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A COUNTEREXAMPLE
TO THE PERIODIC ORBIT CONJECTURE

‘ by Dennis SULLIVAN

We will construct a flow on a compact five-manifold so that every orbit is periodic bui the
length of orbits is unbounded. The construction is based on the well known deformation
(through immersed curves) on the two-dimensional sphere S? which introduces two
twists or kinks:

By repeating this operation over and over we can produce a moving curve ¥,
on the two-sphere 5% whose geodesic curvature goes uniformly to infinity:

For fixed time ¢ we consider all the congruent versions y{ of v, obtained by rotating
the sphere by elements o of SO,. We add to the curve v, a vector ficld of constant
length 1/t which uniformly turns exactly once around the tangent vector as the point
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6 DENNIS SULLIVAN

traces the curve with a good parameter. We also consider the unit tangent vector
field and we have after rotating a four-dimensional family of © curves of clocks *” on 3%

The family being parametrized by ¢ and «€80;.

Now consider the i-dimensional family of four-manifolds

M, ={(x, 2,, 1) : x€S2, v, vyctangent space of x, [o|=1, |vs| =1/t}.

For 1<#<oo, the M, fill up a deleted tubular neighborhood of the unit tangent
bundle of S2

and W=Tu . <l,,J< M, is in a natural way a compact five-manifold with boundary, with M

at a uniform distance of 1/t from T.

The clock siructure on v, and its rotates by SO; give a three-dimensional family
of curves y* in M, (1<i<oo, aeS0y). The fibres of the natural projection TS
give a family of curves in T. We claim all these curves define the promised 1-dimensional
foliation of W (which one can double to hide the boundary if that is desired (see Addendae 1
and g)). There are two points to check.

(i) All the v¢ with £ fixed and « varying in 8O, exactly fill M, by embedded circles

5 because each clock (x, 7y, v,) occurs exactly once among the family of curves vy.

(i) As t approaches infinity the tangent directions of v approach the tangent

directions of the curves in T. For if we consider tracing a small portion of v, for ¢ large
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A COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE 7

we see the two hands of the clock turning very rapidly (essentially together), and that
portion of yf courses rapidly around a small toroidal tube about a curve of T going
uniformly once around the 1/¢ direction and uniformly once around the unit direction
in each circuit. The 8% component of the unit vector field defined by our curves is of

ing?

the order of the reciprocal curvature # ', With an appropriatc time parameter we
easily have then a Lipschitz vector field.

The Lipschitz continuity implies we can choose foliation coordinates which are
smooth in the leaf direction and Lipschitz continuous in the transverse direction. I see
no reason why the example cannot be made G° (see Addendum 1).

Of course the lengths of the curves vf are unbounded near T. In fact as ¢—>c0
each curve ¥ accumulates at every point of the three-dimensional submanifold T of W.

Put differently (scc Addendum 4) the example can be viewed as a one parameter
family of S! fibrations which passes (continuously in the space of foliations with all leaves
compact) to an inequivalent fibration.

Long orbit
near T

Hisiorical Note and Further Problems:

The structure of this example—namely a flow on a five-dimensional neighborhood
of RP* (—=T=80,) fibred by circles in which nearby orbits are longer and longer as
we come closer and closer to RP? (the * bad set *) was almost forced in an interesting
way by the thoughts, ideas, and theorems of various people.




8 DENNIS SULLIVAN

First of all the surprisingly deep argument in David Epstein’s proof [E1] that
no such example exists in dimension three is based at the core on the fact that the “ bad
set ”’ is at most two dimensional and can be treated like a trivial fibration in circles,
If the “bad set ” were 5% (or RP?) fibred by Hopf circles Epstein’s argument would
break down very clearly because in this case there would be no cross-section (even
homologically). )

Secondly, Bob Edwards made a very suggestive step towards a possible counter-
example by recalling there is an isotopy of a curve in 5% which makes it arbitrarily
long on the one hand and arbitrarily close tangentially speaking to the Hopf fibres on
the other hand, Last year at IHES he posed the strategic question—does the existence
of such an isotopy in a fibration imply that the fibre is homologous to zero (as in the
Hopf fibration of S% or RP%)?

