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A Generalization of Milnor’s Inequallty Concerning Affine Folla-
tions and Affine Manifolds

DENNIS SULLIVAN

Consider a bundle or continuous family of 2n-dimensional vector spaces over
a compact 2n-dimensional manifold. With choices of orientation there is an
integer invariant of the bundle, the Euler number, which measures the precise
obstruction to a non-zero section. As we vary the bundie keeping the manifold
fixed the Euler number takes on infinitely many values. '

In dimension two the Euler number is a complete invariant of the isomorph-
ism class of the bundle. In higher dimensions, the Euler class™ and the characteris-
tic classes of Pontryagin determine the isomorphism class up to finite number of
possibilitie’s;

Now suppose the family is endowed with a continuous system of isomorphisms
between the vector spaces V. and V. over nearby points x and x' in the manifold
M. We assume the natural compatibility of isomorphisms for three nearby points
x, x', and x". This system of isomorphisms can be pictured as a foliation of the
total space of the bundle transverse to the fibres with the zero section a leaf and
the holonomy linear.

We will construct a finite upper bound ks depending only on the topolegy of the
manifold M for the absolute value of the Euler number of a bundle admitting one of
these affine (or linear) foliations. If M is surface of genus g, we recover the
inequality of Milnor [M],

Euler number of a 2-plane bundle over M with affine foliation < g.

In dimension 2 Milnor showed that this condition is also sufficient for a
2-plane bundie to admit a linear foliation transverse to the fibres. In hlgher
dimensions we are far from such a sufficient condition.

Our argument which is quite direct and geometric, clarifies John Wood’s
generalization of Milnor’s work to foliated $'-bundles over surfaces, [W]. This
aspect of the paper was worked out with John Morgan. '

1 The Fuler characteristic class is determined by the Euler numbers of the bundle over sub-
manifolds representing a Q-homology basis, [T]. -
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Our motivation beyond curiosity about Milnor’s and Wood’s work arising
from conversations with Bill Thurston was to achieve the following corollary:

The collection of n-dimensional vector bundles over a compact triangulable

space (n fixed) which admit affine foliations fall into finitely many isomorphism .
classes. ,
The Chern-Weil description of the Pontryagin classes shows that they vanish
for a bundle with a linear foliation. So the coroltary follows from the inequality on
the Euler namber, the representability of a rational basis of homology by
manifolds {T], and the remark above about finite determination of bundies. This
latter fact in turn follows by obstruction theory and rational localization as
described in [S p. 26].

Now we turn to the geometric argument concerning the Euler number.
Actually, we will make use of a foliation transverse to the fibres of the 2n-1
sphere bundle of oriented directions associated to the vector bundle over M2".
We assume the isomorphisms induced by the foliation between nearby spheres are
affine ie. they are induced by linear maps of associated vector spaces. Such a
foliation in the sphere bundle can be induced by the linear foliation in the vector
bundle by dividing by the action of the multiplicative group of positive real
numberss acting by homothety.

An upper bound for the Euler numbers can be calculated using any nice
decomposition of M into simply connected pieces. For example consider the
decomposition dual to some triangulation of M:

Our tactic will be to make a choice in the sphere of directions over a point in
one piece of the decomposition and then push that choice around over the piece

! This also follows from the finiteness of the number of components of the real algebraic variety of
representations of m; into GI (n, R). (From a discussion with George Lusztig).
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using the canonical isomorphisms. The strategy will be try to build a homological
cross section of the sphere bundle by starting over the top dual cells and
proceeding down through the lower dimensional cells until we meet “estimable™

So we start b;; choosing an oriented direction i.e. a point of $** ', over one
point in each top cell and employ the spreading by canonical isomorphisms to
obtain cross sections over the various top cells which probably disagree at the
codimension 1 cells. From each codimension 1 cell choose a peint and in the
sphere of directions above this point construct an arc between the two points
determined by the previous choices in the two adjacent top cells. Now spread
these arcs over the codimension 1 cells to partially fill in the discontinuity of our
preliminary cross section. Now over a point in a codimension 2 cell we find the
boundary of a triangle. We fill in this boundary with a triangle as béfore (see
figure) and proceed in this way down to the zero dimensional cells.
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Now a linear map induces on the sphere of directions an affire map which
preserves antipodal points and the class of geodesic simplices. So if we inductively
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choose geodesic arcs, geodesic triangles, geodesic tetrahedra, etc. we would have
for each zero cell constructed a map of the boundary of the (2n) simplex into
§2"1 where each face is carried into a geodesic simplex. Furthermore if we
oriented the hypothesis and the constructions we would have a geodesic cycle and
could define an integral degree. The degree of such a cycle is easily seen to be 0

or =1 (in any case for our purposes it is bounded by areca considerat@ons) '

