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§1. 

THE PLr~OSE of this paper is to present some information about the following Question: 

I[ M is a compact manifold [oliated by compact submani[olds (everything smooth), is there an 
upper bound on the volume of the leaves?t 

In particular, if M is a compact manifold supporting a nonsingular flow in which each orbit 
is periodic, is there an upper bound on the lengths of the orbits? In his thesis, Reeb ([12], for an 
analytic example see [3, p. 68]) describes a smooth flow on a non-compact manifold such that all 
orbits are periodic and such that the lengths of the orbits are not locally bounded. After our 
research was completed, the third author found a smooth flow on a closed 5-manifold[15, 16], 
which showed that the answer, in.general, was no. The former example shows that the question 
is global and cannot be answered by simply considering the structure of the foliation in a 
neighborhood of individual compact leaves. The latter example shows that some additional 
hypothesis on M is required. This example is worth keeping in mind while reading this paper due 
to its close connection with our main result. 

The existence of an upper bound on the volume of the leaves has rather important 
consequences which provide a description of the local, as well as global, structure of the 
foliation. The boundedness of volume near any given leaf is equivalent to the finiteness of the 
holonomy group of that leaf, and also to the hausdroff separation property for the topology of the 
leaf space near the leaf ([4], [8], see also §4). Hence, in the presence of a bound on the volume, a 
structure theorem due to Ehresmann [4, Theorem 4.3] provides a nice picture of the local behavior 
of the foliation. In the absence of such a bound the geometrical possibilities are somewhat 
formidable. 

Concerning the known cases of the Question, if the leaves have condimension 1 then the 
bound exists by a relatively elementary argument [12]. For periodic flows on compact 3-manifolds 
Epstein [3] has demonstrated the existence of a bound by a surprisingly delicate argument. Our 
two principal results were obtained in trying to understand Epstein's argument. Our first result is 
that in the presence of a certain homological assumption, the answer to the Question is yes. 

THEOREM 1. Suppose M is a compact smooth manifold which is smoothly foliated by compact 
leaves of dimension d. Suppose that the leaves are oriented in a continuous manner, and that the 
images of the fundamental classes of the leaves all lie in some open hal[space of the d-dimensional 
real homology of M. Then there is an upper bound on the volumes of the leaves of M. Consequently, 
all the holonomy groups of the foliation are finite. 

Another way of stating the homologicai condition is to say there exists a closed d-form to on 
M, such that to has a positive integral along each leaf. Here M may have boundary, in which case 
we assume that the boundary is a union of leaves. The with-boundary version of the Theorem 
follows from the without-boundary version by doubling M along its boundary. 

Two particular situations to which the theorem applies are when (i) each leaf of the foliation 
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tLet the volumes be determined by a riemannian metric on the tangent bundle of the foliation, see §4. 
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has positive (respectively negative) euler characteristic, or (ii) the ambient manifold is kaehler 
and the foliation is complex analytic. 

Details are in §7. We remark that case (ii) actually follows from the first part of the proof of 
the Theorem (the Moving Leaf Proposition, §5). 

We point out, with regard to the volume question, that any lack of orientability of the leaves 
of M at the outset is no problem, for if the leaves are initially not continuously oriented, they can 
be made so by taking the appropriate double cover of M. Also, if one desires, M can be made 
oriented by taking a further double cover; this would make the foliation transversally oriented 
and hence would make all holonomy oriented. Note that the finiteness or nonfiniteness of 
holonomy is preserved by such covers. Similarly, so is the boundedness or unboundedness of the 
volume of the leaves. 

Theorem 1 does not require so sweeping a homological hypothesis as stated above. The proof 
of the theorm deals only with a neighborhood of what Epstein calls the bad set of M, which is the 
union of leaves of M near which the volume function is not bounded. Of course the goal is to 
show that this bad set is empty; in general one can at least say that it is closed and nowhere dense 
(see §§4, 6). Our proof reveals that it must be empty if there is a closed d-form to, defined on a 
neighborhood of the bad set, whose integral is positive along each leaf of the bad set. For this 
argument M need not be compact, as long as the bad set itself is compact. 

Our second principal result is that the Epstein argument mentioned above can be adapted to 
hold in codimension two in general. This has also been done by Vogt. 

THEOREM 2 (extending [3]). Suppose M is a smooth compact manifold which is smoothly 
foliated by compact leaves of codimension two. Then there is an upper bound on the volumes of 
the leaves of M. Consequently, all the holonomy groups of the foliation are finite. 

As above, M may have boundary, in which case we assume that the boundary is a union of 
leaves. 

This theorem can be regarded as a special case of Theorem 1, because in the proof we show in 
effect, that there is a closed (m - 2)-form to, defined on a neighborhood of the bad set, which has a 
positive integral along each leaf of the bad set. Nevertheless, the argument is of a sufficiently 
independent nature that we have isolated it in §8. 

The motivation for the proofs of these theorems is this: We begin with the known fact (see §4) 
that the family of leaves whose holonomy is trivial ( -  the generic leaves) comprise an open dense 
subset of the manifold which is fibered by the leaves. Whenever the bad set is nonempty, there 
must exist a continuous family L,, 0 < t < ~, of generic leaves of M which approach the bad set 
and whose volumes are unbounded (see §5). Imagine for the moment that the bad set itself 
happens to be a nice smooth fiber bundle. Now the homological hypothesis of Theorem 1 says 
that the fiber (= leaf) of the bad set is not homologically trivial in the bad set. (For example, if the 
euler characteristic of the fiber is nonzero (cf. (i) above). This is true because an euler form on the 
total space of the bad set evaluates on each fiber to give its euler characteristic. Also for example, 
in the Epstein condimension two situation, the base of the fiber bundle must have dimension -< 1, 
and so the homological hypothesis holds. On the other hand, in the counter example mentioned 
above[15, 16], the bad set is S 3 foliated as the Hopf bundle.) 

We wish now to get a contradiction. If the bundle had a smooth cross section, then this would 
be easy, for then we could extend the cross section over a neighborhood of the bad set and 
examine the intersection number of each leaf L, of the continuous family with this fixed 
transverse manifold. On the one hand these numbers must all be equal, by homological 
considerations, and on the other hand they must be unbounded since the volumes of the moving 
leaves {L,} are unbounded. This is the contradiction. 

In the absence of a cross section to the bad set, we use the hypothesized differential form and 
geometric currents. A geometric current is to be thought of as a homology class of M which is 
geometrically realized in a precise way. It consists of a certain collection of leaves of M (possibly 
uncountable), with the leaves weighted by transverse measures, so that this collection is an 
infinite homological sum of leaves. Such a geometric current gives rise, by integration along the 
leaves, to a de Rham current, i.e., a continuous homomorphism from the differential d-forms of M 
to the reals. Our construction of a geometric current on the bad set, and its application to 
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Theorem 1, can be summarized as follows: We begin with the continuous family of leaves L,, 
0 -< t < ~, mentioned above. Regarding this family of leaves as a family of currents in the sense of 
de Rham we extract, after a certain normalization process to account for the unbounded volumes, 
a convergent subsequence. Arguing locally, we then show that there is a non trivial limiting 
geometric current. This we analyze geometrically to deduce homological relations among the 
fundamental classes of the leaves. For example, letting {L,} denote the sequence of leaves and 
letting {n,} denote a certain sequence of normalizing constants which approach infinity, we 
generate a possibly infinite collection {re} of positive real numbers and {L,~} of leaves of the bad 
set, determined by the distribution of the limiting geometric current, so that the following 
homology relation holds: 

lim I [ L , ]  = ~'~ r~[L~]. 
i ~  n l  a 

(If the bad set were a connected fiber bundle as imagined above, there would be only one term in 
the right hand side). From this homology relation, which holds in an arbitrarily small 
neighborhood of the bad set, we can use the homological hypothesis of Theorem I to deduce a 
contradiction, by evaluating the hypothesized d-form ~ on each side of the equation. This shows 
that the bad set must be empty, establishing Theorem 1. 

In the case of codimension two foliations we are able to mimic Epstein's construction, after 
passing to a 4-fold cover to make everything oriented, to obtain a transversally embedded 
oriented 2-manifold in M which is closed in some open neighborhood of the bad set, and which 
has nonempty intersection with each leaf of the bad set. Now one can argue in the manner 
described earlier, by considering the algebraic intersection numbers of this transverse 2-manifold 
with each leaf L, in the continuous family of leaves of unbounded volume that has already been 
mentioned. These intersection numbers must on the one hand be constant and must on the other 
hand be unbounded, establishing the desired contradiction and proving Theorem 2. 

In this paper we always work with smooth foliations of smooth manifolds, by which we mean 
Cr-smooth for some fixed r, 1 ~ r -< ~. Most of the results and constructions of the paper do not 
require any ditIerentiability hypotheses at all (e.g. the definition and construction of geometric 
currents in §§2,3 and the Moving Leaf Proposition in §5), although at times we may use 
differentiability as a convenience. In Theorem 1 only the rectifiability of the leaves is used. Thus 
to make the proof of Theorem 1 hold for topological manifolds, it remains to formulate a tool to 
take the place of differentiable forms, as something which can be continuously evaluated on 
continuously varying geometric currents. In Theorem 2 one uses the C' properties of holonomy. 
Thus to make the proof of Theorem 2 hold for topological manifolds, one only needs something to 
play the role of Weaver's Lemma[19] which concerns C m germs of diffeomorphisms of R ~. 

