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It is a classical procedure in algebraic topology

to triangulate a space and associate the chain complex

(*) ... > C,

e

of groups or vector s%hces generated by the pieces of 
the triangulations.

This complex only detérmines the additive homolbgy
structures and éays little about the igte:séctioh théory

of cycles in a manifold, the fundamental group, the

e

higher homotopy groups with their Whitehead producté, and 3 -

all the further "algebraic topology" of the space.

We are going to describe in this_paper how to en-
hance the chain construction (*} By”énlarging tﬁe-vector
spaces and adding préducts so that all the "algebraic |

topology" of the space ‘after tehsorinq.with the rational

field becomes readily calculzable.

First consider a single n-simplex 7. The points

P of T have natural barycentric coordinates (Xgr weer X))

defined by
P =.x0 VO + Xy Vl + .. F xnvh
where (VO, .oy Vn) are the vectices of rt.

.and the Xiﬂs_are nonnegative.realmnumbers_with.xo_+¢Xi;.T¢W”;}T

L, X =1,
n )




The plane of 1, A

o is éefined by dropping the
non-negative condition on Ehe barycentric coordinates {xi}.

The classical cochain construction associates cé£¥ff:
stants to the simplices 1 of the space. In the enhanced
construction we associlate w, a differential form on-thé
plane of T, to each simplex t in the triangulation.

We assume that w_ can be expressed as a sum,

W = z ail..i dxlﬂ"Adxr’
r

where each a. . = a. . (x, x -
¢ i....1 ol P | ( o’ 71’ ! xn)
1 by 1 r

is a polynomiaifin the barycentric coordinates of the
plane of t. The colleccion {wT} where T ranges through
the pieces of the triahgulation 6f a space X is called '
a differential form on X if the following coherence is . .
satisfied: | |

- - whenever ¢ is a face of T, w. restricted to the

in the sense of diffErential_fbrms.

plane of ¢ equals Wy

Denote the collection of differential'forms on a

triangulated space X by 5.‘&'

“Theorem A: The rational de Rham compléxcfx_af a trian-

‘qulated space X is a graded commutative differential

algebra over Q. The cohomology algebra o_f<§x is isomorphic'
by integration of differential forms to the rational -

cohomology algebra of X.

With rational coefficients.
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This theorem is proved much in the spirit of the

"proof of a real de Rham-theofem for polyhedra in the

wonderful book of Whitney, “"Geometric Integration"

Princeton, 1956.

The algebracfx has several attractive geometric
properties (see Appendix Gg) but we will first describe;'
an algebraic process for differential graded algebras
which will exhibit the higher drder alQébraic_topologyJ

of a space X when it is applied to fk.

Construction of the minimal model

Let £ be any differential graded algebra. We will

“try to construct a simple model of the "homotopy theofyﬁ'

of ¢ If (xl, Xy ..+) are variables in various dimeﬁ-
sions, let A(xl, Xor ,..)“denote the polynomial algebra.

on those in even degrees tensor the extenior algebra on -
those in odd.degreeé._ We will construct a map (for cer— -

tain variables Xyr Xor eea)

- : p .
A(Xl' X2, .n-) +E

~and a diffeérential 4 in A(le Xor ...) so that

!

i) p induces an isomorphism on cohomology

ii) each dx; is a sum of non-trivial products

*. A .. A%, for Ja.s e j. < i.
S P S BES LR AR *

It turns out that the model A(x, Xy, ...; &) is well

“defined up to isomorphism by i) and ii).~
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Suppose always that & is homologically connected
and for the moment that the first Betti number of & is

Ly
Pk

zZero. : ' - i

_ _ o T
Step l: Construct A(xl, seey xn)“i & where Xy dep X

are in dimension 2 and PXyr rees 09X, generate HZE.'_Q

Define d in A(;l, cee s xn} by dxi =0, i=1, ..., n,_i

n

Note that pl-is an isomorphism on cohomology in dimension 2

and injective in dimension 3.

Step 2: Adjoin three-dimensional Qariables to
'A{xl; .,.} xn) to make Py surjective on cohomology ‘in i
dimension 3 and injective on cohomology in dimension 4.