DEGREE *1 DEGREE O

Since the sum of these degrees is the Fuler number of our sphere bundle we
see we can take kny to be the number of 2n-simplices in any triangulation of M”"*
Other decompositions lead to other inequalities perhaps better. For example, in
dimension two the familiar decomposition of a surface of genus g into one vertex,
2g edges, and one 2-cell is more convenient and leads by the above argument to
one geodesic cycle on S* with 4g edges whose degreé is the Euler number. Now
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* This bound was known to J. Simons, and the construction was mofivated by one of J. Cheeger
and J. Simons. '
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the two edges corresponding to the same one cell are counted with opposite
orientation. So to compute the Euler number we must add up’2g pairs of terms of
opposite sign where each term is strictly less than 3 or there is exact cancellation.
Thus the Euler number must be strictly less than the genus.

This is Milnor’s inequality for the case of affine connections and also Wood’s
generalization to foliated $* bundles where holonomy preserves antipodal points.
We see Wood’s generalization is possible in our terms because any- hoemeomorph-
ism of &' preserves geodesic simplices. Without the antipodal condition, the
above argument yields the condition Euler number < 2g. Now a simple covering
space argument shows that if we have a bound of the form—Euler characteristic
plus constant—we can take the constant to be zero. Thus the Euler number is
=2g—2. This is Wood’s further result from foliated $'-bundles without the
antipodal condition. It is best possible because the unit tangent bundle with Euler
number 2g—2 carries the famous Anosov foliations related to the geodesic flow.
All other examples subject to the inequalities are achieved from these tangent
bundle examples by pulling back to surfaces of higher genus by degree one maps.
Thus we have a complete récapitulation of the Euler results in [M] and [W].

Affine Manifolds.

There is one very geometric situation where one might hope to apply the
above inequality. Suppose M is a compact affine manifold, i.e. M is the union of a
finite number of open sets in R" where the attaching maps are affine, x— Ax + b,
A a matrix, b a vector.

This is presumably quite a large class of manifolds'” including flat manifolds,
certain nilmanifolds, and the product of any manifold of constant curvature with a
circle.” One iriteresting question see [M] is whether the Buler characteristic of a
compact affine manifold is zero. ‘

Now the tangent bundle of an affine manifold has a linear (or affine) foliation
and the above inequalities hold. For example, in dimension two we see the

' See remark {c) p. 124 in Whitney “Geometric Tntegration”, Princeton, 1956.
? Communicated by Deligne and Thurston.
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theorem of (Benzecri-Milnor) that a surface of higher genus is not affine because it
is false that 2g—2<g In particular the Euler characteristic of an affine 2-
manifold is zero.

One might hope to extend this argument to higher dimensions and find a
geometric decorposition of the affine manifold so that the inequality achieved
above leads to an impossible condition on the Euler characteristic forcing it to
vanish. The fact that the pieces of the decomposition need only be simply
connected (and not contractible) provides the possible leverage. ‘

1f this is correct, one of the worst cases for this argument occurs when Misa
K (7, 1). For example if M is obtained from R" by dividing by a discrete group r
of affine transformations.

‘We have not carried the above program very far but this Jast class of affine
manifolds can be independently taken care of. -

The Euler characteristic of R is zero, where I' is a discrete group of affine
transformation of R". ' '

This is proved in two steps: :

(i) if x—> Ax+b has no fixed points then 1 is an eigenvalue of A. (If x# Ax+ b
for all x, then (A—Dx#b implies A—1I is not invertible.) Thus the tangent
bundle of R™/I" has as structure group a subgroup of matrices each one of which
has 1 as an eigenvalue. (This was pointed out to me by Mo Hirach.)

(i) A R"-bundle with structire group whose elements satisfy the equation
det (X —1)=0 always has a trivial Euler class with real coefficients. By taking the
real algebraic closure of the structure group, passing to the component of the
identity, and then to a maximal compact subgroup we can reduce the question to
the case where the structure group is 2 connected compact subgroup of SO(n).
But then the characteristic classes of our bundle are computable by restricting
invariant polynomials on the Lie algebra of skew symmetric matrices to the Lie
algebra of the subgroup. The Pfaffian polynomial whose square is the determinant
gives the Euler class. In our case the restriction of the Pfaffian is identically zeto
because each skew symmetric matrix in the sub-Lie-algebra has zero as an
eigenvalue.

Note that this proves the Euler characteristic is zero in case each affine
transformation in the *“developing” representation i M—> Affine group has no
fixed points. This is potentially more general than the R"/I" case. .

The Pfaffian argument was worked out with Bert Kostant. (See [KS]).
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