Genericity Theorems in Topological Dynamics. J. Palis, C. Pugh, M. Shub and D. Sullivan.

1. Introduction.

Some recent theorems in differentiable dynamical systems are of a C⁰ nature, referring to C⁰ Ω -explosions and C⁰ density for example, see [11, 12, 14, 15]. As far as we know however, no one has explained what these theorems imply about the generic homeomorphism of a compact manifold M or the generic C⁰ vector field on M . We record here the result of several conversations on this matter.

First the C^0 topology makes Homeo(M) a Baire space. The usual C^0 metric

$$d(f,g) = \sup_{x \in M} d(f(x), g(x))$$

gives the same topology on Homeo(M) as does the metric

$$d_{H}(f,g) = max(d(f,g), d(f^{-1},g^{-1}))$$
.

Under d_H , Homeo(M) is complete and hence, as a topological space, it has the <u>Baire property</u>: every countable intersection of open dense sets is dense.

A set G is generic (relative to a Baire space $B \supset G$) if G contains a countable intersection of open dense sets. A generic property is one enjoyed by a generic set of elements of B.

Theorem 1. The following properties of $g \in Homeo(M)$ are generic

- (a) g has no C^0 Ω -explosion,
- (b) g has no C^0 Ω -implosion,
- (c) g is a continuity point of the map Ω : Homes(M) \rightarrow K(M) where K(M) is the space of compact subsets of M under the Hausdorff topology,
- (d) g has a fine sequence of filtrations,

fields on M . A remarkable but easily proved result of Orlicz [8] (see also Choquet's book [3]) says that the generic X \in X⁰(M) generates a continuous flow. It then makes sense to ask whether Theorem 1 remains true for such an X-flow ϕ . (It does - see Theorem 1' below.) One might also ask about the Entropy Conjecture for flows (Theorem 2) but unfortunately its natural generalization is trivial: the time t map of any flow, $\phi_{\rm t}$, induces the identity on H_{*}(M) because $\phi_{\rm t} = 1$. On the other hand there might be an interesting Flow Entropy Conjecture if $\phi_{\rm t}$ were forced to act on some sort of "transverse homology groups".

Returning to Theorem 1, we shall restate only the part having to do with filtrations. A global Lyapunov function for the continuous flow ϕ is a real valued continuous function on M which strictly decreases on ϕ -trajectories off Ω and is constant along trajectories of Ω . (Ω is the non-wandering set of ϕ .)

Theorem 1'. Generically $X \in X^0(M)$ generates a flow having a C^{∞} global Lyapunov function.

<u>Proof.</u> Takens' proof of (a) extends to flows. Also (a) continues to be equivalent to (d): a fine sequence of filtrations [7]. Such a fine sequence produces a continuous global Lyapunov function. This can be made C^{∞} by the smoothing theory of Wilson [16].

References.

- 1. R. Bowen, Entropy for group endomorphisms and homogeneous spaces,

 Trans. Amer. Math. Soc., 153(1971) 401-414.
- 2. R. Bowen, Entropy versus homology for certain diffeomorphisms,

 Topology, 13(1974) 61- 67.
- 3. G. Choquet. Lectures on Modern Analysis, vol. I, Benjamin N.Y.,

- 4. R. Kirby and L. Siebenmann, On the triangulation of manifolds and the hauptvermutung, Bull. Amer. Math. Soc., 75(1969) 742-749.
- S. Newhouse, Diffeomorphisms with infinitely many sinks,
 Topology, 13(1974) 9- 18.
- 6. Z. Nitecki, On semi-stability for diffeomorphisms, Inv. Math., 14(1971) 83-122.
- 7. Z. Nitecki and M. Shub, Filtrations, decompositions and explosions, Amer. J. Math. (to appear).
- 8. W. Orlicz, Zur theorie der differentialgleichung y' = f(x,y),
 Bull. Polon. Sci. Ser. A, 00(1932) p.221.
- 9. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89(1967) 1010-1021.
- 10. M. Shub, Dynamical systems, filtrations and entropy, Bull. Amer.

 Math. Soc., 80(1974) 27-41.
- 11. M. Shub, Structurally stable diffeomorphisms are dense,
 Bull. Amer. Math. Soc., 78(1972) 817-818.
- 12. M. Shub and S. Smale, Beyond hyperbolicity, Ann. Math., 96(1972) 587-591.
- 13. M. Shub and D. Sullivan, Homology theory and dynamical systems, to appear.
- 14. S. Smale, Stability and isotopy in discrete dynamical systems,

 Symp. on Dynamical Systems Salvador, Academic

 Press (1973), 527-530.
- 15. F. Takens, On Zeeman's tolerance stability conjecture,

 Manifolds-Amsterdam, Springer LNM 197, (1971),

 209- 219.

16. F.W. Wilson, Smoothing derivatives of functions and applications,

Trans. Amer. Math. Soc., 139 (1969) 413-428.

Addresses.

- J. Palis, I.M.P.A., Rua Luiz de Camões 68, Rio de Janeiro, Brazil.
- C. Pugh, University of California, Department of Mathematics, Berkeley, California, 94720, U.S.A.
- M. Shub, Department of Mathematics, Queen's College, Flushing, New York, NY, U.S.A.
- D. Sullivan, I.H.E.S., 91 Bures-sur-Yvette, France.
- J. Palis was partially supported by a Guggenheim fellowship.
- C. Pugh was partially supported by N.S.F. grant GP14519.
- M. Shub was partially supported by N.S.F. grant GP36522.