§2. GEOMETRIC CURRENTS 

The material in this section is a distillation of the early discussion in Ruelle-Sullivan[14], with 
a few trivial technical variations. Suppose that M = is a smooth m-manifold without boundary. 
An/-dimensional current on M, as defined by de Rham[13], is any continuous homomorphism 
Ac'(M) ~ R from the compactly supported/-forms on M to the real numbers.* A special kind of 
current used in this paper is a geometric current (or foliation current), described as follows. 

Suppose that M m is smoothly foliated by /-dimensional leaves, where m = k + I. To fix 
notation, we suppose that {W. x R'} is a locally finite collection of foliation charts whose 
interiors cover M, where each W,. is compact. To be technically sound, one should regard each 
chart W~ x R t as lying inside an open foliation chart U. x R ~, where W. C U.. We will tacitly 
assume this, without further mention of the UoxR"s .  We identify each W. with 
W~ x 0 C W~ × R' C M, and we write int ( W~ x R ~) = 17v'~ x R', where la/~ C W~ is a k-manifold 
which we assume is smoothly embedded in M. The W.'s are called transversals. We assume that 
the leaves of M are continuously oriented by these coordinate charts, that is, for any two slices 
x × R' C W~ x R' and y x R' C W, x R ~ which overlap, the induced R'-orientations agree. 

Suppose that each compact transversal W. has defined on it a nonnegative measure # .  of 

*The de Rham definition uses the C ~ topology on forms. However, the currents arising here are even continuous in the 
C"-topology on forms. From now on we replace "'d'" by " l "  which is to be distinguished from "'l". 
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finite mass. (We remark here that all measures employed in this paper are regular Borel measures 
of finite total mass, and we refer to them only as measures. Recall that, by the Riesz 
Representation Theorem, such measures on a compact space W are in 1-1 correspondence with 
bounded linear functionals on the Banach space of continuous maps from W to R '). A collection 
of such measures {~t~} defined on the collection of transversals {W~} is translation inrariant if, 
roughly speaking, the measures are invariant under isotopies of the identity preserving the 
leaves. Precisely, the collection of measures {/~} is translation invariant provided that for each 
Borel subset F C W~ and for each leaf-invariant homeomorphism (i.e. a homeomorphism of M 
which takes each leaf into itself) h : M -~ M, if the restriction hi: F ~ M gives an embedding of F 
into another transversal W. (with possibly ¢ = o-), then t~.(h(F)) = ~ (F) .  

This data--the foliation with continuously oriented leaves together with the translation 
invariant measures {/.to}--comprise a geometric current on M, which we denote by C{#~}. The 
definition can be made independent of the charts {W~ × R'} (as in [14]), but that is unnecessary 
here, and at any rate it is implicit in later discussions. 

A subset X of M is saturated or invariant, if it is a union of leaves of the foliation. Given a 
geometric current C{/x~} and a saturated subset X, then C{/z~} is supported on X if, for each ~r, 
the restricted measure/~JWo- X is trivial. 

Given a geometric current C{/~.}, one can define a de Rham current C{iz~.}:Ac'(M)~ R by 
using a smooth partition of unity, {p.} say, with compact supports {clp~.-'(O, 1]} which are 
subordinate to the open cover { I~',. x R'}. Given any compactly supported/-form to, the partition 
of unity can be used to decompose to into a finite sum of /-forms, to = E..p~.to, where each 
po .to has compact support in I~',. x R ~, and then one can define 

(C{/~=}, to) = E~ f ~ * .  (x x R', p~'to > d/s~. 

It is clear that this defines a continuous homomorphism. An essential fact, which is a 
consequence of the translation invariance of the measures {/~}, is that this definition is 
independent of the partition of unity chosen. That is, if {p;} is any other smooth partition of 
unity, each p" having compact support in ~ x R', then the above sum of integrals remains 
unchanged using {p'} in place of {pc,}. This is a consequence of the familiar process of carefully 
choosing a much finer cover and partition of unity, and then evaluating with respect to it, cf. [14]. 
Because of its importance, we repeat the argument here. 

Let {Y~ x R'} be any locally finite cover of M by open foliation charts which refine the cover 
{~,, x R'} and satisfy the following two special properties: 

(i) for each Y ~ x R  j and each W~xR' ,  if Y~ xR'N(support  p~Usupport p ' ) ~  O, then 
Y~ xR '  C ~,, xR ~, and 

(ii) for each Y., x R' and each IV. x R', if Y~ x R ' C  W~ x R ~, then the natural map 
Y , = Y ,  x O C Y ,  x R t C W ~ x R ~ - > W ~  is an embedding of Y, into W~ (rather than just a 
submersion) which is given by the restriction of some leaf-invariant homeomorphism of M. 

Thus each transversal Y, has induced on it in unambiguous fashion a measure v,. Fix a 
smooth partition of unity {q~}, with compact supports subordinate to {Y, x R'}. Then for any 
/-form to E A~(M), the evaluation of to using this new cover and partition of unity agrees with the 
evaluation using the original cover and either associated partition of unity {po} or {p'}. The 
appropriate calculations for the partition of unity {po} are as follows: 

The evaluation of to using the cover {Y~ x R ~} and partition of unity {q,} 

= E~ £•v~(y x R~'q~'to)dv~ 

= ~ . E ~ f  (yxR~,q,.p~.to)dv~ (sinceV_.p,.- = 1) 
./y IE YA 

.ty E YA 

(for if Y. x R'Z W~ x R', then q. • p~ --- 0) 

f (x x R', q, • p~ • w)dlz. = ~°'~flx[YaxR'cd/=×R'} Jx~Ob'~ 
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(using property (ii)) 

E~ f~,_ (x x R', po" to)d/to 

(for E(q~lx such that Y~ x R' C if,, x R'} = I on the support of po). 

Thus the value (C{#o}, to) is independent of the original partition of unity {p,.}. 
The basic consequence of the invariance of measures above is that the geometrically defined 

current C{/t~}:A~'(M)--,R is closed, that is, if to = dr, then (C{/to}, to)=0. This follows by 
writing r = ~K,, as a finite sum with each Ko having compact support in ~,. x R', and then 
observing that for each tr, (C{/t~}, dK.)= 0. 

We remark in passing that geometric currents can be defined more generally on foliated 
subsets of non-foliated manifolds. For example, an/-dimensional compact oriented submanifold 
may be regarded as an/-dimensional geometric current. In particular we find it useful to regard 
individual compact oriented leaves of a foliation as defining geometric currents in this manner. 
For further discussion along these lines, see Ruelle-Sullivan[14]. 

§3. A SPECIAL GEOMETRIC CURRENT 

In this section we describe a certain basic construction of a geometric current, which we will 
subsequently use in the proof of Theorem I. Suppose that M is a smoothly foliated manifold as in 
§2, with continuously oriented leaves, and having the additional property that all leaves are 
compact. Suppose that X is a compact saturated subset of M, and that {L,} is a sequence of 
leaves in M which converge to X in the sense that, given any neighborhood of X in M, the 
sequence eventually lies in this neighborhood. (A suitable X and sequence {L,} for our 
application will be carefully chosen in §§5,6). We show how to choose a subsequence {L~} of {L,} 
and sequence of positive integers {nj} such that {(1/nj)L~}, regarded as a sequence of geometric 
currents in the sense of §2, converges to some nonzero limit geometric current C{/t,} which is 
supported on X. 

Let {W. x R t} be a locally finite collection of foliation charts for M as described in §2. Each 
compact leaf L, intersects each compact transversal W. in at most a finite number of points, say 
n,.o of them. For each i, let n, = max~ {n,.~}. Let/to., be the nonnegative measure on W~ which 
assigns the mass l/n, (not l/n,.o) to each point of W~ tq L,, and is zero on any subset of Wo - L,. 
Then for each tr and i,/to.,(W,.)-< 1. By passing to a subsequence of (L,, n,), we can assume that 
there is a fixed transversal W~ such that n, = n,.~ for each i. Now for each o-, {/to.,} is a sequence of 
uniformly bounded, nonnegative measures on W~. Hence some subsequence of these measures 
converges to a bounded nonnegative measure, call it/zo, and this/Zo is concentrated on Wo tq X. 
Furthermore, when o" = s r, we have that/t~(W~ ¢3 X)=  1. Hence, by taking a subsequence of 
(L,, n,), say (L~, nj), we may arrange that for each or, lim/toj =/to as well as #e(W~ ~ X)=  1. 

j ~  

To be able to assert that these charts {Wo x R t} and {/to} define a geometric current C{/to} 
supported on X, we must show that the measures are translation invariant. 

LEMMA A. Suppose W. x R' and W. × R ~ are two of the prescribed foliation charts for M and 
suppose that F is a Borel subset of W~. Furthermore suppose that there is an embedding of F into 
W, given by the restriction hlF o/ some leaf-invariant homeomorphism h : M ~ M .  Then 
/t~(F) =/t.(h(F)). Consequently, the measures {/t~} are translation invariant. 

Proof. In brief, the Lemma is true because, for each j, it is true for the collection {/to.~}. 
Specifically, we have that for each j, h(F N Lj) = h(F) t3 Lj because h is leaf-invariant. Thus 
/z~.j(F) =#,.~(h(F)). Taking limits gives the desired conclusion (the reader can supply the 
necessary measure theoretic details here). 

Having established the existence of the limiting geometric current C{/t,.}, we wish to show 
that as a de Rham current, C{/to} equals lim((1]n~)L~,-): A,?(M)~R. Here convergence and 

j ~  

equality are interpreted pointwise, that is, on each/-form individually. 
To show this equality for a particular compactly supported/-form to, it suffices to decompose 

to as a finite sum to = Xtoo via a partition of unity subordinate to the open cover {~ .  x R ~} in the 
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manner of §2, and then to apply the following lemma to each term ~o~ in the sum. Let to. denote a 
specific to.. 

