/ is defined inductively by the condition ds-}-sd==o.
Namely, dx is as in ^ and dy==—sdx. Note inductively that 0^==—dsdx == sd{dx) == o.

Recall the ordinary loop space is Sl^/==/\{y), dy = o. Note we have the algebraic
fibration J^<->A^ whose fibre is A^/ideal ̂ +=0.^.

<b

The correctness of this formula is verified by the universal map j^-^Ae^(^),
|^|=i, d^=o, defined by x\->x-\-^y. ^ is universal for maps ^-^^(i;), |^|=i,
^==o. See [S-V].

Topological application, — Computing directly with this formula gives the following.

Theorem [S-V]. — If M is a closed simply connected manifold whose cohomology ring is
not singly generated, then the Betti numbers of the space of all closed curves on M are not bounded.
Consequently, by Gromoll-Mayer there are infinitely many geometrically distinct periodic geodesies
for any riemannian metric on M.
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The calculation begins in [SuJ and is given completely in [S-V] with some
elementary and interesting commutative algebra for such computations provided by
Mme Vigu^.

The theorem leaves out the interesting case M = S2. To illustrate the formula
we compute this case. Then ^=A(^, x^) where dx^=x2^ so Aj^==A(A:i, ^^1^2)
where ^1=0, dy^=—2x^. One easily calculates each Betti number is one and the
cohomology ring structure is trivial. Massey products abound.

The case 7"^M==Z is an interesting case to consider now. For most other
(known) fundamental groups the geodesic question falls to a direct geometric argument.
One should be able to use solvable models for this. For any space with fundamental
group Z has a solvable model mirroring the homotopy structure exactly (and thus good
for the computation of the space of closed curves) whenever the action of Z on homotopy
(tensor the reals) is part of an action of R. Thus we can surely treat the case of finite
dimensional higher homotopy after passing to a finite cover—an acceptable operation
in this problem.

Similarly, geodesies invariant under an isometry should be treated with solvable
models. (See recent work ofK. Grove and S. Halperin.)

The path fibration. — Let P(^) be /\{x,y) with the derivation s of degree — i as
in /\.s^ above. Now however a canonical differential d is defined inductively so that
ds-{-sd=^ is an isomorphism in positive degrees.

We define dy inductively by dy=x—^~ldsx. Note inductively that:

d2y==dx-d^-lsdx==dx—^-l{ds{dx))=dx--^-l{{ds+sd){dx))==dx--dx==o.

Also note that A is a derivation, ^\x=x and t^y=y mod decomposables, so A"1 is still
defined and we can continue.

Of course we have the algebraic fibration ^<->Pj3^. Again the fibre is:

Pj^/ideal j^+ = tW.

Clearly Pj3^ is contractible, s is a contracting homotopy (or dy=x), so we have the
algebraic path fibration.

Topological application. — The formulae defining d in the path space tell us how
to construct the linear functionals on the homotopy groups by integrating differential
forms. Let ^/=/\{x) -> forms on M be a model and S^M be a smooth map. We
pull back the generators x (=^, x^, . . .) to forms on the sphere. For the generators^
of dimension <n—i we can solve the equations dy=x—^~lsdx inductively. (In
fact, we may do this canonically once some geometrical apparatus is chosen once and
for all in the sphere—namely, a direction for the Poincare lemma, a metric, etc.)

For \y |=7z— i, we may not be able to solve and in fact we have
Homotopy periods. — [ | ^ x^—^~lsdx^\, \x^\=n.
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Note that these forms can be constructed and are closed in any cylinder connecting
two maps. Thus they are homotopy invariants.

Also this discussion works with homology spheres and homology cylinders which
suggests what nilpotent models of non-nilpotent spaces are measuring. (This remark
is verified by recent work by Hausmann on homology spheres.)

Finally, Gromov [Gr] has made the simple but important observation that the
existence of these formulae shows for a compact nilpotent space M the set of homotopy
classes of maps of spheres (even compact manifolds) into M with dilatation less than
X grows at most polynomially in X. A specific estimate is given by the homotopy periods
above.

In the case of S2 we recover the classical integral formula for the Hopf invariant
of S3->S2 [Whg].

The universal fibration with given fibre (sketch). — Given e^, define a differential Lie
algebra oS^ as follows: in degree k>o put the derivations of ^ decreasing dimension
by k. In degree zero put the derivations of degree zero commuting with the differential d
in J3 .̂ The differential 8 of degree — i is defined in oS^ by 9—^9—<prf.

We say that oSfj^ determines the base of the universal algebraic fibration with
fibre ^ (satisfying the infinitesimal condition (§ 4)). The obvious map:

(generators of j^) -> Hom(»2f(^), ̂ )

yields the higher terms in the formula:

^C^+l+^l®J^+^20t<--l+• • •

where the universal base is the differential algebra AoS^ defined by oS^ (see § 12),
its elements being the multilinear functions on JS^(J^).

Note in any fibration with fibre ^ the ^-formula leads to a map:

dual 88^ -> Horn (generators of J3^, e^+i_^)

which is contained in degree j—i of JSf(j^). Thus the j-dimensional generators of
AoKo^ map to S8^ and this map will induce the given fibration from the universal one.

Now the homology of JS^ is the homotopy of AoSfja^, the universal base (see § 2,
§ 12). Thus in degree one we find the Lie algebra—all derivations of ^ commuting
with d modulo those of the form di-\-id—namely, the outer derivations (compare § 3).
This fits with the calculation of the homotopy classes of automorphisms of ^ (§ 3).
(The algebraic analogue ofTCiBAutX.)

