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THE HOMOLOGY THEORY OF THE CLOSED
GEODESIC PROBLEM

MICHELINE VIGUE-POIRRIER & DENNIS SULLIVAN

The problem—does every closed Riemannian manifold of dimension greater
than one have infinitely many geometrically distinct periodic geodesies—has
received much attention. An affirmative answer is easy to obtain if the funda-
mental group of the manifold has infinitely many conjugacy classes, (up to
powers). One merely needs to look at the closed curve representations with
minimal length.

In this paper we consider the opposite case of a finite fundamental group and
show by using algebraic calculations and the work of Gromoll-Meyer [2] that
the answer is again affirmative if the real cohomology ring of the manifold or
any of its covers requires at least two generators.

The calculations are based on a method of the second author sketched in [6],
and he wishes to acknowledge the motivation provided by conversations with
Gromoll in 1967 who pointed out the surprising fact that the available tech-
niques of algebraic topology loop spaces, spectral sequences, and so forth
seemed inadequate to handle the "rational problem" of calculating the Betti
numbers of the space of all closed curves on a manifold. He also acknowledges
the help given by John Morgan in understanding what goes on here.

The Gromoll-Meyer theorem which uses nongeneric Morse theory asserts
the following. Let Λ(M) denote the space of all maps of the circle S1 into M
(not based). Then there are infinitely many geometrically distinct periodic
geodesies in any metric on M // the Betti numbers of Λ(M) are unbounded.
(The round 2-sphere shows the condition is not actually necessary.)

In [6] a description of the minimal model of Λ{M) is given in terms of the
minimal model of M, and is valid if, for instance, M is simply connected.
This gives an explicit algorithm for calculating the Betti numbers of Λ(M).
This algorithm yields the fact that the Betti numbers of Λ(M) are always non-
zero in an infinite number of dimensions (which can be taken to lie in an
arithmetic sequence.)

We explicate and extend this study of Λ(M) here by
(i) giving the description and proof of the algorithm for the homology

when πxM = {e}9 and by
(ii) showing that the Betti numbers of Λ(M) are unbounded if and only if
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the real cohomology ring of M requires at least two generators.
Thus the question of infinitely many geodesies is still open when either
(i) π^M) is infinite but has only finitely many conjugacy classes (up to

powers), or

(ii) πxM is finite but the real cohomology of the universal cover is of the
form

{l,x,x\x\ '",xn} with xn+ι = 0;

for example, spheres and projective spaces have these properties.
In the latter case, Klingenberg [4] claim the conjecture for the generic

metric, and we include a specific calculation of the rational cohomology ring
of A(M) for possible use in a further Morse study for the special metric.

Remark on covers. If M —> M is a finite regular cover, then the cohomology
ring of M is isomorphic to the subring of H*M which is fixed by the finite
group of deck transformations. If H*(M) has one generator an easy argument
shows H*M has one generator. Thus, if πxM is finite the cohomology ring of
M or one of its covers requires two generators if and only if this is so for the
universal cover.

Also an easy geometric argument shows the property of having infinitely
many distinct periodic geodesies is shared by a manifold and its finite covers.
Thus in the study of the finite πλ case in the calculations below we may actually
assume πλM = {e} and the cohomology ring requires at least two generators.
We will see that the Betti numbers of Λ(M) are unbounded and the asserted
theorem will follow.

The description of the space of all closed curves on M. In [6] and [7] an
algebraic description of homotopy problems via differential algebras and differ-
ential forms was given. The nature of this description is such that if a pro-
ferred formula for Λ(M) has the correct algebraic properties it must be correct.
This method works here and in other contexts as well, for example in the study
of Gelfand-Fuks cohomology [7].

To each simply connected space M (or even a nonsimply connected space
of nilpotent homotopy type) the theory associates (see [6], [7], [1]) a special
differential algebra over Q (or R) which describes its rational (or real) homo-
topy type, [8]. The cohomology of this special differential algebra, called the
minimal model of M, is the cohomology of M, and the generators of the alge-
bra (which is free of relations besides graded commutativity) give a dual basis
of the rational homotopy groups of M. If X is any space, the homotopy classes
of maps of X into the rational homotopy type MQ of M, [8], is in one to one
correspondence with tho homotopy classes of maps of the minimal model of M
into the rational de Rham complex of X. By a homotopy between two maps

/ H
of differential graded algebras s/ ^ & we mean a dga map j / > J*(ί, at)

g
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where &(t, dt) means J* with a variable t adjoined in degree zero and dt is its
differential in degree one, and / and g are obtained by composing H with the
two evaluations J'O, dt) zX 38, obtained by setting t = 0, dt = 0 and t = 1,
dt = 0 see [1]. In the statement about maps the forms on X may be replaced
by any other dga which maps to the forms by a map inducing an isomorphism
on cohomology. If X is nilpotent the minimal model of X itself is one such
dga.