LEMMA B. Suppose to. is an l-form with compact support in I~V. x R'. Then 

(C{/x*}' to*) = lim ( I L "  to') " ,  _~ 

Proof. In §2 we showed that (C{#.,}, to.) can be evaluated using any partition of unity {p.} 
subordinate to the cover { ff'~ x R'}. In particular, we can choose one such that p. = 1 on the 
support of ~o.. Hence 

(C{/z.}, to.) = f ~ . ( x  x R', to.)d~t. 

= lira f (x × R', w.)dtz..j 

=lim 1 X (xxR', to.)  
j ~  n i x~EI/V,f'IL# 

= lim I(Lj, o,.). 
j ~  n.i 

To complete this section, we show that C{~.} is a nonzero geometric current. That is to say, 
we show 

LEMMA C. For some z, ~.(gd.)> 0. 

Proof. By construction /z,(W~)= 1 for the specific index ~ chosen earlier. However it is 
possible t h a t / ~ ( ~ )  = 0, i.e., the measure t~, is concentrated in the "boundary" W, - r#,. If this 
is the case, write W, - # ,  = U {Fq} as a finite disjoint union of Borel sets such that, for each q, 
there is a chart W~q,xR'  and a leaf-invariant homeomorphism hq:M-- ,M such that 
hq(Fq) C r#~q,. For some qo, Ix~(Fqo) > 0, so that by Lemma A, we have tz.(~.) > 0 for r = cr(qo). 

In summary we have proved in this section the following. 

PROPOSmON. Suppose M is a smooth manifold foliated by compact l-dimensional leaves, and 
suppose there is a compact saturated subset X o[ M and a sequence of leaves {L,} in M converging 
to X. Then there is a subsequence of leaves {Lj} and an associated sequence of positive integers 
{n~} such that the sequence of geometric currents {(1/nj)Lj} converges in the sense o[ de Rham to a 
nonzero geometric current C{V~.,}:Ac'(M)--,R which is supported on X. 

Remark. This construction of a nontrivial limiting geometric current on a compact subset X of 
a smooth manifold M is possible even if M is not foliated, as long as X itself is smoothly foliated 
and the approaching compact submanifolds {Li} have tangent/-planes which converge to the 
tangent/-planes of the leaves of X (see e.g. [14], [17]). Also, these L,'s need not be compact; they 
can instead be assumed to satisfy a certain growth-of-volume condition, e.g. subexponential 
growth. These conditions are pursued in [5] and f i l l  for example. 

§4. HOLONOMY AND THE VOLUME FUNCTION 

In this section we recall the volume-of-the-leaves function, and the relation between its 
continuity properties and the holonomy of the foliation. 

We suppose in this section that M is a smooth manifold without boundary, foliated by smooth 
compact submanifolds of condimension k. (Actually, with suitable reinterpretation, the material 
in this section is valid for any locally compact metric space which is topologically foliated by 
compact leaves. See [4]). First we introduce some notation which will be used frequently 
throughout the paper. The leaf of M through a point x E M is denoted Lx. Given a compact leaf 
L~, let W be an open k-disc bundle neighborhood of L~, with bundle retraction p : W --~ L~, whose 
disc fibers {p-t(y)ly E Lx} are all transverse to the foliation. Let Dr denote p-t(y). 
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Let a be a loop in Lx, based at x. The basic property of a foliation is that some open 
neighborhood U of x in D, can be translated around ,,, through the transverse discs Da,~ to be 
reembedded into Dx, fixing x. The group of germs at x of such open embeddings is by definition 
the holonomy group of L,, which we denote A'x. 

Suppose X is an invariant (= saturated) subset of M, that is, X is a union of leaves of M. If 
x E X, then each holonomy embedding germ takes a neighborhood of x in Dx I"1 X into D, I"1 X, 
thus inducing an open embedding germ of Dx n X at x. The group of such restricted germs, i.e. 
the holonomy group at x of the foliation restricted to X, is denoted X~IX. 

If X is a locally compact invariant subset of M, we say that the restricted foliation on X is 
hausdorff if each leaf in X has arbitrarily small invariant open neighborhoods in X. That is to say, 
the quotient space of X by its leaves is hausdorff. In this case, the quotient space is locally 
compact metric and the quotient map ,r : X ..* XIleaves is a proper map (see e.g, [4, Theorem 4.1]). 
Hence, given any x E X, there are arbitrarily small neighborhoods {V} of x in D~ n X which are 
saturated with respect to leaf interesctions with D~, that is, for any y ~ V we have Ly F1 D, C V. 
Such a small transversal V in X is invariant under the holonomy translations defined by the 
fundamental group of L,, and consequently the holonomy epimorphism factors into two 
epimorphisms 

rr,(L~)~ H v ~  ~x[X 

where Hv denotes the image of zr~(Lx) in the group of homeomorphisms of V. Thus each 
holonomy element can be represented by an automorphism of V, and ~x IX = direct limit {Hv}, 
where the connecting homomorphism H,,o~H,,, can be assumed epic. It is advantageous to 
understand when this limit is siable, i.e. when the connecting epimorphisms are isomorphisms 
(see the example at the end of this section). We shall see that it is in certain natural cases 
(Proposition 4.1 below). 

Let M be given a fixed riemannian metric. This induces on each leaf a riemannian metric 
hence a natural measure. (This is defined by assigning orientations locally and using the locally 
defined positive volume form determined by the orientation and the riemannian metric. Note that 
this measure is independent of the choices). Thus each oriented leaf L has a certain volume, 
denoted vol L, and we define a function vol:M-~(0, o~) given by x ~vol  L,. The following 
proposition gives a convenient (if lengthy) listing of all the properties of this function that we use. 
The proposition reflects work of Ehresmann, Reeb, Haefliger and Epstein and the second author. 
Full details are provided in [4, 8]. We offer below a sketch of the proofs. 

PROPOSITION 4.1. (Properties o / the  volume function). Suppose M is a smooth manifold- 
without-boundary, smoothly [oliated by continuously oriented compact submanifolds, and 
suppose that X is any locally compact invariant subset of M. Then the restricted volume function 
vol [X :X ~ (0, ~) has the following properties, at any x E X: 

I. Discrete lower-semicontinuity (see Figure 1 below), volIX is lower-semicontinuous at x in 
the following especially discrete manner: for any integer n > 0 and any ~ > O, it is true that for any 
y in a su~iciently small neighborhood o fx  in X: either (i) vol Ly > n vol L~, or (ii) there exists an 
integer j, 1 <- j < n, such that [vol Ly - j vol Lx [ < ~. 

Consequently, the subset of X consisting of all points of continuity of vol I X, is an open dense 
subset of X. 

cro~s ~cTio. L ' ~ " - -  ~ ~ "  / ~ .: I' 

The cross section to  The bad set ,  
extended o l i t t l e  

FIG. I. 

II. Continuity. The following conditions are equivalent: 
(i) the restricted volume function vol [X is continuous at x. 
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(ii) the restricted holonomy group ~ , IX  is trivial. 
(iii) (letting p : W-~ L, and D, = p- '(x)  be the bundle retraction and transverse disc described 

above). There exists a transversal neighborhood V of x in 19, tq X such that each holonomy 
translation along any loop in Lx carries V identically onto itself. That is to say, the limit of 
automorphisms lim {Hv} described above is stable and trivial. 

III. Boundedness. The following conditions are equivalent: 
(i) the restricted volume function vol IX is bounded on some neighborhood of x in X. 
(ii) the restricted holonomy group ~(,IX is finite. 
(iii) (letting p: W ~ L ,  and Dx = p- '(x)  be as described above). There exists a transversal 

neighborhood V of x in 19, tq X such that each holonomy translation along any loop in L~ carries 
V onto itself, and the group of automorphisms Hv of V so produced is finite and isomorphic to the 
hoionomy group ~(xlX. That is to say, the sequence of automorphism groups {Hv} described 
above is stable and finite, and lira {Hv} = ~(x IX. 

Remark 1. In case the conditions of part III hold, then the structure of X near L, is 
particularly nice (these comments apply for part II, also). The union of all leaves which intersect 
a sufficiently small open transversal V from (iii) provides an open invariant neighborhood, U say, 
of L, in X N W such that the restriction PI: U--, Lx is a fiber bundle projection, with fiber V and 
group Hr. 

Remark 2. Epstein [4] !and Millett [8] have observed that in part III, if X is an open subset of 
M, then the equivalent conditions are all true merely under the assumption that the quotient space 
X/leaves is hausdorff. This fact is based on a clever generalization of a theorem of 
Montgomery[9] concerning pointwise periodic homeomorphisms of manifolds. This paper does 
not make use of this fact. 

The following figure, conveyed to us by Epstein, captures graphically the discrete 
lower-semicontinuous behavior of the restricted volume function vol IX at a typical point x in X 
(see part I of the Proposition above). The horizontal axis represents the distance from x of an 
arbitrary point y E X, the vertical axis represents the volume vol Ly of the leaf through y, and the 
crosshatched region represents the allowable values for vol Ly. 

r = the distance IlY - xll, for y E X. 

Allowable values for vol Ly, for y E X lying near a fixed x E X. 

Vol Lx 

VOl L~ = v 

etc5v ~" \~ 

4 V  ~ 

3v 

2v 

0 i 2 3 

f -- GXJ5 

FiG. 2. 