In degree k>i, the homology of oS^ gives the derivations of ja^, decreasing
dimension by {k—i) and commuting with d, modulo those of the form rf(p±cprf. One
can see these are just the homotopy classes of maps ^—>^(S;), [ S I ^ A — I , d^==o which
are the identity mod(^). (This is algebraic analogue of {XxS^""1—^} computing
TT^^X^ identity) = TT^B Aut X.)
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Topological application. — We can put this algebra into motion as follows: let T]JS^
be the nilpotent part of oSf(j^)—namely, in degree zero we only take the maximal
nilpotent ideal of oSfj^ and in positive degrees all of oSfj^. Then the corresponding
d.g.a. (§ 2) A(7]o§f^) is nilpotent and can be realized by a space B over Q^ (§ 8).

The reductive part G(^) of Aut ^ (§ 6) acts on Y)JS^ by isomorphisms, thus
also on A7]oSf^ and thus also on the realization <AT]J%^> ==B by free simplicial maps.
Then B/G(^) is defined and will be B Aut X where X is the rational homotopy type
realizing ^. The spatial realization of the universal algebraic fibration with fibre ^
will be the universal topological one with fibre X. (This can be justified by the above
calculations of homotopy groups.) Note that B is the classifying space for fibrations
with unipotent action (also called nilpotent action).

For a sample calculation let X==CPn (over QJ so that ^=-/\{x,y\ dy=xn+l.
Let (<2, b) denote the derivation of ^ taking a to b and annihilating the other generator.
Then one calculates directly:

1 2 3 4 5 ... 272+1

^W={o}@{o}@{{^xn)}@{(x, i)}®{(^, ̂ -^©o. . .o@{{^ i)}®o. ..

and 8 is zero except S(^, i)=(^+i)(^, ^n) since:

8(^ i)(^-(^ i) dy={x, i) x^^^n+i) x\

Thus shifting up one, B Aut X has homotopy groups of rank i in dimensions 4, 6, 8, . . .,
2n+2 and thus has minimal model A^,^, . . . ,^+2)5 d==o. (This fits with the
idea that the rational homotopy theory of CP^bundles contains all the rational charac-
teristic classes but the first—of a possibly associated C^Mmndle.)

The space of cross sections of a fibration. — Suppose SSC S is an algebraic fibration
with fibre ^==^/ideal ̂ +. We write ^=^®SS as algebras and fix a cross section
S^SS {SSC^^gg is the identity). Define a differential algebra F for the space of
all cross sections in the connected component of <p as follows:

The generators of F are pairs {a, b*) where a is a generator of ^ (we include i
for the unbased theory and not for the based theory) and V is a (dual) additive generator
of^. The degree of (<z, b*) is [ ^ [ — l ^ l . We set the {a, b*) of negative degrees equal
to zero and we convert the [a, b*) of degree zero into scalars by (a, ^^((p^), &*>.

The map a^T^^a, b*)b leads to the universal evaluation map S^>T®SS which

forces the definition of d{a, b*)={da, b*)±{a, 8b*). The second term is computed bilin-
early with ^ the dual of d on S8. The first term is computed using the diagonal (dual
to the multiplication of S3) to evaluate V on da, the differential of a in <f. For example,
if da==a^a^ and A^S^®^ then {da, &*)=S (&;, a^) . (6,", ^) and we're reduced

i i

to the basic symbols {a, 6*).
The evaluation map e is universal for a connected family of cross sections extending 9,
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namely, the composition S-^SS^^S —^S8 is 9 where a is the family and j^^ =o. (^ is
an arbitrary connected d.g.a.)

Topological application. — The universal property of e and the fact that this algebra
is based on differential forms help one to first construct the map between the two sides
of the Bott-Haefliger conjecture about Gelfand-Fuks cohomology of vector fields on a
manifold [H] and second to compute the space of cross sections occurring there.

The algorithm above applied to the associated fibration over M^ with fibre Y^
(the V{n) bundle over 2^-skeleta BU^ on which 0{n) acts) yields a differential algebra
determining the nilpotent homotopy type of the dual Lie algebra of vector fields on M—in
particular, its cohomology is the cohomology of vector fields. We can also imagine
non-nilpotent formulae and twisted cohomology.

We note here a (relatively) convenient form of the fibre Y^ for doing this compu-
tation. The 2?2-skeleton ofBU^ is formal (§ 12) and so a model A^ is constructed directly
from the homology coalgebra (§ 12). Then A^ (^i, . . . , ^J with [^ |=2^ '—i and
d^==c^ the i-th Ghern class is a model of Y^ that displays the 0{n) symmetry. (Note
the algorithm for T didn't require that ^ be minimal, but it does have to be free of
relations—and thus large in this case since Y^ is a bouquet of spheres.)

12. Formal computation and Kaehler manifolds.

Some minimal algebras can be computed formally from their cohomology rings.
For example, if M is a complex manifold and <^M denotes the complex valued differential
forms with the two differentials ^ and ^ we have the canonical diagram of differential
algebras:

<^(M) ={coe<TM : Bco == 0} -^ <?M 8 closed forms -> all forms

[p I^ y
^=={(oe^M : a(o==o}/{coe^M : (O==^T]} cohomology

The differentials are induced by < / = = ^ + < 9 , i is the inclusion and p is the projection.
For a compact Kaehler manifold the induced differential on J^ is trivial and p

and i induce isomorphisms of cohomology (20). Thus from § 5 and § 3 we can build
the homological model (over C) of the forms on a compact Kaehler manifold directly
from the cohomology ring of M (over C).