Now consider Λ(M) the space of all maps of the circle into M. A map / of
an arbitrary space K into A(M) is the same as a map / of K x Sι into M. In
fact we have a universal map

Λ(M) x S1 > M

and a commutative diagram determining this correspondence between / and /:

Λ(M) X S1-^—Af

K x Sι

A correct formula for the minimal model of Λ(M) will be given by the dga
which bears the analogous relation to Jl, the minimal model of M. In fact,

we look for a dga ΛJl and a universal dga map Jl > ΛJHJζ) (where **/(£)
means adjoining a closed one-dimensional generator to the dga jtf) so that the
universal property expressed by

X arbitrary

is satisfied. That is, dga maps Jt > Jf(ξ) correspond to dga maps Λ(J?) >
Jf in a one to one fashion, the connection being provided by the commutative
diagram.

We proceed as follows. If Jl is the free commutative algebra Λ{xx, x2, d)
on x19 x2, - with differential d, let ΛJί have generators JC1? x1? x2, x29

where dim xt = dim xt — 1. Here it is convenient that Jl is simply connected
and has no generators in degree one, in which case more discussion is required
[9]. Note that the symbol "A" is used in three distinct ways.

The universal map Jl > Λ(^)(ξ) is defined by xt -> * t + f jcc. We must
define d in Λ{Jl) so that u is a dga map. Notice that if x —> x + ξx and y —•
y + £y, then
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xy-+(x + ξχ) (y + ξy) = xy + ξ(χy + (-1)1*1^) ,

where \x\ = άimx. So x -> coefficient of ξ in u(x) defines a derivation

ΛJt of degree minus one over the natural inclusion Jt c ΛJt.
If we write u in the form

x-*x + ξ i(x) ,

then dx -^ dx + ξ-i(dx) and for u to commute with d we must have

dx + ξ-ί(dx) = d(x + £•/(*)) .

This is equivalent to the two equations:

dx — dx ,

i (dx) + d(ix) = 0 , for all x e Jt .

Thuswe define d in yl(^#) so that Jt is a differential subcomplex and the rela-
tion A" + id = 0 holds. Hence we obtain the following result:

Given the dga ^ = Λ(xx, x>, , d), de/zrce fήe dga ΛJt = A(xly xl9 x2, x2,
• , d), with d i m ^ = d i m ^ — 1, by dxt = dxt and dxt = —idXi where
i: Jt' —> yί^ί w ί/ze unique derivation of degree —1 extending xt -+ xt. Then

the map Jt > Λ{Jt\ξ) defined by xi —> xt + ξXi is a dga map which is uni-
f

versal and sets up a one to one correspondence between dga maps Jt > Jf(ξ)

and ΛJt > Jf via the diagram:

/f®h
X arbitrary

At this point we could pass to homotopy classes of dga maps, and assert
that ΛJt defines the correct homotopy functor and so must be the minimal
model of Λ(M). We will detail a more explicit argument.

The universal geometric map Λ(M) x S1 —> M corresponds to a map of min-

imal models Jt -^-> Jt{Λ(M)\ξ) implying by the above algebraic universality

the existence of a dga map

Λ{Jt) -?-+ Jt{Λ{M)) .

Now since M is simply connected, Λ(M) is at least nilpotent [8], so the
homotopy groups of Λ(M) correspond to the free generators of Jt(Λ(M)).
Now the fibration ΩM —> Λ(M) —> M, where ΩM is the based loop space, has a
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natural cross section, the constant maps of S1 into M, so that 7r^(M) ~ πtΩM
0 KiM. Of course, πtΩM ~ πί+1M so that ^(Λ(M)) is the free algebra on the
generators xt of JC (which is a d-subalgebra of JΪ(Λ(M))) and another set yt

obtained by shifting the xt down one:

J ί { Λ ( M ) ) = A ( x 1 9 y 1 9 x 2 9 y 2 , - - ) ,

with dim yt = dim xt — 1. If one examines the minimal model form of the

universal geometric map Jί — -̂> Jί(Λ(M)\ξ), one finds that in terms of
all these identifications xt —> xi + ξyt modulo decomposables of Jί. It follows

that the map Λ(Jί) > Jί(Λ(M)) described above must be an isomorphism.
In summary we state the
Theorem. // M is a simply connected finite complex, and M has minimal

model A(xλ9x29 , d) then the space of closed curves on M has model
Λ(xl9 xl9 x2, x29 -9d) where dim xt = dim xt — 1, d is defined by di + id = 0,
and i is the derivation of Λ(xι,x2, •) into Λ(xl9 xl9 x2, x2, •) defined by
ixj = Xj.