Proof of Proposition. Given x E X, the basic data are the fixed open tubular neighborhood W 
of the leaf L~ and the bundle retraction p: W ~ L, described above, containing the transverse 
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open k-disc Dx = p-'(x). Even though W is not necessarily invariant, it is true that for each 
y E  W the restriction p]: W f ~ L ~ L x  is a codimension 0 submersion (i.e., a local open 
embedding). 

To prove part I, and also to establish Figure 1, one observes that if y is sufficiently close to x, 
then the image p(W N L,) must cover all of L~. In fact, fixing any integer n >0, then if y is 
sufficiently close to x, it must be the case that either (i) p]W M L, is greater than n-to-1 
everywhere, or (ii) P] W M L, is a j-to- I covering projection, for some j, 1 -< i -< n. This establishes 
the first part of I. The consequent denseness assertion is simply the fact that the points of 
continuity of a semicontinuous function on a locally compact space comprise a dense subset 
(which in general is G~, but here it is open). 

Part II is established by keeping in mind again the fixed smooth submersion-retraction p: 
W --* Lx mentioned above, and by arguing that each of conditions (i), (ii) and (iii) is equivalent to 
the following: if y ~ X is sufficiently close to x, then the leaf L~ intersects D~ in precisely a single 
point. The only mildly subtle point in these equivalences is the fact that (ii) implies this property; 
this uses the fact that the holonomy group is finitely generated. 

In part III, we always work inside the above-mentioned tubular neighborhood W of the leaf 
Lx in M. It seems most convenient to show separately the equivalence of (iii) to each of (i) and 
(ii). The implication (ii)~(iii) is a general fact about finite groups of germs. Let {~: Vi ~ Dx M X} 
be a finite collection of open embeddings of open neighborhoods {V i} of x in D~ N X, with 
distinct germs ~],  such that these germs comprise the holonomy group ~]Xo. We assume that one 
of the f~'s, say fo, is the identity on its domain Vo. For each pair i, ./of indices, let k = k(i, j) denote 
the (unique) index such that [fj]o[~]=[f~] (as germs). By shrinking the domains {Vi} if 
necessary, we can assume that for each pair i, j, [~[(Vi M/]-I(Vi)N V~)=/~ I same. Define 
V = f3 i.~ ( Vi n ~-'( Vi )) and hl = ill V. Then Hv - {hl } is a group of automorphisms of V, isomorphic to 
the holonomy group ~xlX. The implication (iii)=> (ii) is clear. 

The implication (iii):ff(i) is straightforward. Let U be the union of all leaves intersecting an 
open transversal V in X provided by (iii). If V is sufficiently small, then U C W. If (i) fails, there 
must be a leaf L in U which intersects V in an arbitrarily large finite collection of points, say 
{yo, y, . . . . .  y~}. For each ./-> 1, there is a path in L from yo to y~, hence there is a holonomy 
automorphism h~: V ~  V such that hj(yo) = yj (h~ is induced by following the projected image of 
this path in L~). This shows that H,, must be arbitrarily large, hence infinite, contradicting (iii). 

For the final implication (i)ff (iii), one argues that if there is a bound on vol L, for y in X near 
x, then given any neighborhood/.So of L~ in W (1 X, there is a smaller neighborhood U, of L~ in X 
such that the union U of all leaves in X which intersect U1, lies in Uo. Otherwise there would be 
leaves in X which intersect both X -  Uo and any arbitrarily small U,, which would force these 
leaves to have large volume. Now U is an open invariant neighborhood of L~ in Uo, and its 
intersection with D~, call it V, gives a subset of D, M X which is taken homeomorphically onto 
itself by every holonomy translation of L~. Let the group of automorphisms so produced be 
denoted Hr. It remains to show that Hv is finite. 

By the assumption on bounded volume, we can assume that V is so small that there is an 
integer n such that each leaf L ,  y E V, interesects V in n or fewer points. In particular, then, the 
orbit of any point of V under Hv has n or fewer points. We now use an argument of 
Epstein [4,§7.2], which shows that given any finitely generated group H,, of automorphisms of 
any set V, if the orbit of each point in V has -< n points (n fixed), then H,: is finite. This is proved 
as follows. For each orbit Y c V, arbitrarily number its points Y = {yl . . . . .  y~,)}, where 
n(Y)<-n. For each orbit Y, this provides a homomorphism Hv~S(n(Y) )CS(n)  to the 
symmetry group S(n), by restricting to Y. Since H,, is finitely generated, there are only finitely 
many homomorphisms Hv~S(n) .  Therefore we can group the orbits {Y} into finitely many 
disjoint collections {Y}i, according to the homomorphism each orbit determines. Now each 
h E H,, is completely determined by its images {h,} in S(n), one image hi for each collection {Y},. 
That is, h is determined by a finite number of choices from the finite group S(n). Hence Hv is 
finite. This completes the proof of the Proposition. 

To complete this section, we offer an example to illuminate the earlier discussion on the 
stability of the limit, gg = direct limit {H,,}. This is an example of a codimension 2 foliation of a 
manifold, L x D 2, which has a compact leaf L = L  x0 with arbitrarily small invariant 
neighborhoods, such that the above limit is not stable when gg is the holonomy group of L. First, 
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we define three diffeomorphisms of the 2-disc D :, a,/3 and 3', each of which is radial-distance 
preserving (i.e. IIf(x)ll = Ilxll, for  each x E D~). For convenience, we regard S' as R' U =, and write 
D 2 = U {tS'10--- t - 1}. We leave it to the reader to make the following discussion smooth. Define 
a homeomorphism a,: S'--, S' by a,(=) = oo and a, (x)  = x/2, for x E R'. Let a: D 2--, D" be gotten 
by coning a, to the origin, that is, a (x )=  Ilxll., ,(xlllxtl), for x E DZ-0,  and a(0)=0.  Let /3,: 
S ' ~ S '  be a homeomorphism such that/3, = a, on [-1, 1] C R ' C  S', and /3, = identity on a 
neighborhood of = E S ', i.e.,/3,1R' has compact support. Let/3: D2~ D ~ be gotten by coning/3, 
to the origin. Finally, let 3',: S ' - - , S '  be a homeorphism such that for some interval [ -c ,  c], 
3',IS' - [ -  c, c] = identity, and in addition 13',(x)l < Ix l for x E ( -  c, c), x # 0. That is, 3,,: s '--,  s '  by 
3',(x) = t3",(x/t), for 0<  t-< 1, (here multiplication is in the R' structure on S') and define ,/: 
D 2 ~ D  2 by 3,ITS' = 3",, for 0<  t -< 1, and 3'(0) = 0. Hence, rather than defining 3' simply to be the 
cone on 3',, it is defined by a scaled coning process, so that the support of 3, looks like a cone in D" 
which has been pinched at the origin. 

of 7" 

Let H be the group of homeomorphisms of D 2 generated by a,/3 and 7. Then the group of 
germs at 0 is ~( = direct limit HIV,,  where I/, is the disc of radius t. This limit is not stable, for 

there is a sequence of homeomorphisms in H, which have identity germ, but which move points 
which lie arbitrarily close to 0. A sequence of such homeomorphisms is (a-"3'a")-'/3-"y/3", n --, =. 

To build a foliation with G as the holonomy group of some leaf L, let L be a closed manifold 
for which there is an epimorphism z c , ( L ) ~ H ,  e.g., L a 3-holed torus. On L × D z, construct a 
codimension 2 foliation, transverse to the D2's, by means of this homomorphism. Then the leaf 
L = L x 0 has holonomy group G. 

§5. THE MOVING LEAF PROPOSITION 

In this section M continues to be a smooth manifold-without-boundary which is foliated by 
continuously oriented compact submanifolds. For convenience we assume in addition that M is 
oriented, and hence that all of the holonomy is oriented. 

Let X, denote the set of all points x E M at which the volume function is not bounded, i.e., 
x.~ Xt iff there is no neighborhood of x in M on which the volume function is bounded. Then X, 
is a closed invariant subset of M, which Epstein has called the bad set. The basic question is 
whether X, = ft. We know at least that X, has no interior in M, since it can be expressed as a 
countable union of closed subsets, X, = O ~., (X, ~ vol-~(0, n]), each of which by the definition 
of X,, has no interior in M. If X, is compact and nonempty, the following proposition provides 
the data for the construction of a geometric current supported on X,, as described in §3. 
MOVING LEAF PROPOSITION. If X, is compact and nonempty, then there exists a sequence of 
generic leaves {L~} (-= leaves with trivial holonomy) which lie in M - X ,  such that 

(i) the L ' s  converge to X, and are homologous to each other near X,. Precisely stated: Given 
any neighborhood U of X,, there is an integer i such that for all ./, k > i, the leaves L~ and Lk lie in 
U and are homologus in U, and 

(ii) lim vol (L,) = ~. 

If Xt is noncompact (i.e. only closed in M), the Proposition fails. This is the key place where 
the proofs of Theorems 1 and 2 break down, in the case that X, is not compact. 

We note that the proof below shows that the L~'s may in fact be chosen as the integer-point 
images L~ = hi(L) of a homotopy of leaves h,: L - - , M - X , ,  0 -  < t < =  (which can even be an 
embedded family of leaves), where for each t, h,(L) is a generic leaf of M and h,(L) approaches 
X, as t ~ c .  
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Remarks. (Neither of which is used in this paper, but they are of independent interest.) 
1. This Proposition remains true in the absence of any orientation assumptions whatever. 

This is most easily proved by reducing the unoriented cases to the oriented case by taking covers, 
c.f. §§7,8. 

2. Although we have assumed in this paper that M and its foliation are smooth, the 
Proposition in fact holds for topological foliations of topological manifolds (where the volume 
functions is defined in the general manner of [4, §3]). The proof below adapts quite readily. 