Thus for a Kaehler manifold M there is a d.g.a. map:

(model of M) -> (cohomology of M)

inducing an isomorphism of cohomology (over C).
We say that a nilpotent differential algebra is formal if such a map n exists.

(20) This follows directly from the Hodge theory, see [We] and [DGMS] where other proofs of formality over C
and R are also given. The results of this paper provide the background for and certain extensions of those of [DGMS].
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Theorem ( 12 .1 ) . — The notion of formality for a nilpotent minimal algebra is independent
of the ground field. Therefore the rational model of a compact Kaehler manifold is formal over Q^.
In particular^ one can deduce the model from the cohomology ring.

This theorem is a consequence of the characterization of formality given in
Theorem (12.7), and extends the results of [DGMS] to the ground field Q^.

Now we describe the computation of a formal model ̂  from its own cohomology
ring J^. Let{^} denote an additive basis of the dual of ̂ + and let A^=S^^®A:.

be the diagonal map (dual to multiplication in jf^). There are two steps to the formal
model associated to J^.

Step (i). — Form the free graded Lie algebra JSf(J^) on the ^ shifted down one
in dimension and define a differential in JSf(J^) by:

a^^S;^,^,].
^J

The homology of JSf(J^) as a Lie algebra will be the homotopy of the model with its
Whitehead products (21). Note for a nilpotent {e.g. simply connected) compact Kaehler
manifold this yields direct computation of the (homotopy) ® Q^ from the cohomology
ring (by Theorem (12.1) and Theorem (10.1)).

Even for a Riemann surface of genus g the algorithm comes very close. For there
we have ^i,ji, . . ., Xg, j^, co as an additive basis (of Hi and 112)3 the diagonal map
A^=Aj^=o, Aco=S^®^., the differential Lie algebra defined by ^===^=0,

i

^Q)=S [^,A] in the free Lie algebra on ^1,^1, ^J^? • • - 5 -^pJ^ m degree zero and co
in degree i, and finally the homology of this Lie algebra—the free Lie algebra on ^i,j^i,
• • • ? ^5 ̂  modulo the relation:

[^1^1] + [^2^2] + . . . + kpĵ l = o.

Step (ii). — From the differential Lie algebra JS^J^) we form a differential
algebra AoS?(J^) whose generators are the dual additive generators of oSf(J^) (shifted
back up by one) with a differential defined by:

^(generator) == linear term + quadratic term

where the linear term is the dual of ^ and the quadratic term is the dual of the bracket [ , ]
in JSf(e^) see [QJ.

This differential algebra is minimal precisely when A == o i.e. products in jf^
are zero. Then JSf(jf) (and its homology) is the free Lie algebra on the homology
and the model AjSf(Jf) is the minimal model of a one point union of spheres with the
same homology.

The presence of the linear term in d explains why the homotopy of AjSfJ^ (in

(21) The format of differential Lie algebras for homotopy computations in simply connected spaces was intro-
duced by Quillen [QJ, and his paper is a good reference for this discussion.
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the sense of § 2) is the homology of oSfj^. Such a d.g.a. description starting from J^ is
justified by Theorem (12.5) below by computing the cohomology ofA^SfJ^ to be J^.

Besides Kaehler manifolds many other spaces arising in previous computations
of algebraic topology are formal. Examples are:

(i) Lie groups and classifying spaces.
(ii) Some homogeneous spaces G/H—one formality condition is that the ideal

of H*Bjj in H*Bo has a regular sequence (see (v) and [GVH]).
(iii) Canonical skeleta of formal spaces (namely, using rational cells to take off

exactly the homology up to some point), for example, the 2^-skeleton of BU^ which
figures in characteristic classes of foliations (§ n). That canonical skeleta of formal
spaces are formal follows by considering the sub-differential Lie algebra of ^(e^f)
generated by |^|^^? and this fact and proof generalize to any sub-coalgebra of
homology.

(iv) The unstable Thorn spaces MU^ (and MSOyJ maps of V into which describe
the classification of submanifolds of V up to cobordism in Vxl. These have a rich
homotopy structure—see the computation at the end of this section.

(v) (Generalizing (ii)) the model:

A(^,^, ...,^;^i,J^ •••^r)

with ^===^(^3 . . . ,^J where |^[ is even, dx^=o, and ^ is not a zero divisor
in A(^i, . . ., A:J/(^, . . ., ^_i) (a regular sequence). The criterion of Theorem (12.5)
is easy to fulfill. The requisite computation of cohomology goes by induction over
the ^.

If r==n these cohomology rings satisfy Poincare duality and Theorem (13.2)
applies to build manifolds with these cohomology rings, if the signature is sufficiently
divisible.

These differential algebras are actually intrinsically formal, namely, any other
model with the same cohomology ring is formal (there is a map) and thus isomorphic
to this one (22). With this remark the finite determination results of [BD] become a
particular case of Theorem (10.4).

The integral forms of formal homotopy types enjoy certain symmetry properties
useful in obstruction theory. With the appropriate nilpotent and finiteness condition
on X we can say:

Theorem (12.2). — Any integral form X of a formal homotopy type has sufficiently many

endomorphisms X—^X (which are rational isomorphisms) to localize the homology:

limH,(X,Z)=H,(X,a).r

(22) A remark of Steve Halperin.
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Proof. — This is proved by a direct Postnikov induction lifting enough of the
grading automorphisms (see below). We omit the details here because a generalization
was obtained with R. Body which received a separate treatment [BS].

Corollary (12.3). — For all finite complexes Y the homotopy set:

[Y, rational homotopy type of X] = [model of X, forms on Y]

is just the direct limit lim [Y, X].
~7^

Proof. — Straightforward obstruction theory.