It turned out this question could be dealt with very naturally by the picture of
a geometric or foliation current developed in Ruelle-Sullivan [RS]. The idea is that
a moving Edwards’ submanifold, thought of as a real cycle or current (after normalization
to total mass 1 by dividing by the length), represents a homology class moving to zero.
On the other hand the limiting current at infinite time is a smear of fibres parametrized
by a mass distribution in the base, This current is clearly homologous to a real multiple
of one fibre which is then homologous to zero. This is the argument which evolved
into the theorem in Edwards-Millet-Sullivan [EMS] stating that there is an upper
bound on the volume of leaves if the homology classes of leaves () lie in an open half
space of the real homology space (!). This homology condition negates the possibility
of a “bad set” looking like a fibration whose fibre is homologous to zero.

The moving immersed curve on S? which gains more and more coils provides
by lifting to the unit tangent bundle (which is closely related to the Hopf fibration of $3)
an intrinsic picture of an Edwards curve, which was modified by Thurston to find a
real analytic example (Addendum 2).

The truth or falsity of the general compact leaf conjecture (¥) was always in a
precarious balance, There is a ““ proof > which fails if nearby leaves separate too quickly:

P r
—_—
L -

r

a strong inequality of the form d, <d,log(a+&r) (being true on the “ average »’) is
needed in that argument, but it seemed tantalizingly close anyway. This argument
evolving from a discussion with Grauert does lead to positive results under certain

(*) Of the bad set,
(*) Namely, if all leaves are compact is the volume of leaves locally bounded.,
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geometric assumptions, These were obtained already in the Warwick thesis of
A. W. Wadsley [W].

An interesting open question is the influence of analyticity, either real or complex,
on the structure of foliations with compact leaves. If the ambient manifold is Kaehler
and the foliation is complex analytic the theorem in [EMS] implies the result. The
general complex analytic case is unknown and perhaps more likely than the real analytic
case (see the real analytic example of Thurston in Addendum 2 and discussion of
Problems (Addendum 5}).

The beautiful structure of the * bad set  as analysed by Epstein’s three-dimensional
argument and the interplay with the interesting theorems of Newman [D] and Mont-
gomery [M] as described in [E2] and [Mi] and [NW] are no longer hypothetical in
compact manifolds, and one can assume that this awesome geometry can really occur
in foliations with compact leaves. Then Epstein’s original work can be the beginning
of a classification of the singularities or bad sets of these foliations. The question of
how much of the * Epstein-Ehresmann-Reeb hierarchy
a new problem.

can occur as “ bad set” is

Addendum 1) (%}

Kuiper found a way to coordinatize the example so that it is clearly G®. One
imagines two half-circles pinned at antipodal points, one stationary and the other
rotating on the surface of the sphere. A small wheel moves tangent to the sphere with
center traversing the two half-circles periodically according to a fixed G parametrization.
A point on the rim of the wheel will trace out the immersed closed curve vy, on the
sphere if we choose the rotation of the moving half circle appropriately, If ¢ is the
angular velocity of the wheel of radius ¢~* a C® cxample will result. The calculations
are facilitated by developing an equatorial strip onto a flat strip.

lYAYAYAYAI%kYﬁ‘ﬁ}

He also remarked we can put the example on SP=(S3x D% u (S'x D4,

(1) These are remarks added after an unannotated version of the first part was circulated in mimeographed form,
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10 DENNIS SULLIVAN

Addendam 2)

Thurston transformed the example in a beautiful way to make it real analytic.
First he considers the constant curvature flow on T the bundle of unit tangent vectors
on the torus. One can think of unit tangent vectors flowing around circles of radius r
in the plane with velocity v (and then divide by the lattice). This flow is lifted to a
certain four manifold M fibred by circles over T. From the two parameter family of
flows on M*=M we extract a periodic one parameter family to yield the example
on MxS! On M which is real analytic there is an analytic 1-form = so that y restricted
to each fibre.of M—T is the uniform 1-form on S and dv is the pulled up area form
from the torus via M—>T->torus. The flow on T is lifted to M by specifying the
y-component.