Proo/of Proposition. Our goal is to construct an infinite path of generic leaves in some 
component of M - X,, such that the path of leaves approaches X, and the volumes of the leaves 
in the path are unbounded. 

The generic leaves of M - X, comprise an open dense subset G say, such that (M - X,) - G is 
a countable union of smooth submanifolds of codimension > 2. This is a consequence of the 
local boundedness of the volume function on M -  X,, the orientation hypothesis and the 
structure theorem of Ehresmann (see [4, Theorem 4.3]). In more detail: 

Suppose L is a leaf in M - X , .  By Proposition 4.1 III, the holonomy at L is finite. By 
assumption, the holonomy is orientation preserving, so by the structure theorem [ibid], the 
holonomy group can be identified with a finite subgroup of SO(k) acting on a disc D ~ transverse 
to the foliation at some point of L. Now, any nontrivial orientation preserving linear 
transformation of finite period has fixed point set of codimension ---2. Hence the set of leaves 
near L having nontrivial holonomy is a finite union of submanifolds having codimension >-- 2 in M. 
Thus the set of generic leaves in M -  X, has the properties stated above. 

From now on we argue assuming that M is compact. We leave it to the interested reader to 
make the simple changes necessary when only X, is assumed to be compact. 

Let {N,} be the (countable) collection of components of M -  X,. Recall that for each i, 
frontier N, C X,, hence N~ :7 X, is a compact invariant subset of M. The bulk of our proof is to 
show that for some i, vol IN, is unbounded. We should point out that if dim X, --- dim M - 2, then 
M - X, has only one component (assuming M is connected), and so this fact is a straightforward 
consequence of Proposition 4.1 I (of. the next few sentences). 

Let x E X, be a point of continuity of the restricted function vol IX, (Proposition 4.1 I). To 
establish the above unboundedness fact, we suppose conversely that for each i, vol IN, is 
bounded (with possibly varying bounds), and show that as a consequence the full holonomy 
group ~gx at x is trivial. This will imply that the volume function is continuous at x in M 
(Proposition 4.1 II), contradicting that x EX, .  Our argument is adapted from a proof of 
Montgomery[9], which in turn rests on a theorem of Newman[10]. 

To begin, let D ~ be a transverse open k-disc at x in M, so small that vol [(X, ~ clD ~) is 
continuous and therefore also bounded. Let [.f] be an element of the hoionomy group ~,, which 
we can take to be represented by an embedding .f: V--)D k, fixing x, of some open connected 
neighborhood V of x in D ~. Since vol IV ¢q X, is continuous, we have that [ = indentity on V n X, 
(Proposition 4.1 II). We will show that ]: = identity on V. 

FIG. 3. 
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It suffices to show that for each i, [ = identity on V O (N, U X,). (We emphasize that it does 
not suffice to show that for each i, [ = identity on a neighborhood of x in V N (N, O X,). To do 
this, we will use the fact, which is a consequence of the boundedness of vol I V O (N, U XI), that 
for each point y of V n (N, U X,) which is fixed by [, there is a neighborhood E of y in 
V O (N, U X,) and an integer p >- 1 such that [(E) = E and FIE = identity (Proposition 4.1 III; 
with "x" = y, "X"  = V n (N~ n X,), and "V"  = E). Having fixed i, define a new map .f,: V - , D  ~ 
by letting .~]V n (N~ U Xt) = .fl V n (N~ U X0 and letting ~IV - N, = identity. This is well-defined 
because the intersection of the two closed domains of definition lies in V NXI, where 
.f = identity. We claim that/~ = identity on V (hence f = identity on V O (N, U X0). For let A~ be 
the fixed point set of ~ in V, and let B, =c l ( in tA, )CA,  Then B,~0,  since V-(Nd UX,) is 
nonempty, by our hypotheses that vol IN, tO X, is bounded at x but vol I V is not. If B,¢ V, then 
there exists a point y in the frontier of B, in V. By the above remarks, f, has periodic germ at y, 
i.e. there exists an open neighborhood E of y in V such that.f~"l E = identity, for some p -> 1. Then 
[~ I E = identity, as a conseqeuence of Newman's theorem (which is nicely explained in [1]). Hence 
EIIB, contradicting that y ~ frontier of B, in V. Consequently, f = identity on V n (N, U Xt) and 
so the first part of the argument is complete. 

At this point we have established the existence of a component of M - X,, NI say, such that 
vol INt is not bounded. Hence there exists a point y E frN, C X~ such that vol Icl NI is not 
bounded at y. Let {y,} be a sequence of points in N1 converging to y such that vol L, --> oo, where L, 
is the leaf through y,. Clearly we can assume the L,'s are generic leaves, by our earlier remarks. 
We wish to choose an infinite path in the open subset of generic leaves G, of N~, say a: 
[0, ~c)-~G,, which pierces a subsequence of the y,'s, and which converges to X,. Recall that 
N~-G~ is a countable union of codimension ->2 submanifolds of NI, so that any path a: 
[0, o~) ~ N, (with image in N,) having the other properties, can be perturbed by an arbitrarily small 
homotopy to in addition lie in G,. We should point out that it may not be possible to choose any 
path a in N, which converges to y itself, as y may not be pathwise accessible from N,. 
Nevertheless, to get the path a in N, as asserted, involves only a simple argument with the ends 
of N,, which goes as follows. Recall that for any compact subset C of N,, the complement N t  - C 
has at most finitely many components which have noncompact closures in N,. So some 
subsequence of the y,'s must lie in one of these unbounded, path-connected components. Doing 
this refinement process for ever larger compact subsets C of Nt, selecting subsequences of 
subsequences of {y~}, and taking a final diagonal subsequence, one can construct a path a in 
N,, as claimed. 

Let L, denote the leaf through the point c~(t). The family of leaves L,, 0 -< t < 0% converges to 
X, in the sense stated in the Proposition, since X, has arbitrarily small invariant neighborhoods in 
M. This is a consequence of the fact that M -  X, contains arbitrarily large invariant subsets 
which are closed in M, by Proposition 4.1 III. This completes the proof of the Moving Leaf 
Proposition. 

§6. THE NATURAL FILTRATION OF THE BAD SET 

In this section we assume M is a smooth manifold-without-boundary (not necessarily 
compact), foliated by compact submanifolds which are oriented in a continuous manner. We wish 
to show that any geometric current C{V.~} (as defined in §2) which is supported on the bad set Xt, 
can be expressed in a more convenient manner via a measure v defined on the quotient space 
XI/J; of X, by its leaves.* In short, we aim for an expression of the following form, which is to 
hold for any compactly supported/-form to defined on M: 

(C{/z.}, to) = SLex,,~, (L, to)dr 

(L should be thought of both as a point and a leaf; recall that the left hand side is defined in §2). 
Unfortunately the quotient space Xt/J; may not be hausdorff, in which case the existence of 

the measure v is not so obvious. In brief, the reason we are able to find v and to write the above 
equation, is that the quotient X,[S~ can be expressed as a countable disjoint union of subsets 
which are locally compact metrizable. 

*All of the discussion in this section applies as well to any locally compact invariant subset X~ of M, not just the bad set. 
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First we give a simple technical lemma, which treats the case when Xt/J; is hausdorff (hence 
locally compact and metrizable; see e.g. [4, Theorem 4.1]). 

LEMMA. Suppose X is any locally compact invariant subset o[ M such that the restriction o[ the 
volume[unction to X is continuous, and suppose C{t~} is a geometric current supported on X. Then 
there is a nonnegative measure ~ induced on the (locally compact metrizable) quotient space X/J; 
with the property that the de Rham current Cv: Ac~(M) ~ R defined by 

(C~, to) = fL~x,, (L, to)du 

agrees with the current defined by C{#o}. 

Proof. In brief, the point is that X is a fiber bundle with fibers = leaves and base = X/J,  and 
there is a measure ~, naturally induced on the base. In detail, we argue that for any open 
transversal ff'~ C M, the restriction to ¢C N X of the quotient map ~r: X- - )X I~  is locally an open 
embedding, since the holonomy ~xlX is trivial at each x EX. Define a measure u on X/~  by 
requiring this restriction to be locally an isomorphism of the measure ~]( f f '~NX) with 
u[(l~ O X)I3;. This is well defined because of the translation invariance of the measures {it,,}. To 
show that the de Rham current Cv defined using u agrees with the current defined by C{#,}, it 
suffices to check agreement on the/-form to which is compactly supported in a single open chart 
~:~ × R' in M. Consider the following sequence of equalities. 

( C., to) = SL~x/s (L, to)dr 

= S, (L n (d/~ x R~)' to > dv 
~('~r~X)l~ 

= f~ .~  (x x R', to )d~,, 

= (c{~}, to). 

The first equality is the definition of C.; the second is simply the fact that to is supported on 
~.. x R'. The third equality is the key; it is a change of variables using the fact that the measure 
~,. on d/. is the pullback of the measure vI(ff,.nx)/~: by the quotient map ~'l: 
• ~ O X ~ ( ~  N X)/J;. The last equality is the definition of C{/~}. 

We wish to apply this Lemma to the bad set X,, but unfortunately the volume function may 
not be continous on X,. To circumvent this problem we employ Epstein's filtration {X~} of X, 
into a decreasing collection of closed subsets on whose successive differences the volume 
function is continuous[3, §6].* The filtration is indexed by the ordinals > I. It is defined as 
follows. Suppose that for each ordinal a less than some given ordinal/3 a collection of closed 
subsets {X~la </3} of X, has been defined. Then XB is defined according to one of the following 
two cases: if/3 is a limit ordinal let X~ = n ~<~X~, and if/3 is a successor ordinal, say/3 = a + I, 
let X~ = {x E X~I vol IX~ is not continuous at x}. (Note: this filtration commences in a different 
place than Epstein's, at X, instead of M. Hence the above sets {X~} may not coincide with 
Epstein's {B~}). 