Remark. Note that Λ(x19 x2, •) is a d-subcomplex of Λ(x19 x19 x2, x2, -),
and the image of d in Λ(x19 x19 x29 x2, •) is contained in the ideal of (xl9 x2,
• •)• Thus the induced d in A(xt) is zero. This algebraic picture corresponds
to the natural fibration

ΩM -> Λ(M) -> M

since the model of Ω(M) is Λ(x19 x2, d = 0). (The minimal model of any
#-space is just the free algebra in the dual homotopy groups with the differ-
ential identically zero.)

In the following, we use the notation (A, d) for the minimal model of a
simply connected finite complex M, and (Ά, d1) for the minimal model of the
space of all maps of S1 into M. The generators in even (resp. odd) degrees
will be denoted by x19 x2, (resp. y19y2, •)• We shall prove the

Theorem. The following properties are equivalent:
( i) the cohomology algebra of M requires at least two generators,
(ii) the Bettί numbers of the space of all maps of S1 into M are unbounded.
Before proceeding to the details, we give the structure of the argument.

Suppose the generators of the model of M (arranged by degree) begin with

Xl9 , Xn , y± , Xn + \> ' ' ' 5 Xγ 5 ^2? ' " *

where yx and y2 are the first two exterior generators, and the xt are the first
polynomial generators.

In A', the classes l(f[ xλyϊ\, a = 1, 2, , show that for any nontrivial

finite complex, H*(Ar) is nonzero in an infinity of dimensions, [6]. This uses
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dxt = 0, i — 1, , n and dyλ = Q(xλ, , xn). If we knew dxd = 0 for / =

w + 1, , r, then the classes < ( f\ xΛyϊyξi with integers a and β would give

us the unbounded Betti numbers. (yι must be present if #*(M) is finite dimen-
sional and distinct from the ground field, and yx and y2 must be present except
when H*M is generated by one element (Propositions 1, 2, 3).

If dy, Φ 0, then d2 = 0, dxλ = 0, ., dxn = 0 and <&n+1 = Qn+1(x19 ,
^ ^ i , , dxr = Qr{xx, , xr_1)y1 imply β^ = 0, / = n + 1, , r, and the
above argument works. If dyx = 0, this argument does not work. However, if
dy2 were also zero, we could use the classes {yΐyξ} with integers a, β to
obtain enough cohomology. We do know dy2 = Q(xx, , xr) so that dy2 —
Σ * Qi(Xj> Xj)χi i n ^ ; by the formula. If we set xt = 0, / = 1, , r in Λ', (i.y2

becomes zero, the above classes work, and an inductive argument shows this
quotient differential graded algebra has unbounded Betti numbers only if Af

does (Proposition 4).

1. Some results about differential graded algebras

We will consider differential graded algebras A = 0 Λn over a ground field

k = Q or R, endowed with a differential d of degree one. These algebras are
the tensor product of a polynomial algebra graded in even degrees and an ex-
terior algebra generated in odd degrees. We assume that Λo = k, and that, for
every z e Λ, dz belongs to Λ+ Λ+ where Λ+ = © Λn. Actually, if there are

generators in degree one, we assume in addition that all the generators can be
ordered z1? z2, so that each dzt is a polynomial Qt(zi9 z29 , z«_i) in earlier
generators. If a finite complex M is simply connected, the minimal models of
M and Λ(M) satisfy these conditions.

Proposition 1. Lei (Λ, d) be such a differential graded algebra. We have
the following equivalences:

(1) the cohomology algebra H*(Λ, d) is generated by one element,
(2) (Λ, d) has one of the following types:

(a) A is generated by one element,
(b) A is generated by two elements x and y, where x is a polynomial

generator with dx = 0, and y is an exterior generator with dy = λxh, λ e k*,
and an integer h > 2.

Proof. (2) => (1) is easy. If A = k(z), then H*(Λ) = A = k(z). If A =

k[x\ ® k(y), then H*(Λ) = k M . To show (1) =φ (2), we assume first that
xhk[x]

the generators of lowest degree of A are exterior. By (1) there is only one such
generator and we have dy = 0. Another generator of A of lowest degree is
also closed, again a contradiction to (1). So we have A — k(y).

