A TOPOLOGICAL INVARIANT OF FLOWS ON 1-DIMENSIONAL SPACES

BILL PARRY and DENNIS SULLIVAN

(Received 18 March 1975)

To A $k \times k$ matrix A of non-negative integers whose sum is s one can associate a shift invariant subset X_A (see below) of the countable product of $\{1, \ldots, s\}$ with itself. The shift on this subset is a transformation T_A which can be naturally studied in set theory [3], probability theory [3] and [4], and topology [1]. These points of view merge in the dynamical study of diffeomorphisms.

In this note we consider the flow with cross section X_A and Poincaré map T_A and show that det (1 - A) is a topological invariant of the underlying space of the flow. We compare this invariant to the classification of the transformation T_A itself in the three contexts above. The argument here is purely topological but a related result was first discovered in [5] using variational principles for the entropy of flows. This invariant det (1 - A) allows us to answer anew Bowen's question [2] on the non-triviality of the equivalence relation between non-negative matrices induced by the topological classification of the corresponding flows (see also [5]).

Finally, it is an interesting problem to give a direct topological description of this invariant of flows.

Now we go into more detail. If $A = (a_{ij}) X_A$ can be described as a certain set of infinite paths in the complex K_A made up of vertices $\{1, \ldots, k\} \times \{\text{integers}\}$ with a_{ij} edges between (i, n) and (j, n + 1) for each $1 \le i, j \le k$ and $-\infty < n < \infty$. X_A consists of those infinite paths in K_A which map isomorphically to the real line under the natural projection $K_A \rightarrow$ real line. There are s intervals over [n, n + 1] so X_A is naturally a subset of the countable product of $\{1, \ldots, s\}$ with itself. We will assume that A is irreducible in the sense that for any $1 \le i, j \le k$ there is a path in K_A connecting (i, 0) with (j, m) for some m. Then X_A is either finite or uncountable. We will dispense with the first case where A is just a permutation matrix and study the transformation T_A induced on X_A by the shift $(\cdot, n) \rightarrow (\cdot, n - 1)$ of K_A in the case where X_A is uncountable.

In set theory T_A is determined up to isomorphism by the orbit structure. It is easy to see that T_A has a finite number N_n of periodic points of order n (in fact, $N_n = \text{trace } A^n$). So T_A has uncountably many non-periodic points and is determined as a set transformation by the sequence of integers N_n . These can be neatly catalogued in the Weil zeta function of T_A , $\zeta(t) = \exp\left(\sum_{n=1}^{\infty} \frac{N_n}{n}t^n\right)$ which is just the rational function $1/\det(1 - tA)$, [3].

Now X_A has a natural topology homeomorphic to the Cantor set. Open sets of paths in X_A are obtained by restricting the position of the path at a finite number of places. In this topology the periodic points of the homeomorphism T_A are dense (again easy to see) and there is a Baire set of points whose orbits are dense [1]. As a topological transformation T_A is determined by the class of the matrix A under the equivalence relation (shift equivalence) generated by $A \sim A'$ if A = XY and A' = YX where X and Y are (not necessarily square) matrices of non-negative integers (see [7] and the errata [8]).

 T_A can be treated measure theoretically as an "intrinsic Markov chain" (see [4]). There is a unique invariant measure which maximizes entropy. As a measure preserving transformation T_A is determined by this entropy (which is just the log of the maximum eigenvalue of A; see [1] and [6]) and the periodicity of A.[†]

Now we turn to the flow with cross section X_A and Poincaré map T_A . The underlying space of the flow F_A is $X_A \times \{\text{real line}\}\ \text{modulo the action of } T_A \times \text{unit translation}$. We will say that the

†If A has periodicity 1, $\begin{pmatrix} 0 & A \\ A & 0 \end{pmatrix}$ has periodicity two.

homeomorphisms T_A and T_B (or the matrices A and B) are flow equivalent if there is a homeomorphism between F_A and F_B carrying flow lines to flow lines with the proper direction. Since X_A is totally disconnected, the arc components of F_A are just the flow lines and flow equivalence is just "oriented homeomorphism". (A remark of Charles Pugh).

Bowen asked "what is the equivalence relation on non-negative integral matrices induced by flow equivalence?" To answer this consider the operation on matrices $A \rightarrow \tilde{A}$ defined by

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \rightarrow \begin{pmatrix} 0 & a_{11} & \dots & a_{1n} \\ 1 & 0 & \dots & 0 \\ 0 & a_{21} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ 0 & a_{n1} & \dots & a_{nn} \end{pmatrix} = \tilde{A}.$$

Our result is the

THEOREM. The 'flow equivalence relation' on square non-negative integral matrices is generated by the relations

(i) $XY \sim YX$ (X, Y not necessarily square)

(ii) $A \sim \tilde{A}$.

COROLLARY. If A and B are flow equivalent then det(1 - A) = det(1 - B).