For each/3 > a, X# is a closed nowhere dense subset of Xo (Proposition 4.1 I). Eventually 
X~ = I~, as all the points of X, are exhausted. Let 8 be the least ordinal for which X~ = ~. Then we 
note that 8 is a successor ordinal, for otherwise ~ = X~ = O {X.la < 8}, which violates the finite 
intersection property for compact sets. Furthermore, 8 is a countable ordinal. To see this, let o be 
some fixed countable basis for the topology of M. For each a < 8 there is a member V, ~ o such 
that V. O Xo # i~ and V. n Xo+, = I~. This assignment a ~ V~ is one-to-one. 

Using this countable filtration {X~} of the bad set X, we can obtain the desired alternative 
description of the geometric current C{/z~} supported on X,. 

Proposmon. Given a geometric current C{~,} supported on X,, there is a collection of 
measures {u~}, where each u~ is defined on the locally compact metrizable quotient 

• All subsequent discussion could also be carried out using the coarse Epstein filtration, determined by the local 
boundedness of the volume function instead of its continuity. This so is because the above Lemma also holds under the 
weaker assumption that the volume function is locally bounded on X, instead of continuous, by Proposition 4.1.III. 
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{(X~ -X.+t)/~}, such that the two associated de Rham currents C{/z.} and 2oC~1o: Ac'(M)--,R 
agree, where (as above) 

(C./~,, co) = fL~xo-x..o,~ (L, co)dva. 

Proof. For each cr and a define/z..~ =/~.IW. N (X~ - Xa+,), and note that/~. = 2./~ .... For 
each a, the collection of measures {/z~..} is translation invariant, and so this collection defines a 
geometric current C{/z..~}. Clearly as geometric currents, C{/z.} = E~C{/~..~}. For any given a, 
we know that vol IX~ - X~+, is continuous, and so the preceding lemma shows that the de Rham 
current defined by C{/x..~} is equal to C~., where v~ is the measure induced on (X~ -X~.t)/~;. 
Summing over a, the Proposition follows. 

Remark. It is illuminating to note another interpretation of the geometric current C{/z.} 
obtained by considering it as an/-dimensional real homology class. Each difference X~ - X~+, is 
a fiber bundle over its quotient (X~ -X.+,) /~,  since the holonomy is trivial. Assuming for the 
moment that X~ -X.+ ,  is connected, let L. be a leaf in X~ -X.+, ,  and recall that the homology 
class of L~ (in real (~ech homology/:L (X. - X~+,; R)) is independent of this choice. We have then 
that as homology classes in/~(X~; R), 

[C{/z,.}] = E~t.[Lo], 

(where t. = v.((X~ - X~+,)/5~)), since the evaluations of each side on closed /-forms agree. If 
X . -  X~+, is not connected but has countably many components, this same type of analysis 
holds; however if X~ - Xa÷, has uncountably many components, this analysis must be done using 
a (~ech type limiting process. 

We note that the above sort of homological equality also holds even if we use the coarse 
Epstein filtration {X~} on X, given by using the local boundedness of the volume function (c.f. 
earlier footnote). That is, if we filter X, by throwing away at each stage the points where the 
volume function is bounded (instead of continuous), obtaining {X~}, then the geometric current 
C{#~} can be expressed as a homology class in ffI,(X,, R) by 

[C{/x,,}] = X,s~[L~]. 

This is because (again assuming each X~ -X~+, is connected) the leaves of X~ -X~. ,  are all 
positive multiples of each other in homology. If X~-  X~+, is not connected, then the same 
comments as above, concerning the connectedness of X~-  X.+,, also apply here. 

§7. PROOF OF THEOREM 1 

Suppose the bad set is compact and nonempty, and suppose there exists a closed/-form, 
defined on some neighborhood of the bad set, whose integral on each leaf on the bad set is always 
positive. We shall apply the results established in the previous sections to get a contradiction. 

As already noted in §1, we can assume that M itself is oriented (and hence the foliation is 
transversally oriented), by taking a double cover if necessary. 

Let X, be the bad set and let co be the/-form. Choose a sequence {L,} of generic leaves of M 
approaching the bad set, with volumes going to infinity, as described in the Moving Leaf 

Proposition (§5). Let C{p.~} = lim l/njLj be the geometric current constructed in §3, where the 
j ~  

normalizing constants {nj} go to infinity because the volumes of the Lj's go to infinity. Then, using 
the fact that the Lfs  are homologous near the bad set and co is closed, we have that 

(C{/~}, co) = (Jim 1 L,, co) (definition of C{p~}) 

= l iml(Lj,  co) (see Proposition, §3) 
j ~  ni 

= lim constant = 0. 
j ~ x  n j  

On the other hand we can use the Proposition in §6 to write (C{tz~}, co) = 2~(Cv~, oJ). To establish 
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a contradiction, it suffices to show that for some a, (Cvo, to) > 0. According to Lemma C in §3, 
C{p.~} is a nontrivial geometric current (i.e./~,,(~,,) > 0 for some tr), so there is an a such that 
va((X,-X,+,) /~)>0.  But then clearly (C~o, to)>0, since the value (C~o, to) is obtained by 
integrating a positive continuous function (L, to) over the set (Xo - X,+O/J;, which has positive 
measure. This establishes the contradiction, proving Theorem 1. 

The first consequence of Theorem 1 (see §1) follows immediately from the existence of a 
closed/-form on M whose integral on each leaf is the euler characteristic of the leaf. This form is 
simply the euler form of the bundle of tangents to the leaves of the foliation. It restricts to the 
euler form of the tangent bundle to each individual leaf. For the second consequence of Theorem 
1, concerning foliations of kaehler manifolds, we note that the (l/2)-th power to t of the kaehler 
2-form to restricts to the volume form on the leaves, which are complex submanifolds. Thus for 
each leaf L we have (L, to ~) is positive, so that Theorem I applies. Note that, since to ~ is pointwise 
positive on leaves, a direct contradiction arises from the moving leaf proposition. 

§8. CODIMENSION TWO FOLIATIONS 

For foliations of compact 3-manifolds by circles Epstein[3] has demonstrated the existence 
of a bound on the length (= volume) of the circles. In this section we give a distillation of the 
ingredients in Epstein's proof which allows us to extend this theorem to codimension two 
foliations of compact manifolds of any dimension. This has also been done by Vogt. 

THEOREM 2. Suppose M is a smooth compact manifold which is smoothly/oliated by compact 
leaves of codimension 2. Then there is an upper bound on the volume of the leaves of the 
foliation. Consequently, all holonomy groups of the foliation are finite. 

We note that there are no orientation assumptions here at all. 
In brief, the point of the proof is that in the codimension 2 case, if everything is oriented and 

if the bad set is nonempty, then the homological assumption of Theorem 1 does in fact hold in a 
neighborhood of the bad set. Hence the bad set must be empty. This homology fact is 
established by a barehands construction of a 2-dimensional oriented surface in M, transverse to 
the foliation and closed in a neighborhood of the bad set, which intersects each leaf of the bad 
set. With the normal orientation this surface represents a nontrivial relative integral 2-cycle in 
M modulo the complement of the bad set. The real cohomological (Alexander) dual of this 
cycle is represented by the (m -2)-form to that we hypothesized in Theorem 1. 

The material in this section is independent of any of the preceding material on currents, 
but it does make use of the other material in §§4,5 and part of §6. 

As before we assume without loss of generality, by doubling M if necessary, that M has no 
boundary. Also we assume, by passing to a 4-fold cover if necessary, that everything is oriented 
(the leaves, the normal bundle and M itself). Continuing our previous notation, let Xt be the 
bad set of M, i.e., the compact set of leaves of M near which the volume function is not 
bounded. We wish to show that Xt = 0. Suppose instead that X~ # 0. Let {X,} be the Epstein 
decreasing filtration of X~ by compact saturated subsets, which is described in §6. The 
following proposition (for a = 1) provides the key ingredient for "showing that the bad set is 
empty; it will be proved by induction on decreasing a. 

TRANSVERSAL PROPOSITION. For each index a >-l there exists a smoothly embedded open 
2-manifold T, C M such that 

(i) T, is transverse to the foliation, 
(ii) T~ is a closed subset of some open neighborhood U, of X ,  in M (i.e., T~ is properly 

embedded in Ua), and 
(iii) T, has nonempty intersection with each leaf in X~. 

Suppose T, is such a transverse surface in M. Then T~ is oriented in a natural manner. Each 
leaf L lying in U, intersects Ta transversally in a finite number of points, and each intersection 
point is algebraically positive. So this number of geometric intersections is equal to the 
algebraic intersection number L .  Ta. 

Proof of Theorem 2 from the Transversal Proposition. Assuming that X, # 0, let T, be the 
transverse surface associated with X~, as promised by the Transversal Proposition. By the 
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Moving Leaf Proposition in §5, there is a sequence of leaves {L,} in UI, all representing the 
same integral homology class in UI, such that the leaves approach XI and their volumes 
increase without bound. From the homological considerations discussed above, the geometric 
intersection numbers # (Li O Tt) must all be the same. On the other hand, these numbers must 
become arbitrarily large as i--, ~, since the volumes of the L,'s go to infinity and therefore by 
Proposition 8.1 (III), they must pass more and more frequently through the transverse surface 
Tt. This contradiction establishes the Theorem. 