Assume now that the generators of lowest degree of A are polynomial. Again
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there is only one such generator, say x19 and dx1 = 0. If A has other genera-
tors, we consider the generators of lowest degree among the generators distinct
from xx. If these generators are polynomial x2, , we have dx2 = 0 and this
is not possible by (1). If these generators are exterior, let yx be one of them.
Then we have dyx = λ^, where λλ e k*, and h is an integer > 2. In the set
of generators distinct from x1 and y19 we look at the generators of lowest degree.
If such a generator x2 is of even degree, we have dx2 = μ2xlyλ, with μ2 e k,
a> 1. Since d2x2 = 0, we have 0 = μ2λxxl+h, which implies that dx2 = 0 and
contradicts (1). Therefore, if the set of generators of A distinct from xλ and yx

is not empty, the generators of lowest degree in this set are exterior. Let y2 be
one of them. Then we have dy2 = λ2xψ, where m is an integer > 2 and λ2 e k.
It follows that d(y2 - W2/λ) *Γ~'ι}?i) = 0. Then#*(Λ) should contain the class
of xλ and the class of y2 — W2/>ii)^Γ"Λ3Ί» contradicting (1). So we have

A = k[xj (x) k(yx) with dxx = 0 , dyx = λλx
h Φ 0 .

Proposition 2. Let {A, d) be a differential graded algebra. Let Θ be the
ideal of A, generated by the exterior generators, and let A = A/Θ. If y is an
exterior generator of A such that the image of dyin A is nonzero, we have
H*(A, d) = H*(A, d), where A = A/(y, dy)A, and d is the induced differential
on A.

Proof. See also [3]. Let ξ be an element of A such that dξ e (dy,y)A.
Then dξ = ya + d(yβ). We shall prove that Ker d Π yA = 0. Let yγ be such
that d(yγ) = 0. Then we have d(y)γ + ydγ = 0. Since dy = a + a with a e 0
and a Φ 0, a e A, we show easily that γ e yA, and yγ = 0. Thus we have
dξ = d(yβ) and

Ker d = (Ker d

Since Im d = (Im d + y ^ l ) / ^ , y)yl and I m d c Ker d, we have

Ha, d) = flU,rf) .
Im rf Im ί/ 0 yA Imd

In the remainder of this section, we assume that A has a finite number of gen-
erators in each degree. So, for all nzN, An and Hn(A) are finite dimensional
vector spaces.

We can consider the Poincare series

SΛ(T) = Σ (dim, An)Tn , SH.U)(T) = Σ (dim, Hn(A))Tn .
n>0 n>0

Definition. Let S(T) = Σ anT
n and S;(Γ) = Σ bnT

n be two formal series

with real coefficients, we say that S(T) < S'(T) if and only if we have an<bn,
for every n e N.



640 MICHELINE VIGUE-POIRRIER & DENNIS SULLIVAN

Proposition 3. Let (Λ, d) be a differential graded algebra, and y an exterior
generator of degree 2r + 1 > 3 such that dy = 0. Then we have

SHHΛ/VΛAT) < SHHΛ>d)(T)l(l - T2r) ,

where d is the induced differential on the quotient.
Proof. Let π be the canonical morphism A —> Λ/yΛ. If s e N, we define

Λ[-s] - 0 A[-s]n by
nζ.N

A[ — s]n = 0 for n < s , A[—s]n = An_s for n > s .

Let φ be the map A/yA[—2r — 1] —> A defined by

φ(ξ) = ξy for all ξ € A/yA[-2r - 1] .

We check easily that the sequence

0 > A/yA[-2r - 1] - ^ > A - % A/yA > 0

is an exact sequence of differential graded algebras. So we have the long exact
sequence of cohomology:

^ > Hn(A/yA[-2r - 1]) ^% Hn(A)
II

Hn-2r~\A/yA)

> Hn(A/yA) - ^ > Hn+ι(A/yA[-2r - 1]) > . .

II
Hn-2r(A/yA)

Let Kn = Im /Zn(0 and K = φ Kn. The long exact sequence splits and gives
nζN

0-+Kn-+ H%A) -> Hn(A/yA) -> Hn'2r(Λ/yΛ) - ^ n + 1 - 0 ,

then we have, for every n e N,

Kn - dimfc H
n(A) + dimfc Hn(A/yA)

- dim, Hn-2'(A/yA) + dim, Xn+1 = 0 .