If a small curve in T would be lifted to M by keeping the y-component of its
tangent vector zero, the lifted curve would have two points on the fibre a distance apart

Lo/

equal to area of the projected curve on the torus. Since we want closed orbits we let
area wrt o . . .

—_——= =—, and then we have just the right vertical

period emrfe 2

compensation, In coordinates let X denote the unit vector field on T’ corresponding

to the geodesic flow, let Y denote the vertical vector field in the fibring “I'— torus, then

the vector field Z{v, r) on M given by the conditions:

the v-component be

a) the projection of Z in T is vX—|—£Y
T

.
b) v evaluated on Z 1s —T,
2

will cover the constant curvature flow on T and have closed orbits for v and r positive
and finite, Thurston introduces a single analytic parameter # by x=arc cotg r setting
(v, vjr, or2) ={sin 2u, 2 sin® 4, cos® ). For each u one obtains a non-zero analytic vector
field on M. The total system on M x{ueS'} is real analytic, all orbits are periodic
(one checks directly the exceptional values of u), and the periods are unbounded
near u=nm.

For definiteness Thurston’s flow is on the 5-manifold R8 mod(I'XZ xXZ) where I

10




A COUNTEREXAMPLE TO THE PERIODIC ORBIT CONJECTURE It

I % 2
are the integral matrices among {0 1 3|, %, », # the first g-variables of R5, Z X7 is
0 0 1

the group generated by unit translations on the fourth and fifth variables of R5. On
N=R3mod I" we have the 1-form v defined by the (invariant by I') formula n=dz— xdy.
N fibres over the torus and M=NxS8' fibres over T=(torus)xS' and this defines 7
on M* (whose extra twisted circle (over T) replaces the second hand of the clock in
the first example).

Addendum 3)

Edwards pointed out a simple general construction—which clarifies the first
example. Let G be a compact Lie group which is fibred by circles. Let v, :8'—+>G
be a smooth family of immersions 0<{¢<(1 so that the tangent directions of y, approach
those of the fibring of G as ¢—o.

Then we can fill up D2XG by circles using
¢) the fibring of G for oxG
b) the translates of the graph of v, on (the circle of radius £)x G, o<i<1.

If the approach of v, to the tangent direction of the fibring is fast enough we
obtain a foliation with compact leaves. If the length of vy, is unbounded we have
unbounded leaves.

A variant of this is to fill up (G x8Y), (—1<<¢<{1), #+0 by the translates of the
graph of v, as in 5) but fill up (G xS'), by the fibring of G product the point foliation
of 8. We can identify (Gx8Y)_, and (G xS", to obtain an example on G xS8tx S
with a bad set at (Gx8Y,.

In this form the relation between the first example and the analytic example is
more transparent. In Thurston’s example on NxS'x8!', G is replaced by the
g~-dimensional real nilpotent Lie group divided by a discrete subgroup, The bad set
is (NxS8Y, and (NxS8Y,..

Addendum 4)

Another feature of examples in this circular form (see Addendum 3g) is that we
see an isotopy of the total space of a circle fibration so that all the fibres grow arbitrarily
long and yet become tangent to a new circle fibration.

This question of one fibration moving continuously (through the space of foliations)
to an inequivalent fibration has been studied recently by Rosenberg and Langevin (to
appear), They rule out such a phenomenon (using other work of Thurston) if
H,(fibre, R)=o0. Of course in the example we just described the fibre is St The
theorem in [EMS] rules out this phenomenon if the fibre is not homologous to zero
in the total space (for the value of the parameter where unboundedness occurs).