Thus we have

Theorem (12.4). — (i) A nilpotent (e.g., simply connected) compact Kaehler manifold admits
continuous self-mappings of any sufficiently divisible degree. (Compare CP^)

(ii) Two nilpotent (e.g., simply connected) compact Kaehler manifolds with isomorphic
rational cohomology rings have continuous maps between them inducing these isomorphisms (up to
composition with a grading automorphism—see below).

Proof. — This follows from Theorems (12. i), (12.2), and Corollary (12.3).

Note. — Recall any self-mapping of a Riemann surface of genus g>i either has
degree o or degree ±i (23). The theorem applies to the sphere and torus, though, which
of course have self-maps of all degrees.

Actually, for the Kaehler manifold we can take the endomorphisms so that H1

is multiplied by q\ q sufficiently divisible.

Applying § 10 and § 13 we also have (real dimension =)= 4)

Theorem (12.5). — a) The diffeomorphism type of a simply connected Kaehler manifold
is determined up to a finite number of the possibilities by:

(i) the integral cohomology ring.,
(ii) the (rational) Pontryagin classes.
b) Up to commensurability and normal nilpotent subgroups the arithmetic group of self-

homotopy equivalences (up to homotopy) is just the group of automorphisms of (i) and the arithmetic
group of self-diffeomorphisms (up to deformation) is just the group of automorphisms of (\) fixing (ii).

Proof. — This follows from Theorems (13.1) and (13.3).

Finally, applying the " injectivity 9? of maps in going from Z—^Q and Q^C (§ 10)
we have, because the diagram J^^— (^M-X^M is natural for holomorphic maps:

(23) True for a closed K(TT, i) manifold of non-zero Euler characteristic.
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Theorem (12.6). — The homotopy theory of holomorphic maps between (nilpotent) compact
Kaehler manifolds is determined up to a finite number of possibilities over Z or exactly over Q^ (where
it is the formal map) by the induced map on cohomology {over Q^ or C).

Proof. — This follows from Theorem (i o. i).

To justify the descent of formality from C to Q,we give the following characterization
of formal homotopy types. If k is the ground field we have the action of A*, the multi-
plicative group of k, on cohomology, x^-x^x, a in A*, |^ |=z. These are the grading
automorphisms.

Theorem (12.7). — A nilpotent algebra ̂  is formal if f the grading automorphisms oflrl^
lift to ĵ , or iff all automorphisms of HĴ  lift to ^/.

Remark (Proof of Theorem (12.1)). — By the description of the automorphisms
of s/ and cohomology automorphisms (§ 6) the second criterion is clearly independent
of the ground field. Thus Theorem (12. i) (over QJ follows from the existence of the
(^, 8) diagram (over C), the results on algebraic groups (§ 6), and theorem (12.7).

Proof of Theorem (12.7). — Ifj^is formal, we have a d.g.a. map s/->ti^/ inducing
isomorphisms on cohomology. The obstruction theory for maps (§ 3, Proposition (3.6))
implies all automorphisms of Hja^ lift to ^\

Suppose the grading automorphisms of HJ^ lift to ^\ Using one of these, say a
(or its diagonizable part—note Corollary (6.2)), we obtain a direct sum decomposition
j^== (B^ where a acts on ̂  as multiplication by a\ Let W^= ©^; then one sees

i i^k

by induction that W^n (dimension >^)=o. Thus (dimension A) n W ;̂ = S is contained
in the cycles, (dimension < k) n W ;̂ = 3 is an ideal and the quotient map:

^-> e^7(3, rf3)=S/(Sn^3)

of d.g.a.'s induces an isomorphism on cohomology because the non-bounding cycles of
degree i are all represented in W^.

Homotopy groups of Thorn spaces

For a sample formal calculation consider the problem of computing the rational
homotopy groups of the (unstable) Thorn spaces MU^—the union of the one point
compactifications of the canonical C^bundle over the complex grassmannians. These
spaces can be defined by cofibration sequences:

BU,_i->BU^MU,

which shows the cohomology of MU^ is the ideal 3 of the rf-th Ghern class ^ in the
polynomial algebra on ^, . . ., ^. It is easy to see that MU^ is formal, since BU^_i
and BU^ are, the induced map between them is formal, and this map is onto for
cohomology.
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If we form 3(j/) with dy==c^, we have killed the bottom homotopy group of MU^
in a total space. It is easy to see the map 3(^)->3/^3 obtained by setting^ and ^
equal to zero induces an isomorphism on cohomology. But 3/^3 =3/32 is the zero
ring on monomials in q, . . ., ^ with weight exactly one in ^ (besides ^ itself). The
formal space with this ring is the bouquet on those even dimensional spheres. Thus
the rational homotopy of MU^ (shifted down one) in dimensions >2d is the free Lie
algebra on these (dual) monomials (shifted down one).

For example, T^MU^Q^Q^ and in dimensions greater than four we have the
free Lie algebra on:

(^q), (^), (^). • • •

in degrees 5, 7, 9, . . . for ^^MUg.
We stop here, but one may compute the bracket structure with the generator

of degree 2d using the differential Lie algebra formula above. The rational homotopy
of MU^ was first computed by Burlet [Bu].

There are interesting connections with isolated complex singularities going back
to the rigid cone in C6 of 2 x 3 matrices of rank^i.

The fact that this isolated singularity cannot be deformed away follows because
the link of the singularity in S11 represents a nontrivial multiple of the generator [̂  q, ̂  q]
in ^MU^Q^=^

Conjecture. — Links of complex isolated singularities only involve single brackets
in 7^MU^®Q^.