We note that our geometric current argument in earlier sections was expressly designed to 
take the place of this transversal intersection number argument, in the absence of a transverse 
manifold T~ lying near the bad set XI. 

Remark. The proof of the Transversal Proposition below actually shows the following: If M 
is a manifold (not necessarily compact) foliated by submanifolds of codimension 2 and if X is a 
closed nowhere dense invariant subset of M which is a union of compact leaves, then X is a 
Seifert fiber bundle, with leaves as fibers and base of dimension -< 1. Recall that a Seifert 
fibering of X is simply a foliation such that ~ [X is a finite group for each x E X (and hence a 
trivial group for all but a locally finite collection of leaves). 

For use in the proof of the Transversal Proposition, we introduce a function, called the 
intersection number function, which will play a role analogous to that of the volume function in 
earlier sections. 

Suppose T CM is any smoothly embedded transverse open 2-manifold (not necessarily 
closed in M, but closed in some open subset of M) e.g. as in the Transversal Proposition. If L 
is a compact leaf in M, then the intersection L O T is a discrete hence countable subset of T 
(but it may not be discrete, i.e. finite in M, if L n (cl T - T) ~ 13). Let numrL denote the (finite or 
countably infinite) number of intersection points. Thus we have a function num~: M --, Z+ U ~c = 
nonnegative integers U o, given by x ~ ~: (Lx O T). (We could if desired force this number to be 
finite, by working only with transverse surfaces {T} which are extendible in the sense that they 
are relatively compact open subsets of larger transverse surfaces. However this modification 
would save us no effort). 

The intersection number function behaves very much like the volume function, as the 
Proposition below shows. It would be most convenient if we could express the relation between 
these functions by saying that in some neighborhood of any given x E M, the quotient function 
vol/numr: M ~ ( 0 ,  oe) is continuous (even though the individual functions may not be con- 
tinuous). However, this may not be true if L~ O (cl T - T) # 13, or even if L~ O (cl T - T) ~ 13 
for points {y} in M arbitrarily close to x. This is the (only) subtle point to keep in mind when 
reading the following Proposition, whose statements parallel the statements of Proposition 4.1. 

PROPOSITION 8.1. (Properties of the intersection number [unction). Suppose M is a smooth 
manifold-without-boundary, smoothly foliated by compact submanifolds of codimension 2, with 
everything oriented. Suppose that T C M is any smoothly embedded transverse open 2-manifold 
(not necessarily closed in M), and suppose that X is any locally compact invariant subset of M. 
Let x E X be such that L~ O (cl T -  T) = 0. Then the restricted intersection number function 
numTIX: X->nonnegative integers U ~: has the following properties at x: 

I. numTIX is lower-semicontinuous at x, that is, for any y E X which is sufficiently close to x, 
num~L~ - numrL~. 

II. numTI x is continuous at xcc, vollX is continuous at x. 
III. numrlx is bounded at xc~vollX is bounded at x. 

Recall that the volume properties given in statements II and III have equivalent inter- 
pretations in terms of holonomy, c.f. Proposition 4.1. The proof of the above Proposition is 
straightforward, using the ideas of §4. 

Proof of the Transversal Proposition. In the Epstein filtration {X~} of the bad set X,, let 3' 
be the countable ordinal such that X~# 0 but X**~ = 0 (see §6). We prove the Proposition using 
downward induction on the indices {a} (starting with 3' + 1), by assuming the Proposition is true 
for some fl -< ~/+ I (and hence for each larger ordinal), and showing that it is true for some 
r v < f l .  
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Consider first the trivial case where 13 is a limit ordinal. Suppose that T~ is a transverse open 
2-manifold given by the Transversal Proposition for some neighborhood U~ of X~. The union 
of all leaves which intersect T~ is an open neighborhood of X~, and so assuming without loss 
that U~ lies in this neighborhood, we have that for each point x ~ Ua, the leaf L~ intersects T~. 
By definition X~ = O {X,.la < 13} is an intersection of compact sets, so there is an ordinal a </3 
such that X, C X~. The Proposition is established for a by taking T~ = T~ and U~ = U~. 

The remaining discussion is devoted to the case where /3 is a successor ordinal, say 
1 3 = a + 1 .  

There are three natural steps in the construction of To from To.,. They are: 
Step I. The separation step, which is patterned after [3, §10], using Weaver's Lemma in the 

same manner. 
Step II. The multiplying-up step, which is equally as easy as the analogous part of Epstein's 

proof, and 
Step III. The extension step, which plays a role similar to that of Epstein's Pasting Lemma. 
The details of these steps follow. For economy we will often write num, in place of numr., 

where * denotes an ordinal. 
Step I. Suppose that T.+, is a transverse 2-manifold in M satisfying the conclusion of the 

Proposition for some neighborhood V.+, of X.+,. In this step our goal is to show the existence 
of a small compact invariant neighborhood G of X~., in U..,  O X. such that G can be written 
as a finite disjoint union G = U;~,G, of compact invariant subsets, with the property that on 
the frontier in X. of each G,, call it F,, the intersection number function num.,~, is constant. 

As remarked in §6, X~+, has arbitrarily small invariant neighborhoods in X~, since the 
volume function is continuous on Xo -X, , . ,  (by definition). On any such sufficiently small open 
invariant neighborhood N of X~÷, lying in U.,., n X.. the function num.÷t is nonzero and finite 
valued. Furthermore it is continuous on N -  X.+,. Proceeding just as in Epstein, we choose a 
compact invariant neighborhood G of X,.., in N and consider the restricted function numo_,,lN 
near fr,,G-= the frontier of G in X., which is a compact invariant subset of N - X . ÷ , .  Since 
num..÷,lN is continuous at flaG, one can write fr.G = F, U . . .  U F, as a finite union of disjoint 
compact invariant subsets such that 

(i) for each i. ! -  < i -<r ,  there is a invariant neighborhood N~ of F~ in N such that 
num..,]N, = some constant, n, say, and 

(ii) the n,'s are all distinct. 
Following Epstein and Weaver we prove 

LEMMA. The E ' s  can be separated in G, that is, G can be expressed as a union G = 
G, U . . .  U G, of disjoint compact invariant subsets such that for each i, F~ C G, 

Proof. (derived from [19] and [3, §10]). The bulk of the argument below is to show that there 
is no component of G which intersects more than one distinct F,. Assuming for the moment 
that this is true, the proof is completed by the following standard point-set argument. Let Fj, Fk 
be two distinct F,'s. The preceding assumption says that any two points x E Fj and y E Fk lie in 
different components of G. Hence there is a separation of G, say G = U~ U U,, into disjoint 
open sets such that x E Ux and y E Uy. This is because in a compact metric space, each 
component is an intersection of open-closed sets[7, §42.II.3]. Now, one can argue as in the 
proof of the fact that a compact hausdorff space is normal, that there is a separation of G, say 
G = U~ U Uk, into disjoint open sets such that F~ C U~ and F~ C Uk. That is, F~ and Fk can be 
separated in G, and so from this the Lemma is easily deduced. 

To complete the proof of the Lemma, it remains to show that no component of G intersects 
more than one F,. This will be accomplished by appealing to a theorem of Sierpinski, which 
says that no compact connected metric space is a nontrivial countable union of disjoint closed 
nonempty subsets[7, §42.Ill.6]. For each integer n -> 1, define A. = {x ~ Glnum..,(x)-< n}, 
which is a closed invariant subset of G by the lower semicontinuity of num~÷,. Let C. be the 
union of the non-isolated leaves of An. C. is a closed invariant subset of A, with the property 
that every point of C. is a limit of other points of A., and also A. - C. is a countable union of 
leaves. Clearly A. C A,. ,  and C, C C,.,.  

CLAIM. C.~ is an open-closed subset o /C . . , .  
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Proof. We already know that C. is closed in C.., .  To show openness, suppose the contrary. 
Then there exists an x E C. O T.+, such that x is a limit point of (C~., - C.) n T~.,, and hence x 
is a limit point of ( A . . , -  A.)O T~.~. That is, x is a limit point of a sequence {xj} of distinct 
points in A.. ,  n T~÷, such that for each j, num.÷,(xj) = n + I. Also, x is the limit of a sequence 
of distinct points {y~} in A~ n T~.~. Without loss there exists m, 0 < m -< n, such that for each j, 
num~.,(yj) = m (but note that possibly num~÷,(x)< m; if we had that num~.,(x)= m, the 
following argument would be a bit simpler). Consider the closed set Zo - {xi} O {yj} O {x} and the 
union Z of all leaves passing through points of Zo, which is a closed set by the boundedness of 
the function numa., on Zo. This amounts to saying that the leaves L~, and L~, converge as sets 
to the leaf L~. We wish to find a holonomy germ h defined on a neighborhood V of x in T~., 
such that h has a certain fixed nontrivial period, say p > i, on a subsequence of points from 
{x~}, and at the same time h is fixed on the corresponding subsequence from {yj}. Such an h will 
violate Weaver's Lemma. To find h, we appeal to the observation of Epstein that the restricted 
holonomy group ~ [ Z  is finite (Proposition 4.1 III). Let D be a small open disc about x in T~.,, 
whose closure intersects L~ only in x. For j sufficiently large, the intersection L~, n D consists 
of ( n + l ) l n u m ~ . , ( x )  (=nx)  points, and the intersection L~j N D consists of m/num~+t(x) 
(= n¢ < n,,) points. For each j sufficiently large, we can find a holonomy map h~ such that 
hj(xj) ~ xj but h~(y~) = yj. (Argue thus. Let L~, n D = {xj.~]l -< k -< n×} be the orbit of xj = xj.,, and 
let L~, n D = {y~.~]l -< l -< ny} be the orbit of yj = yj.,. For each k, let gk be a holonomy map such 
that gk(xj.,) = xj.~. Then there must be two distinct indices ko, k, such that g~(y~.,) = g~,(yj.,). Let 
h~ = gL'(g~o). By restricting to a subsequence, we can assume that there is some fixed p > 1 such that 
each hj has period p on xj. Finally, by restricting to a further subsequence if necessary, we can assume 
the hj's coincide, i.e., they are all the same element, ho say, of A°. I Z, because ~ ]Z is finite. The desired 
h is then any holonomy element of ~ whose restriction to Z is ho. (The interested reader may find it 
more satisfying to combine all of the above arguments directly with those of Proposition 4.1 III, to 
come up with a more economical proof). This completes the Claim. 