More explicitly, we form

Alxys yj) + Py, and d.

d is defined by

dy = 1 af. x.Ax k=1 m
. Atk i3 T3 e .
where £ is the rank of H%f and{Za?jxiij} is a basis for

kernel p; on 4-dimensional cohomology. .
p, is @efined by choosing'ngl;":tl;szy;'iaf“””'“
3 , L
generate H & and 92(y£+k), k=1, coo, m, to.satxsfy“

_ k DU

At this point one can show by a standard Postnikov

argument how this construction relates to the homotopy

theory of a simply connected space X. If £ is the de Rham

ot

E
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H (A(xl,xz, R SN SYRREEY 21;25,'f:.: a)) and:

PWguqs +e-r PWy. are elements in & whose differentials

ﬁlqebra of X (in any sense), then one finds the]S?QOn@;hOmPtOPY ¢
“2X'has rank n, W3X has rank 2+m, the Hurewicg map

X + H.X has rank £, and the symmetric pairing givenf?‘

Tl3 3
py Whitehead product

[,
1r2X ®172X ~— Ty

js described over the rationals by the i,j symmetric

}.)

tensor (ak.

1]

Now suppose by induction that i
‘ _ Pn

A(Xl; - % 0 F xn: yl' Yz' lll; le 22' ‘l.:d) L
has been constructed so that 4 of any generator is a pdly—
nomical in previous generators while pn is an isomorphism
on cohomology up through dimension n and injective in
dimension n + 1.

Then as in step 2 we adjoin variables in dimension
ntl to make p onto in dimension n+l and injective in
dimension n+2. In this general case we add variables
Wyr oo Wge Wayyr ===r w.. and define d and p = Pnt1 25
above., Now dwl,_.;., dwd are zero.and PUys ceer Pw4 : po
give generators of the cokernel of p on Hn+l:
dmd+1, ...,,dwr are polynomials in Xqr Xgr eeni Yyr Yor

_o..; le 22' . a0

which generate the kernel of Py ©OR

are these same polynomials in

pxl' sz, « ey pylr py2' P le, 022, LR -




_Continuing in this way we construct the minimal
model
A(xy, Xop wunt d) ; &

-

satisfying properties i) and ii) above.

Theorem B: Let X be a triangulated space which is simply _7'

connectéd. If
A(xl, Ryr vas) ; &
is a minimal model of the de Rham algebra then
i} the rank of m. X is the numfér of variables
"'in degree 1i. |
~ii) - the rank of the Hurewicz homomorphism
X > HiX is the number of d-closed generators in degreé i.
iii) the Whitehead products on homotopy are desj:
'cribed by the quadratic terms of the d-formulae of genera-
tors. |
Theorem B is proved by a not so.standard Postnikov
;argument using Theorem A and the commutativity of the
zwedge'product multiplication in £. The argument is baéed_.
on the beautifully simple Guy Hirsh method of computing
the‘cohomology of a principal G~bundle  over a manifold
'using différential forms (see appendix H). The Hirsch
systems in the Cartan Seminar 1954.
The proof of theorem B shows the model can be‘

used to directly construct the rational Postnikov system

H




©of X. These constructions yield

Theorem C:  There is a one to one correspondance between

simply connected rational hOmotdpy types and strict

isomorphism classes of differential graded algebras

'A(xl, Xor vee 7 d), dim x; > 1.

‘where each dxi is a decomposable polynomal in previous

1
generators.

The statement for non-simply connected spaces is

given in Appendix N.

The Topology of Smooth Manifolds

Theorem C (and its generalization):show that we caﬁ
identify the rationél homotopy theory of a space X with ¢ =
a certain-rationalbdifferential-graded algebra, ﬁamely
the model | |

A(xl, Xor eeer A).

If M is a smooth manifold we have the de Bham alge-

bra of C forms, A This is an algebra over the real .. .. . _._ ..

M
numbers, R, which should fit into the above picture,;,

Hexre's how.

i

We can perform the algebraic constric¢tion of a model

B e L TV

for the smooth de Rham complex.AM. We obtain a real

_.algebra, well defined up. . to isomorphism by i) and ii)

1 See appendix F for discussion of finiteness condi-
tions. :

el




above,

AM(xl',_ X

gr e 3 ) % Ay,

Theorxem D: (Generalized de Rham) The algebraic modéiv'
of the c® de Rham complex AM(xl, Xor +e. t d) is isomét?
phic to the model of the rational homotopy type :”-
A(xl, Xor wee 3 d) tensored by the real ngmbers.' %
This theorem is proved by choosing a smooth
triangulation and considering the diagram of algebras;

"{polynomial forms} @ R

¥ _
{smooth forms} + {piecewise smooth forms} -
Each of these algebras computes the cohomology bf:
M so the three models are isomorphic by unigueness.