13. Algebraic invariants for the classification and construction of manifolds
and diffeomorphisms.

We will describe algebraic pictures of manifolds and diffeomorphisms that make
sense for the general manifold and can be converted back into geometry with only finite
ambiguity in the case of simply connected manifolds of dimension at least five.

Let us associate to each manifold M its underlying homotopy type X together
with the orbit of the rational Pontryagin class in H*X under the action of the group
of self homotopy equivalences Aut X. We obtain a map:

{diffeomorphism types}—>{ homotopy types, cohomology orbits}.

Novikov [N] proved by surgery and Smale's A-cobordism theorem that in the
class of closed manifolds which are simply connected and have dimension at least five
that N is finite to one. (Later Browder [Br] studied the image and the author ([Sug]
and [Su4]) determined the kernel precisely in the homeomorphism context.)

We will now apply differential forms to obtain a completely algebraic invariant
for the diffeomorphism type up to finite ambiguity.

Recall that by successively solving the equation dx =y a finite number of times
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where y is made up algebraically (by addition and wedge product) from previously
constructed forms we can build a homological model ^==/\{x^, x^ . . ., Xy; d) over R
(§ 5) of the manifold M up to its dimension. The manifold M also determines integral
lattices in the structure space ^(^)= © (H^4-1^-1) (BTT^) (§ 10).

k
Finally, recall the differential form construction of the Pontryagin classes from a

connection in the tangent bundle. If the connection © is described in the presence
of partial framings a by matrices of i-forms ©^5 one defines the curvature tensor by
Q.^==d@^—Q^oQ^ and then the (independent of a) closed forms {trace D^o . . . o0^}
represent the Pontryagin classes (so applying to ©, exterior differentiation, addition,
and wedge product of forms).

For the integral part of our invariant we take the integral lattice of the structuie
space (Theorem (10.4)), the integral lattices in H^M, R) and finally the torsion
coefficients of homology.

Theorem (13.1) . — The collection of simply connected closed manifolds of dimension greater
than four having isomorphic algebraic invariants:

(i) the homological model ̂  (over the reals) of the smooth forms up to the dimension^
(ii) the (real) Pontryagin classes,
(iii) the integral structure mentioned above (lattices and torsion coefficients)^

falls into finitely many diffeomorphism classes.

Proof. — See the end of this section.

Remark. — The members of these finite families of diffeomorphism types have
identical properties from many points of view, but not all.

Geometric realization of invariants

Let us consider rational model and the Pontryagin class together as the rational
part of the invariant explicit in Theorem (13. i). For the rational part of the invariant
let us note that when the top dimension is 4^3 a signature is defined up to sign, and the
k-th Pontryagin class is determined by the lower ones when the signature is zero, and
by the signature and a choice of" fundamental class " I-P^e^^O^ when the signature
is nonzero. (Using the Thom-Hirzebruch formula.)

The first theorem concerns the realization of the rational model and the (lower)
Pontryagin classes by a manifold subject to this convention. Notice that realization
only depends on the position of the Pontryagin classes in the cohomology ring.

Theorem (13.2). — Given any rational model and Pontryagin class (excluding the top
component in dimension ^k) whose cohomology satisfies Pi=o and Poincare duality over Q^, we
can say the following:

(i) There is a simply connected manifold realizing this algebraic data if the dimension is not ^k
or when the dimension is ^k if we allow one singular point—the cone on a (4^— i) -(^homology sphere.
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(ii) To remove the singularity in a realization of dimension ^k it is necessary and sufficient that:

a) when the signature is zero the quadratic form on H2^ (unambiguously defined over QJ
is a sum of squares S ± x^ (over QJ;

i

b) when the signature is nonzero there is a choice of fundamental class H^^Q^ so that

the quadratic form on H2^ <j^2, ^JL>, is a sum of squares ^±xf and the numbers <j&^ . . .p^y pi>

are integers satisfying the congruences of a cobordism class [St],

Proof. — See the end of this section.

Example. — Let <D be any homogeneous cubic form (symmetric) on a rational
vector space H. Then there is a simply connected closed six-manifold so that H^H,
H^H*, p^ contained in H4 is arbitrary, and the cup product structure is given by O.
Compare [Su5J.

Remark. — We leave to the reader the formulation and proof of the analogous
theorem on almost complex manifolds involving the signature and the Euler characteristic.

Path Components of diffeomorphisms

Our classification is completed by describing the automorphisms—namely the
path components of DiffM, denoted {DiffM}.

The homotopy smoothings sequence (see below) leads to the rough description
of the homomorphism:

{components of diffeomorphisms} —> {components of homotopy equivalences}:

(i) the image of ^ is commensurable with the isotropy group of the Pontryagin
class;

(ii) the kernel of ^ is commensurable to a quotient of H^CH^ . . . ©H4'"1® . . .
where 42—1< dimension M and cohomology is taken with integer coefficients (24).

We will describe this extension in terms of Q^-algebraic groups. {DiffM} will
lie in the corresponding arithmetic commensurability class.

A quick description is to take automorphisms of the algebraic model of the principal
tangent bundle over M up to homotopy.

The detailed description goes as follows.
Define an algebraic diffeomorphism to be a pair (o, ^) where a is an automorphism

of the model ̂  and ^ satisfies d^==ap—p. ^==(^1, ^2? • • • ) ls called the distortion of
the Pontryagin class, ^==(^15^25 • • • ) • The composition rule is:

(^)o(o^')=(Goa',i;+<).