Example. For every $n \neq m$, the full *n*-shift is not flow equivalent to the full *m*-shift (this also follows from the result in [5]).

We summarize all these statements about the transformation T_A and induced flow in the classification table

Context	Classifying invariant
$T_{\rm A}$ as a transformation of sets	the zeta function, $1/\det(1-tA)$
T_A as a measure preserving transformation	the entropy, the log of the maximum eigenvalue of A and the periodicity of A
T_A as a topological transformation	the shift equivalence class of A, the relation being generated by $XY \sim YX$
The topological study of the flow associated to T_A	 the equivalence class of A under the relation generated by (i) XY ~ YX (ii) A ~ A

We remark that the problem of interpreting the invariant det (1 - A) topologically is just the problem of interpreting the value of the zeta function at 1. As noted above the zeta function near t = 0 is determined by the periodic point structure of T_A which is somewhat lost in the flow picture. The problem is complicated by the fact that 1 is beyond the radius of convergence of this power series for $\zeta(t)$.

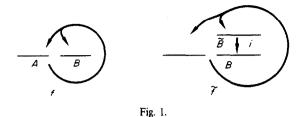
Now we discuss the proof of the theorem.

Consider self-homeomorphisms of Cantor sets under the relation of flow equivalence, i.e. oriented homeomorphisms of the corresponding flow spaces. Given one such $X \xrightarrow{f} X$ we define its *expansion* $\tilde{X} \xrightarrow{f} \tilde{X}$ given a decomposition $X = A \cup B$ into disjoint open and closed sets. Let $\tilde{B} \xrightarrow{i} B$ be an identification between B and another copy \tilde{B} , let $\tilde{X} = A \cup B \cup \tilde{B}$, and define $\tilde{f}: \tilde{X} \to \tilde{X}$ by $\tilde{f} = i^{-1} \circ f$ on $f^{-1}B$, $\tilde{f} = i$ on \tilde{B} , $\tilde{f} = f$ on $f^{-1}A$. (See picture below). Then we have the

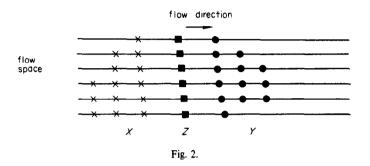
PROPOSITION. The flow equivalence relation on homeomorphisms of Cantor sets is generated by topological conjugacy and expansion.

Proof of Proposition. First, that f and \tilde{f} are flow equivalent is clear from the picture

[†]Bob Williams pointed out that one could remove our original absolute value signs (which arose from the fact that det $(A - I) = -\det(\tilde{A} - I)$).



Conversely, if in one flow space we have two Cantor set cross sections X and Y, we can easily find a third Cantor set cross section Z so that the three are arrayed as in the figure



In fact, Z is a forward translate of that subset of X which meets Y before X under the flow. Clearly, the homeomorphisms of X and Y induced by the flow are multiple expansions of the Poincaré map of Z. This proves the proposition.

This proposition is given in an equivalent form in [5] in terms of discrete rational reparametrizations of flows.

The proof of the theorem is completed by the following remarks:

(i) By changing A in its shift equivalence class we can assume A is a $k \times k$ matrix of 0's and 1's and the open and closed set for an expansion is just that subset of $\prod_{n=1}^{\infty} \{1, \ldots, k\}$ in which the first coordinate is restricted to a subset of $\{1, \ldots, k\}$ (see [7]).

- (ii) If we expand T_A along the subset $\{\cdots, 1, \cdots\}$ we obtain $T_{\bar{A}}$.
- (iii) Expanding along a disjoint union is equivalent to a consecutive expansion on each piece.

0.E.D.

REFERENCES

- R. BOWEN: Symbolic dynamics for hyperbolic systems, Recent Advances in Topological Dynamics, Springer Lecture Notes. pp. 51-58.
- 2. R. BOWEN: One-dimensional hyperbolic sets for flows, J. Diff. Eq. (12) 1 (1972), 173-179.
- 3. R. BOWEN and O. LANDORD: Zeta functions of restrictions of the shift transformation, Proc. Symp. Pure Math., Vol. 14 A.M.S., pp. 43-49, Providence (1970).
- 4. W. PARRY: Intrinsic Markov Chains, Trans. Am. math. Soc. 112 (1964), 55-66.
- 5. W. PARRY: Topological Markov Chains and Suspensions, Warwick preprint 1974 (to appear).
- 6. N. FRIEDMAN and D. ORNSTEIN: On isomorphism of weak Bernoulli transformations, Adv. Math. 5 (1970), 365-394.
- 7. R. F. WILLIAMS: Classification of subshifts of finite type, Ann. Math. 98 (1973), 120-153.
- 8. R. F. WILLIAMS: Erratum to 'Classification of subshifts of finite type', Ann. Math. (in press).

University of Warwick Institut des Hautes Etudes Scientifiques