Hence

(l + T) x ( l / D x ^ ( Γ ) - s H . ( i i ) (D + (i - τ2nsHHΛJyΛ)(T) = o ,

or
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= [1/(1 — T r)\SH*cΛ)(T)

- [(1 + Γ)/(l - Γ2')] x (1/Γ) x SK(T) .

Since SK(T) has positive coefficients, the product [(1 + Γ)/(l - Γ2r)] X (1/Γ)
X SK(T) also has positive coefficients, and we have the inequality.

Proposition 4. Let (Λ, d) be a differential graded algebra, and x a poly-
nomial generator of degree 2s such that dx = 0. Then we have

where d is the differential deduced from d by quotient.
Proof. Let μ: Λ[—2s] —> A be the multiplication by x. The sequence

0 —• Λ[—2s] —^-> A —%• A/xΛ —> 0, where TΓ is the canonical morphism, is
an exact sequence of differential graded algebras. Then we can write the long
exact sequence

• . > Hn~2s(A) — % Hn(A) > Hn(A/xA) • Hn~2s+1(A) •

Let /„ = Im (Hn(μ)), and / = 0 In. For every n g N, we have

0 -> In -* H»U) -> Hn(A/xA) - fl»-2β+1U) -^ /»+i - 0 ,

which gives us

(1 + D X (1/Γ) x SZ(T) - V U ) ( Γ ) + SHHΛ/XΛ)(T) - T2^SH*U)(T) = 0 ,

or

*W^)(Ό - (l + r-os^.^cr) - (i + D x (l/Γ) x Sj(T)

with 5j(Γ) > 0.

2. Proof of the theorem

Since M is a simply connected finite complex, its minimal model A has a
finite number of generators in each degree and Aλ — 0. Also, H*(A) is a finite
dimensional vector space, and the algebra H*(A) has at least one generator
except when A = k.

(ii) => (i). If H*(A, d) is generated by one element, we use Proposition 1
and make a direct calculation to show that the Betti numbers of the space of
all maps of S1 into M are bounded. See Addendum.

(i) =φ (ii). (a) We claim that when M is a finite complex, the algebra
H*(M) requires at least two generators if and only if the minimal model A of
M has at least two exterior generators.

We first remark that A has exterior generators since H*(A) is finite. By
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Proposition 1, if A has at least two exterior generators, then H*(Λ) has at least
two generators.

Conversely, assume that A has one exterior generator. Let A = k[Xi]ieI ®
k{y) where the xt are polynomial generators, and dy = P(x19 ,xn). If
dy Φ 0, we have, by Proposition 2,

H*(A) = H*(Λ/y, dy)A) = Λ [ ^ ] <

Since &[*$]$ gj/P&M is a finite dimensional vector space, it is easy to prove
that card / < 1. (The results of [5] about the dimension of local rings can be
extended to graded algebras.) Then we should have A = k[x] (x) k(y) with dy =
λxh, λ <ε k*, h > 2, and therefore H*(A, d) is generated by one element. If
dy = 0, we have, by Proposition 3,

) < [1/(1 - T>r)]S

where P(T) e Z[T], and 2r + 1 = deg y. Let A = k[xt] = 0 An. The
w>0

above inequality shows that the dimension of An is bounded, independent of
π. This proves card / < 1. If A = k[x] (x) k(y) with dy == 0, we have necessarily
d* = 0, contradicting the fact that H*(A) is finite dimensional. So we have
A = &(;y) with deg j odd, and H*(A) = A is generated by one element. This
proves our claim.

(b) Let yx and j 2 be the first two exterior generators of A. We denote the
generators of A by increasing degrees: x19 , xn yλ xn+1, , xr j 2 ,
where the (xdi<ί<r a r e Λe first polynomial generators (perhaps r = 0, or n = 0).
We have djCj = = dxn — 0.

1st case: dyλ Φ 0. Then dyx = P ^ ^ , , * n ) , n > 1, and dy2 = P2(x19

-•-,Xn,Xn + l > - >Xr) W h e r e P l ^ Λ U i , '"yXn\ a n d ^ 2 € Λ [ ^ , , Xr]. L e t

me[n,r — 1], and assume that djcx = = dxm = 0. We shall prove that

dxn+1 = 0.

We have dxm+1 = Q(x19 , xm)yι where Q e * [ ^ , , * J . Since we have
^2 ^m+i = 0> w e deduce that Qdyx = 0, so that β = 0. This proves that d;^ =
. . . = dxr = 0.