(24) Actually, surgery only constructs a concordance and then we apply the theorem of Cerf that in this case
(dim ̂ 5, TCI = e) concordance implies isotopy.
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An algebraic isotopy of (o, E;) to the identity is a derivation i of degree — i o f ^
so that (7=exp(flK+^0 (§ 3) and a homology between ^ and the homology ap^p induced
by i (see § 3).

If we add the boundary condition that we take no component of p or ^ in the
top dimension of M, then the algebraic group we want for {DifTM} is the quotient
of algebraic diffeomorphisms by the unipotent subgroup of those algebraically isotopic to the
identity.

Theorem (13.3). — If Tc-^M.==e and dimension M>5, then the component group of
Diff M is commensurable to the arithmetic groups in the algebraic group just described. Thus
these component groups are finitely presented.

As a sample calculation using Theorem (13.3) let us describe the computation of
the kernel of (diffeomorphisms -> homotopy equivalences).

Let D denote the distortion cohomology groups H3®!!7^ . . . ©H4'"1® . . . where
(4?—i)<dim M.

Let I CD be the indeterminacy subgroup defined by I={ip} where p is the
Pontryagin class and i is a derivation of the model A {x-^, ..., Xy, d) of degree — i satisfying
di 4- id == o.

Corollary (13.3). — Then the kernel of (c diffeomorphisms to homotopy equivalences^ is
commensurable to a lattice of D/I.

Proofs. — Theorem (13.3) and Corollary (13.3) are proved at the end of the section.

Remark. — Thus a nonzero Pontryagin class cuts down the diffeomorphism group
in two steps, by the orbit of that cohomology class and by creating an indeterminacy
in the distortion of the cocycle within that class.

Geometric interpretation. — In a Riemannian manifold we have the following analogy
to this algebraic picture. First a diffeomorphism induces an automorphism a of all
the forms. Also there are canonical closed forms ^=(^3.5^25 • • • ) defined by the
curvature tensor ^, { t r i i o . . ,oQ}, for the Pontryagin classes. There are canonical
distortion elements ^=(^15 ̂  • • •) solving d^==ap—p. ^ is determined by connecting
the original metric and the new metric (distorted by the diffeomorphism from the old)
by their linear interpolation.

These elements are valid for computation in the above abstract theory.

Corollary (13.4). — Two isometrics of M. which induce the same map on real homology
are algebraically isotopic.

Proof. — They induce the same map on the canonical minimal model of a
Riemannian manifold ((§ 14) and [SuJ) and they have zero distortions.
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Realization of arithmetic groups as {DiffM}.

Theorem (13.5). — IfG is any (^-algebraic group we can construct a closed manifold M
so that {DiffM} is commensurable to the arithmetic subgroups in a vector space extension of G.

Construction. — Let M be the double along the boundary 8 of a neighborhood
in R21^ (N large) of the finite complex X constructed in Theorem (10.3).

Then H^M, Q^) is even dimensional and the Pontryagin class is zero. So {DiffM}
is commensurable to Aut M by the above. But AutM-^AutX (restricting to a
skeleton) is easily seen to be onto and the lift of an element in Aut X is well defined up
to a self homotopy of the identity of 8. These self homotopies compose in an Abelian
fashion and this is seen by a disjoint support argument.

Proof of Theorem (13.1). — We consider a sequence of equivalence relations (i),
(ii), (iii), (iv), (v) on any set of closed simply connected ^-manifolds having the same
torsion numbers, n>^. These are generated by the notions:

(i) there is an isomorphism between real models up to the dimension n preserving
the structure lattices, the lattice in H^R) and the Pontryagin classes (real);

(ii) there is an isomorphism of rational models doing the same (as (i));
(iii) there is an integral homotopy equivalence between two of the manifolds;
(iv) there is an integral homotopy equivalence between two of the manifolds

preserving the rational Pontryagin classes;
(v) there is a diffeomorphism between two of the manifolds.

Say one relation has finite index in a coarser one if each class of the latter only
contains finitely many classes of the former.

Step i. — The relations (i) and (ii) are equal.

Proof. — The words (e up to the dimension n " can be dropped in (i) or put in (ii)
without changing the relations. One sees this by the straightforward inductive argument
over the stages above the dimension n.

Now look at the induced isomorphism a of the rational structure spaces for a
chosen isomorphism realizing (i). The isomorphisms between the two models (up to
the dimension n) agreeing with a form a Q^-principal homogeneous space (Appendix § 6)
of the unipotent group (Proposition (6.4)) fixing the structure lattice of one. It thus
has a rational point (A.I , appendix, § 6) and the manifolds are in relation (ii).

Step 2. — (ii)nfiii) has finite index in (ii).

Proof. — Theorem (10.4).

Step 3. — (iv) has finite index in (ii)n(iii).

Proof. — Let Aut M denote the group of integral homotopy equivalences of a
particular manifold M of one (ii)n(iii) equivalence class.
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For all the other manifolds of this (ii)n(iii) class push their Pontryagin classes
to H^M, %) by all possible (iii) equivalences. By the definitions these classes lie in
one orbit of the Pontryagin class ofM under the group F of automorphisms ofH^M, Q^)
which give isomorphisms of the lattice and come from an automorphism of the rational
model of M.

By theorem (10.2) (i) we may apply (A. 2, appendix, § 6) to the homomorphism
of (^-algebraic groups (outer automorphisms of Q-model)-> (automorphisms H^M, 0))
and deduce the image of Aut M has finite index in F.

So the classes above are covered by finitely many orbits of the action of Aut M
on H^M, Q), and (iv) has finite index in (ii)n(iii).

Step 4. — (v) has finite index in (iv).

Proof. — This follows from the homotopy-smoothings sequence. In fact this
statement was first proved by Novikov. (See Theorem (10.8) and p. 112 of [Wa].)