To complete the proof of the Lemma. we argue as in Weaver, using the Claim to express G 
as a countable union of disjoint closed subsets, G - - O ~ = , ( C . + , - C . ) U  leaves in ( G -  
U ~=,C.). By (i) above, no two distinct Fj and Fk intersect the same member of this countable 
collection, since num~.,(Fj) # num~+,(Fk). Thus, no component of G can intersect both F~ and 
Fk, as a consequence of the theorem of Sierpinski mentioned above. This completes the proof 
of the Lemma. 

Step II. In this step we alter the transverse surface T~+, to arrange that the n,'s of Step I 
become equal. We do this by choosing some open neighborhood of G O Ta+, in T~+l and then 
taking multiple copies of the various components of this neighborhood. Stating our goal 
precisely (continuing the notation of the previous step), we will show that there exists a smooth 
transverse surface To in M satisfying the conditions of the Transversal Proposition (with G in 
place of X.), such that numo is constant on some neighborhood of the frontier frog in X~. 

Let I=, and G,, 1 -< i -< r, be the compact saturated subsets of G described in Step I. For each 
i, let Uo+,., be a neighborhood of G, in U.+l such that the U~.,.,'s are disjoint, and define 
To+,., = T~., n U~÷,.,. Letting n be the product of the n,'s, we  wish to multiply up each To.,., by 
the integer n/n, to produce a new transverse surface T.+,., whose intersection number function 
has the constant value n near F, in X~. The union of the 7L+,.,'s is the desired To. 

The multiplying up is accomplished by using the fact that the normal bundle of each T~+,., in 
M is trivial (see the next paragraph). We can construct the normal bundle so that the fibers lie 
in the leaves of M. Regarding T~+I., as the zero section of the normal bundle, let T..,., be the 
union of n/n, nearby disjoint cross sections. We can ensure that i"..,., is a closed subset of 
Uo+~., by choosing the sections to taper down sufficiently rapidly to T~÷,., as they approach the 
"boundary" cl T~÷,.,- T~.,.,. i"~.,., is transverse to the foliation, by construction. Consequently 
the union Tc = U L,T~÷,., satisfies the conditions of the Transversal Proposition, for G in 
place of Xa, as claimed. 

The triviality of the normal bundle of To.,., follows because the bundle is oriented and its 
base T~+,.,, being an open 2-manifold, has the homotopy type of a l-complex (possibly infinite). 
Here we point out a variation of our argument which obviates this general fact. Since G, has no 
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interior in M, and consequently dim G, n T..I.,-< 1, we can triangulate To.,., so that the 
barycenters of the 2-simplexes do not lie in G,. Letting T'÷I.~ denote T.+~., minus the 
barycenters, clearly T'+,.~ has the homotopy type of a l-complex, namely, the l-skeleton of 
Ta.,.,. Now T~'+~., can be used in place of T.+~., in the previous discussion. 

Step III. This is the extension step, and it begins with the compact invariant neighborhood G 
of Xo+~ in Xa and its associated transverse surface TG constructed in Steps I and II. We wish to 
extend To over the remainder of X~, i.e. over Ho --- cI(X~ - G),to get a transverse suface Ta for X~. In 
brief, the reasons why we can do this are (1) Ha is a fiber bundle with l-dimensional base (since vol [Ha 
is continuous and H~ has no interior in M), and (2) near Ha N G, the surface Ta provides n distinct 
cross sections of this bundle. So in effect, in order to extend the surface To, we must extend the n 
distinct cross sections. To do this simpleminded argument rigorously, we will do the extension 
process a bit at a time, making use of the following lemma. 

BAsic EXTENSION LEMMA. Suppose G is a compact invariant neighborhood of X.+~ in X., with 
associated transverse surface To satisfying the properties of the Transversal Proposition (with G 
in place of X o), and having the additional feature that its intersection number function numa is 
constant on some neighborhood in X. of fr.G(=frontier of G in X.). Suppose H is a compact 
invariant subset of X~ - Xa+, which lies su~iciently close to a single leaf so that H has natural 
product structure, in the precise sense described below. Then one can extend a neighborhood of 
G n To in To to a transverse surface T~uu for G U H in M, so that T~uu satisfies the conditions 
of the Transversal Proposition (with G U H in place of Xa), and in addition the intersection 
number numGun is constant on some neighborhood of fr~(G U H) in X~ (in fact constant on 
some neighborhood of (froG) U H in Xo). 

The precise sense in which the invariant set H is to have trivial product structure is this (cf. 
§4): H must lie in some open tubular neighborhood W of some leaf Lo of H, which has smooth 
bundle retraction p: W ~ L o  such that the open 2-disc fibers {p-~(x)ix ~ Lo} are transverse to 
the foliation, and such that each leaf L in H is projected diffeomorphically onto Lo by p. Let 
* ~ Lo be a basepoint and let D .  = p-~(*). Then there is a natural product structure on H given 
by d x p: H -~(H n D,) x Lo, where d: H ~ H n D .  is defined by d(y) = L, tq D.  for y ~ H. In 
the proof we will refer to such an H as being submersion-trivial. 

Given the Basic Extension Lemma, one can get the full extension To of To over X~ by first 
choosing a finite collection {//jll-<j-< s} of compact invariant submersion-trivial subsets of 
X~-X~+, such that Xa = G U(U;.,Hj).  Then one can apply the Basic Extension Lemma 
successively to the pairs G and H~, then G U Ht and/-/2, then G U Hi U H2 and H~, etc . . . . .  until one 
has constructed the transverse surface T, for X~. So it remains to prove the Lemma. 

Proof of the Basic Extension Lemma. As As we have already remarked, the key to the 
extension process is the fact that the locally compact metric quotient space (X~ -X.+~)/leaves 
has dimension -< 1. For these dimension theory facts we refer the reader to [6]. 

By enlarging G an arbitrarily small amount, we can assume that in addition to the already 
stated properties, we have that the dimension of the quotient (fr.G)/leaves is -< 0, i.e., each leaf 
in froG has arbitrarily small open-closed (hence invariant) neighborhoods in fr.G. Also, for 
convenience we replace H by cl(H - G), so that we can assume G tq H C frog and the quotient 
(G N H)/leaves is 0-dimensional. 

Let p: W --, Lo be the disc bundle retraction of a neighborhood W of H in M onto a leaf Lo 
of H, as hypothesized above. Letting z, . . . . .  z, be n distinct points in Lo, let 
D~ = p-~(z,) denote the 2-disc fiber through z,. For each leaf L in G N H, let WL be an open 
tubular neighborhood which is sufficiently small to have the following two properties (where n 
is the constant num~(fraG)): 

(i) To n w ,  has exactly n components (each a 2-disc), denoted TI . . . . .  11"., each intersecting 
L in a single point, and 

(ii) given any compact invariant subset S of G n H lying in WL, and given any neighborhood 
U of S in M, there is a leaf-invariant diffeomorphism h: M ~ M, fixed off of U, such that h 
takes the germs of D, . . . . .  D. at S onto the germs of T, . . . . .  T~ at S (not necessarily in order 
preserving fashion; this merely says that for each D~ there is a neighborhood V, of S Iq D~ in D~ 
such that h(V~)C Tk, for some k = k(i), and hence h(V~) is a neighborhood of S n T~ in Tk). 
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This second property is established by using a simple holonomy translation process; we leave 
details to the reader. 

Applying the 0-dimensionality of the quotient (G f~ H)/ leaves ,  there is a separation G N H = 
S, U . . .  t.J Sq of G t3 H into a finite number of disjoint  compact  invariant subsets, such that 
each Sj lies in a tubular neighborhood W~(= WL,) of some leaf Lj in G tq H, having the two 
properties described in the preceding paragraph. Thus, we can choose disjoint neighborhoods 
U, . . . . .  Uq of S, . . . . .  S,  in M, together with leaf-invariant dit teomorphisms ht . . . . .  h, of M, 
each supported in the corresponding Ut, and each taking germs of D~ . . . . .  D, at Sj onto germs 
of T, . . . . .  T, at S~. Let  V~j, for 1 -< i - n and 1 -< ] -< q, denote a neighborhood of Sj N D, in D, 
such that hj(V,j) lies in one of the Tk's. Define h: M ~ M  to be the composition of the h~'s, 
which may be taken in any order as their supports are disjoint. Let  V = tJ ,N~J C D = t.J 7-,/9,. 
Choose open neighborhoods N~ of G and NH of H in M, so small that h(D ¢qNu)(1 

( T ~ N N ~ ) = h ( V f 3 N , ) N N ~  and also h ( V N N H ) N N ~  lies in a compact  subset of h(V). 
Finally, define T~uH = (TG Iq No)t.J h (D f3 NH). This is the desired transverse surface for the 
conclusion of the Basic Extension Lemma. 
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