In Λ', the elements ( Π ^ j j j ^ where (a, β) e N2 are cycles, because d% =

0, d'yx e (x19 , xn)il/ and ύΓy2 € (x1? , xr)Λ'. It is easy to see that Im dr C

(xi9yt)A\ Thus the elements (f j xλyίyξ are homologically independent.

If deg j j = 2rλ + 1, and deg y2 = 2r2 + 1, then let m = l.c.m. (rx, r2). For

every N ε N, in ^ ^ m + Σ U i d e g ^ ^ t h e r e a r e ^ + ! elements (f\ xλyiyξ

which are homologically independent. Hence the dimensions of Hr(A;, d') are
unbounded.

2nd case: dyγ = 0. If dy2 = 0, let degyx = 2rλ + 1, degy2 = 2r2 + 1,
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m = l.c.m. (r19 r2). Then for every N e N in H2Nm(Λ') we have N + 1 elements
yΐyξ, where (a, β) € N2, which are linearly independent. So the dimensions of
Hn(Λ\ d') are not bounded. Assume dy2 = P(xx, , xr) Φ 0. Then we have

dxx = 0 , , dxn = 0 , d*n + 1 = Gn + ifo, , *»)?! , ,

where β* is a polynomial of degree > 1. Let 2s\ be the degree of xt for / = 1,
• ,r. Let Λ'(1) = Afjx^Λ* with the differential d'(1) induced by d'. Then we
have ^/

(1)Λ:2 = 0 and, by Proposition 4,

WuM-wίD < (i + r^-O^W^m •

So consider the successive quotients

Λ\2) = Λ'l(xl9 x2)Λ' , , ^ ( r , = Λ'/(xl9 , JcrM' .

Let d\r) be the differential on Λ\r) induced by d'. By an inductive argument,
we see that

• W c M ' M ) ^ < Π d + ϊ 1 2 " - 1 ) ^ ^ ^ , ^
ί = l

So, if the dimensions of Hn(A\r)) are not bounded, then the dimensions of
Hn(A') will be unbounded also. Since dy2 = P2(xi, - , xr) where P2 is a poly-

r fsp

nomial of degree > 2, by the formula we have dry2 = Σ — - χ i \ t n υ s we have
i = l dXi

d\r)y2 = 0. The elements ylyξ with (a, β) e N2 are closed in A\r) and are
homologically independent. So the dimensions of Ήή(A\r)9d\r)) are un-
bounded. This completes the proof of the theorem.

Addendum. Now we calculate the cohomology ring of A(M) when H*M
has one generator.

1. If H*M is the exterior algebra on one generator y in degree 2n + 1,
then clearly H*A(M) is A(y, y) the exterior algebra on y tensor the polynomial
algebra on y in degree In.

2. If H*M = {l,x,x2, - ,xn} with xn+1 = 0 and degree x = 2k, then
the model of M is A(x, y dy = xn+1), and we have to calculate H*(Λ',df)
where A' = A(x, y, x, y) with dfx = d'jc = 0, dfy = xn + 1 and d'j> = (n + 1)Λ:WX.

By Proposition 2 we can set y = 0 and ίfy = xw+1 equal to zero, and cal-
culate the cohomology of A = A(x, x, y) where xn+1 = 0, dx = djc = 0 and
dj; = jcnx (the constant can be ignored by replacing y by j;/(w + 1)). So in A
the cycles in positive degrees make up the ideal of x and x, while the bound-
aries make up the ideal of xnx. The reduced cohomology ring of A(M) can then
be described as the quotient of the ideal of x and x in A modulo the ideal of
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xnx. This quotient is isomorphic to the finite dimensional ring Λ+(x, x)/(xn+1,

xnχ) (without unit) tensor the polynomial algebra (with unit) on one generator

y in degree 2(k(n + 1) — 1) where degree x = 2k, degree x = 2k — 1.

Clearly, the Betti numbers of Λ(M) are bounded.

Notice that the reduced cohomology ring of Λ(M) is totally nilpotent (every

(n + 1) foldp roduct is zero). For example, for M = S2 we obtain the zero ring

on additive generators in dimensions 1, 2, 3,4, for H*Λ(M). This degener-

acy in the ring structure belies the structure of the homotopy groups of Λ(M)

which has total rank 4 (over Q).

This difference is made up by a rich structure of M assey products or higher

order cup-products. All this information is carried by the minimal model which

is simpler to describe for these spaces than the cohomology ring itself.
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