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Genericity Theorems in Topological DynamiCS.

J. Palis, C. Pugh, M. Shub and D. Sullivan.

1. Introduction.

Some recent theorems 1n dlfferentlable dynamlcal systems are of
a C" nature, referring to c?® q- exp1051ons and C° den31ty for
example see fi1i, 12, 14, 15]. As far as we know however, no one has
explalned what these theorems 1mp1y about the generlc homeomorphlsm of
a compact manlfold M or the generlo ¢o vector field on M . Ve
record here the result of several conversatlons on thls matter.

First the ct topology makes Homeo(M) a Bairé-soace;-'uThe_usual
c® metric - . |

alt,g) ='SquéMd(f(K),"gQX))
‘gives the same toﬁoiogy on Homeo (M) asfdoes-the”metric
d (f g) = nax(d(f,g), d(f“,g“))

Under d Homeo(M) is complete and hence as a topologlcal spaoe it

H!
has the Balre proper_g_ every countable 1ntersect10n of open ‘dense sets

is dense.

A set G is generlc (relatlve to a Baire space' B > G) if G
contalns a countable 1ntersect10n of open dense sets A generlo

property is one enjoyed by a generlc set of elements of B.°

Theorem 1. The following properties of g € Homee(M) are genefic.

(a) g has no C' Q-explosion,

(b) g has no C° Q-implosion, u | o

(e) g 1is'a. continuity. p01nt of the mao VQ ; ﬁéﬁé&(ﬁj * K(M)
where -K(M) is the space of cqmpact_subsetsﬂofieM under
the Hausdorff topology, - |

-(4d) g has a fine-sequence of filtrations,
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fields on M . A remarkable but easily proved result of Orlicz [8]

(see also Choquet's book [3]) says“tnet tne:QEneric TXKE Xo(Mj generates
a continuous flow. . It then makes sense to ask whether Theorem 1

remains true for such an X—flow ¢ . (It does - see Theorem 1

below. ) One might also ask about the Entropy ConJecture for flows
(Theorem 2) but unfortunately its natural generallzatlon is tr1v1a1.

the time t map of any flow, ¢t’ 1nduces the 1dent1ty on H (M)
because ¢t =1, On the other hand there mlght be an 1nterest1ng

Flow Entropy Congecture if ¢t were forced to act on_some sont of

ftransverse homology groups”.

Returning to Theorem 1, we shall restate only the part hav1ng to

do with flltratlons. A global Lyapunov functlon for the contlnuous
flow ¢ is a real valued contlnuous functlon on M whlch strlctly
decreases on ¢ tragectorles off R and is constant along traJectorles

of © . (2 is the nonwwanderlng set of ¢ .)

Theorem 1' Generlcally X ¢ X° (M) generates a flow having a C“.

global Lyapunov functlon

Proof.  Takens' proof‘of (a) extends to flows. Also (a) continues

to be equivalent to (d) a f1ne sequence of flltratlons {7] Such a
fine sequence produces a contlnuous global Lyapunov functlon Thlsr

can be made C® by the smoothing theory of Wllson [16]
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