Step 5. — (v) has finite index in (i).

Proof. — This follows from steps 1-4 and completes the proof of the theorem.

Proof of Theorem (13.2). — There are several steps which we first state and then
prove:

(i) We construct a space X representing the model e .̂
(ii) Then we find a map of nonzero degree of a closed ^-manifold M-^X so that:
a) f*p, is the Pontryagin class of M; and
b) if n==^k the quadratic form on O^/M) is equivalent to a sum of squares

s±^.
i

(iii) We do rational surgery on/to preserve (ii) and reduce the kernel on H,( , QJ
to zero. Since a map of nonzero degree is always onto (X satisfies Poincare duality)
the desired realization is constructed.

Now (i) is accomplished using the spatial realization of^ (§ 8).
For (ii) the solutions of a) up to cobordism correspond by the classical argument

of Thorn to TT^M where M is the Thorn space of the induced bundle over the fibre

product of X-^nK(Q^4z) and BO-^HK^Q^) where P is the universal dual Pon-
tryagin class.

Now 7r,M®Q^=H^M®%=H^X=Q^ so maps of nonzero degree satisfying
(ii) a) exist. If the signature of X is zero, then condition (ii) b ) is automatic.

If the signature is nonzero and the conditions of part (ii) of the theorem are
satisfied one observes the image of-^M in T^MSO is characterized by rational conditions
and pulls back to T^M an element in T^MSO with those numbers. A little thought
shows (ii) b) is satisfied.
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Now for (iii). The less technical aspects of surgery are sufficient for us. Below
the middle dimension one uses the rational Hurewicz theorem to represent the rational
kernel by embedded spheres. Condition (ii) a) implies a multiple embedding has
trivial normal bundle and surgery can be done to kill this element preserving (ii) a ) .
(See [M2] and [Br] for details.) Condition (ii) b) is preserved by Witt's theorem
about cancelling quadratic forms over a field.

The middle dimensional surgery arguments greatly simplify here. The odd
dimensional cases are easy (no torsion and linking considerations arise), the (4^4-2) case
is treated by killing twice any embedded (2^+1)-sphere which might have a nontrivial
normal bundle, and the 4^ case rests on the quadratic form which is arranged by (ii) b ) ,
using Witt's theorem, and signature M== signature X.

If (ii) a) above were satisfied and not (ii) b) we could isolate the middle dimen-
sional kernel by writing M as a connected sum along a rational homology sphere, then
discard the kernel side and cone to achieve the realization with one singular point.

Proof of (13.3). — The surgery theory along with Gerf's theorem shows path
components of Diff M (except for finite obstructions) correspond to deformation classes
of pairs consisting of a self homotopy equivalence plus a covering bundle map on the
complement of a point in the principal tangent bundle (see [N] for exactly this viewpoint
or [Sug] for the relative form of the above surgery theorem).

We have described this picture rationally by the algebraic diffeomorphisms modulo
algebraic isotopy. The actual picture is an integral form of the rational one (§ 10).

14. Questions) Problems, and further remarks.

Geometry. — The reflection of the analytical or geometrical properties of the manifold
in the differential forms and then in the algebraic structure of the models provides a
method of discovering relationships between the analysis or geometry of the manifold
and its topology.

Given a riemannian metric one can use the Hodge decomposition [SuJ when
building the model and arrive at the

Theorem (14.1) . — A compact riemannian manifold M has a canonical model:

^-> forms on M

on which the group of isometrics acts in algebraic consequence of the action on harmonic forms.

In this canonical construction of the model of a riemannian manifold the deviation
from formality (§ 12) is related to the incompatibility of wedge products and harmonicity
of forms. Thus for a symmetric space the construction of the model is formal.
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Problem 1. — Systematize the relationship between product structure of harmonic
forms and the Massey product structure of the model and its deviation from formality
for a Riemannian manifold.

In another direction one can think of the covariant differentiation of the metric
as a map QP—^QP^Q^ so that the composition with skew-symmetrization QP®Q1->QP+1

is the exterior d. The curvature is the deviation of A from satisfying the integrability
condition of § i.

Question 1. — Can one express the condition of signed curvature (positive or
negative) in algebraic terms via this factoring and derive topological consequences
from the form of the models?

We have seen in § 12 that the models of Kaehler manifolds are formal—so the
form of the model is dictated by the cohomology ring. The map of the model into
the forms is still interesting—in fact the canonical model given by a metric has a certain
holomorphic sense. Namely, the part generated in degree one (—which is very large
for a Riemann surface) can be constructed canonically from the complex structure.

Question 2. — Does the canonical model in degree one for compact complex
manifolds (admitting Kaehler metrics) provide a useful holomorphic invariant?

The diagram of differential algebras yielding formality of a Kaehler manifold:

{8 cohomology }<— {8 closed forms }—^{ all smooth forms}

makes sense for any complex manifold and should yield information in the compact case.

Problem 2. — Does the finite dimensional differential algebra {^-cohomology, 8}
determine the model of a compact complex manifold?

There are definite connections with the topology here because Morgan has observed
that formality results if the Frolicher By 8 spectral sequence collapses at E1 and a natural
complex conjugation property holds. (See Morgan's work on the models of open
complements of analytic subvarieties of Kaehler manifolds—to appear (Publications
math. LH.E.S., volume 48).)

It would be interesting to have strong necessary conditions on the topology that
a compact manifold M admits infinitely many isometrics for some metric. This is
equivalent to having a nontrivial action of the circle (by isometries then if desired).
One can work with the invariant forms I defined by (di-}-id) <o==o where i is contraction
by the vector field of the action.