So we can compute the hcmotopy groups of a simply=;

connected manifold tensored by the reals,'the Whiteheéd.;

products and so on. For non-simply connected mahifolas

we can determine from the smooth de Rham complex in
dimensions 1 and 2 (as described in Appendix N} a tower
of real nilpotent Lie groups {... Nk;+ Np_qg % e @ R? +-¢j
which are related to the fundamental group as follows;'r
if Fk denotes wl{modulo k-fold commutators then modulQ 

torsion), then the geometry of M determines an embedding

of Fk in N, as a discrete subgroup with compact quotient,

E




 Non-Abelian periods on smooth manifolds

We can find from the d-ﬁdfﬁdlae of the model a set .
of integrals defining a deté:mihiné set of periods for   i-
elements of the nilpotent nllquotientsl{Fk}. There is}én
analogous discussion for the higher homotopy groups.

For'example suppose the model begins as A(xi,xz,y)
with dy = xlﬂxz. Let Wys Wy n denote the l-forms in |
the manifold which are the p-images. of these model genera-
tors. 1If y is a loop in M based at p we can form the three
ingegrals'

[ oogn [ owy - [
Y Y Yy v

wylu,
The. first two periods are homology invariants of
since v, and w, are closed. The third integral is a

homotopy invariant of Y because dn = wjAw,. If we

“traverse Yy and then Yo the periods multiply like the '

matrices
1l X Z
0 1 Y
0 0 .
1 . . Thes e ....... i ter at;e d i nte gr a l . h ave e be an . con s id are d . i n

a general way, by Chen. Our theory seems to guide
their efficient application to homotopy theory,

[




| The map ¢ of M to tﬁe cdmpact niiﬁmanifold H/T

also generalizes and we obtaih a tower of maps of M
into a tower of nil-manifolds beginning with the Jacobiﬁﬁ:.
H, (M,R) /H) (M,2). | -
The next section shows how this construction becoﬁés _'

canonical if M is Riemannian

The Model of a Riemannian Manifold

If M is Riemannian we have the *-operator on forms,
% )
the adjoint of d, & = *d*, and the Hodge decomposition
* -
w=dx +dy +h
w w w ,
:where Xyo Yo and hw are unigue subject to the conditions
* : : %
X, € image of 4 , Y ,E image d, hwe ker dN ker d .
This follows cn the formal level from the "disjoint-

*
-ness“ of 4 and 4 :

aa* x = 0=da'x =0
d*a y = o=>dy = 0.
Thus w is closed iff Y, = 0. Then w is cohomologpus_
to a canonical form, the harmonic representative hw; |
“And fihally if v is exact y ~and h are zero and v is the
differential of a canonical form xw. |

We can use the Hodge deccmposition to rigidify the

model of a Riemannian manifold. In the construction of

»

p
p
A(xl, XKyy veed d) — {smooth forms}

we have to make various choices. For example we have to

choose




i) representatives of certain cohomology classes’
in therihductiyely‘constructed model |
ii) form representatives of classes in quotients
0f the cohomology of the manifold |
iii) solutions of the equation dx = w in the manﬂfold
with w given. : |
Now the forms of M have a natural metric defineé
from the metric on M by exterior aléebra and integration.
The cohomology groups of M inherit the metric of the
harmonic subspaces. This makes the choices in ii) canoni=-
cal - we take the harmonic representative. FUrthef uée
of the Hodge decomposition discussed  above makes the
choices in iii) canoniqal. To rigidify the choices of i)=
we again use the metric on harmoniclforms to:inductivély_
construct a'metric on the model (so that 4 restricted to

the orthogonal complement of its kernel is.an isometry).

Theorem E: =~ A Riemannian manifold has a canonical model

A(xq . XszQf.)jL*{forﬁs} | |
defined using harmonic and co-closed forms.

‘This point has several corollaries.

First an isometry éf M will act on the canonical
model. A simple inductive argument shows £hat this action
is determined by its action on the harmonic forms. Thus.

we obtain, -

Corollary 1: The real homotopy theory of an isometry is

determined by its action on the real cohomology.
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For example the action of an isometry on Hl-deter—

mines its effect on all the nilpotent guotients {Ik}.