11




12 DENNIS SULLIVAN

Addendum 5 (Problems)

These examples bring three problems into sharp focus:

a) codimension three case;
b) complex analytic case;
¢) the structure of infinities of the volume function.

We discuss these in turn.

Note. — In codimension 2 case there are no such examples in general ([FMS]
or [Vogt]) by generalyzing Epstein’s argument.

Codimension 3. — The construction of a flow example in dimension 4 would require
a new idea. One can rule out numerons candidates for bad sets B by special arguments:

a) B=S8'x1/(x, 0)~{2x,1) (1. This is the canonical example causing trouble
in the « Weaver step” of the codimension two proof [EMS]. This bad set can be
ruled out by the idea that the generic orbit y is central in =,(neighborhood of B).

Now v must go to zero under the natural map mB->HB. It then lifts to the
corresponding cyclic cover B. Here because vy is wrapping around geometrically we
again find a contradiction to the center statement. Note m,B—{x,y: xpx~ ==y},

b} The bad set B cannot be a manifold in dimension 4.

Case 1) : if dim B—e, the homological argument of [EMS] mentioned above works to
rule out this bad set.

Case ii} : if dim B==3, B is fibred by circles with base M2 If M248%, the above center
type argument leads to a contradiction (due to Epstein and Hirsch). If M=S§?
we can assume B—S? with the Hopf fibration (*). Then we can get a contradiction
using Seifert’s stability [S] — which asserts a vector field near the THopf vector
field has a closed orbit near a Hopf fibre. This contradicts the infinite wrapping
around of nearby generic orbits (idea of Hirsch and Epstein).

(There is a possible imprecision herc in the B=S$® case. If the boundaries of
invariant neighborhoods wobble too much we may not achieve the Seifert hypothesis.
However, an example based on this wobbling would be difficult to construct.)

Complex analytic case:

We have remarked above that real analytic examples exist and no complex analytic
examples exist in a Kaehler manifold. Thurston’s real analytic example has the further
beauty of being locally like affine space filled with individually homogeneous helices.

{1) Namely, B is the mapping torus of the degrce two map of ST to itself,
(%) Ken Millet informs me Seifert fibrations succumb to the same Seifert stability argument.

12
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It seems reasonable to suppose there might be a complex analytic example even in this
restricted affine realm. (The geometric-topological propetties of these affine manifolds
is very much unknown.)

It is possible to move an analytic submanifold T=S8'xS! by a holomorphic vector

ey

1 %z 2
field on M3=|o0 1 2’ |/ (discrete group) so that the volume of T goes to infinity
0 0 1

(Deligne). Here we have an affine structure and the movement is geometrically like
that of translating a complex line in C3.

We only obtain a ¢ multi-valued foliation * by this example. The question of
a complex analytic example is open. Holmann has a pretty theorem ruling out complex
analytic examples on a compact manifold M whose leaves are given by a holomorphic
vector field—mnamely an action M xG-—>M. The proof is as follows:

a) Gonsider the pull back of the diagonal under the graph of the action
MxC—- MxM.

b) This C-analytic set projects properly to G and defines a C-analytic subset of G
(by the Remmert proper mapping theorem},

¢) This subset misses a neighborhood of zero in C (because we have a foliation
and periods can’t be arbitrarily small) and is therefore discrete. Q .E.D.

See [Hi] and [Hz] for more information on these questions.

Hierarchy:

Many questions can be put about the structure of the bad set in these examples.

(i) Is the natural filtration always finite?

(i) What sort of closed sets occur?

(iii} Can a “ Thom stratification ” of the leaf space be achieved after allowing
for the non-Hausdorffness.

For a related construction (repairing the non-Hausdorfiness of leafl spaces) see
Williams branched manifolds in LH.E.S. Publications, n° 43.
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