Using I and i one can form an algebraic model of the Borel fibration:

M-.Mg-.CP00
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where Mg = (M X S°°) /S1. Namely form I ®A {x) where | x \ = 2, dx == o, and:

rf(^® i) == rfa® i + i{a) ®x.

d2==o here is equivalent to di-{-id=o and ^^o on I.

Problem 3. — Derive necessary topological conditions for M to admit an infinitesimal
isometry for some metric, perhaps combining the geometrical homological picture of
the fixed point set and the algebraic picture of the Borel fibration expressed above in
the differential forms.

Besides compact complex manifolds and infinitesimal isometrics the subject o
compact symplectic manifolds begs attention in this discussion.

Here we have a closed 2-form G) on a 27z-manifold that is locally equivalent to
dx^/\dx^+. . . +dx^_-^/\dx^. Thus o^ is a volume form and the cohomology of M
contains i, co, o2, ..., oA

Question 3. — Is there any further topological condition for the existence of a
nondegenerate closed 2-form besides this cohomological one? In particular does the o
somehow structure or influence the formation of a model in the differential forms ?

Finally, all these problems can be enhanced (where successful) f2 5) by the discussion
of twisted models which encourage their own questions and problems.

We have seen that local systems can be treated by the above differential algebras
when they are infinitesimally given by a twisting matrix © satisfying 6?©—©o©==o.
Actually if© is an infinite dimensional operator one has to be able to solve the differential
system dv == @{v) (Theorem (1.2)) . If the vector space has a norm and © is a bounded
operator the classical picture prevails (§ 9).

Question 4. — Outside the case of bounded operators on normed spaces, when
does a twisting matrix © determine a local system and which local systems are infinitesimally
given in this way?

Answering this question gives the boundary of the topological situations describable
by the infinitesimal computations of this paper in terms of positive degree differential
algebras.

Problem 4. — Extend the computations of homotopy and cohomology of the spatial
realization (§ 8) to the case where infinite dimensional (infinitesimally given) represen-
tations occur.

Problem 4 leads one to infinite dimensional Lie algebras and pseudo-groups and
the significance of the realization. The first example is the Lie algebra f of formal
vector fields on R^. The realization <^> of the (continuous) dual Lie algebra ^ receives

(25) For example, Kaehler manifolds (§ 12).
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a map from the classifying space of codimension y-foliations with trivial normal bundle

BF(?)^W.
Question 4. — Is jy, a homotopy equivalence ?

Problem 5. — Study the homotopy type of the realization of other (geometric)
Lie algebras (infinite dimensional).

Knots and Links. — Models should be applicable to the study of invariants of classical
knots and links.

For links the nilpotent structure of the complement is already very interesting
(as seen in the work of Fox, Ghen, and Milnor) and nilpotent models are useful here—since
they follow the structure of the lower central series.

For knots the nilpotent model is trivial (since the complement is a homology
circle) but the solvable models can be used to study the derived series.

These examples are interesting in a reverse direction because they allow one to
< c see " geometrically in a three dimensional space rather arbitrary topological complexity
expressed by elaborate models.

General ^-theory

If we were willing to allow terms in degree zero in the algebraic picture, then
a differential form description of completely general spaces is possible. One begins
with some algebra ^/{n^) for the K(7Ti, i) (intuitively the forms on the covering space)
on which TT^ acts and which is regular in an appropriate sense. Then one forms linear
extensions to follow any Postnikov system with this TCI. The discussion is essentially
the equivariant form of the simply connected one and is more general but less powerful
than the infinitesimal models described above.

Commutative algebra and the Hsiang-Allday problem

Finally, for the deeper calculations and applications we might ask what is the
nature of the mathematical structure presented by a minimal differential algebra from
the point of view of algebraic geometry.

For example letj/i,^? • • • denote the exterior generators of a nilpotent differential
algebra ̂  and write dy^ == P/^i, x^, . . . ) mod. ideal ( j ^ i , ^ ? - - - ) where the ̂ i, x^, .. . are
the polynomial generators. By introducing the P^ as relations in the polynomial algebra
(dimension by dimension) one obtains a sequence of commutative rings A^->A^->. . .
which is an invariant of ^.

Similarly, one has a sequence of quotient d.g.a's obtained by setting (^, dy^)
equal to zero (dimension by dimension) ^/-^^->^->. . . The limiting cohomology
(which is stable by dimension) is the limit of the algebras A,.

One interesting remark is that if the P^ (for one dimension) are not zero divisors
then HW^-HW^i (Proposition 2, [S-V]).
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These considerations are related to various properties relating growth of homotopy
and cohomology. For example (see [H-V]).

Question 5. — If the nilpotent algebra ^ had k exterior generators and more than
k polynomial generators, is HW infinite dimensional?

Given the homotopy theory above this question contains the topological one
expressed by W. Y. Hsiang: If the total rank of the homotopy of a simply connected
finite complex is finite, is the total odd rank at least as great as the total even rank?
In other words is the homotopy Euler characteristic X^ always nonpositive when it is
defined. (Hsiang's corollary would be that a compact Lie group G of rank r cannot
act with only finite isotropy on a space satisfying |XJ<r. One sees this by looking
at the rational fibration G->X-^X/G.)

Added remark. — A paper by Steve Halperin has recently appeared which solves
Question 5 and other related ones in a most satisfactory way. Also see the work of
Allday.

Problem 6. — Study the general relationship between the homotopy and the
cohomology of a nilpotent differential algebra. For example, what is the significance
of the algebraic properties of the canonical algebra of cycles—a curious homotopy
invariant ?
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