(and analogously for higher Homotopy.) Oﬁe ihterestiné..t
case is that of an orientable surface M2. Here we canr
deduce that the isotopy class of the diffeomorphism
underlying an isometry is determined by its action on
Hle. This is very far from true forrnon—isoﬁetriesi

Another point is the following:

The canonical model determines for each k,'a canoni-
cal real nilpotent Lie group associated to the manifold.l
We also have canonical l-forms in the manifold which are
algebraically like the invariant forms on Nk. We can
form the non-abelian period integrals as abqve and for
each starting point p.in,M-we obtain a uniform discrete -
subgroup_?chk by integrating aroﬁnd lesed paths atlph
As p varies _continliously this discrete subgroup'varie§ 

continuously. Thus we have a bundle of lattices,

' {I‘pCNk}.

Forming integrals of non-closed paths starting at p

leads to natural non-abelian Jacobians

b p K
M —— N /T .
- p
1 Thus we can define the real form of Ty by choosing

a metric rather than a base point.




If M is complex and the metric is Kaehler this
bundle of lattices and the non-abelian Jacobians only
depend on the complex structure. This is clear for sdt?*ff
faces where * pn 1_formsl is fotation by /2 and has
holomorphic meaning.

Now consider the wedge product of harmonic formé.
On some manifolds for example symmetric spaces, the pro-
dﬁct of harmonic forms is harmonic. In this case the.
construction of the model becomes formai.' When a poly—‘
nomial in harmonic forms is exact it is actually zero.

So we can write it as d(zerc) and sendithe corresponding
generator of the model %o zero.

The entire construction is determined by the struc-

ture of the cohomology. ring.

Corollary 2:  There are topological ohstructions - for M

~+to -admit- a metriC‘in-which'thefproduct'of'ﬁarmoniclﬁotﬁsr”'l
is harmonic. If M does the real homotoéy theory of M
is a formal consequence_of the cohomology ring.

More generally, the structure of the hafmonic forns
with respect to products is mirrored in the strucﬁure of

‘the real homotopy theory.

1 This is joint work with J. Morgan, P. Griffiths
and P. deLigne.




Kaehler Manifolds

1f M2

admits a Kaehler matric, for exémple if M is an

algebraic submanifold of complex projective space, then certaihr

faects are known about the cohomology ring of M. For example,

the metric defines a 2-dimensional cohomology class we HZ(M;§f ”

so that c¢upping with w i-times defines an isomorphism -
Hn-i(M) v Hn+i( '

Y

M) .

These theorems are proved using the Hodgé decomposition
of forms although they were first found by Lefshetz using
geometric methods.

We can add to this structure theory of Kaehler manifoldsr
by pursulng further the Hodge method and combining it with: the'
generallzed de Rham theory above.

.The argument is simple to state and goes :as folldws:

On any complex manifold M we have. the J—operatorVOn reai'
forms and we can form a new differential | |

-1

dc =J ~.d J.

Now we can form the natural diagram associated to M,

{4,. closed forms. projection . |d_ closed] inclusion  {all _
imodulo d e forms ——— smooth fory
exact forms" N S
On the left we have an algebra isomorphic to the-cohomblogy
ring and on the right we have the de Rham algebra. Because of

the 1ntegrab111ty condition that 4 and d anti-commute this is

a dlagram of dlfferentlal algebras.

If the complex structure admits a Kaehler metric, the
induced differential on the left is identically zero and the

two maps induce isomorphisms of cohomology. This is easy to




which states that a closed form of type (p,q) is ‘exact iff
it can be written as 3% of a form of type (p~1, g-1).

S50 we have

Theorem K: There is a homotopy equivalence in the sense of
differential algebras between the real cohomology ring of a
Kaehler manifold and its real de Rham algebra. The eguivalénce

is natural for holomorphic maps between Kaehler manifolds.

Corollary 1: The minimal model for the real homotopy theory.

of a Kaehler manifold can be deduced formally from the coho-
mology ring. For example the real form of the lower central
series of m, can be deduced from HI (M) and cup prcducts

1
Hl & Hl + H2

-Corollafy'2: -The real-(or-rational)-homotopy'theory ogrra .

helomorphic map between»Kaehler manifolds is determined by the
induced map on real cchomology. For example, a holomorphic
map- between Riemann - . surfaces is-completely. determined up £O'-?

homotopy by the map on first cohomology.

Remarks i)} One should point out that although the isomorphismj
class of the minimal model of a Kaehler manifold is detefmined |
by the cohomology ring, the map of the model into the fofms
A(xl, Xor wnei d) #_g) AM
is still very interesting.
As remarked above, a meﬁric.makes p canonical and the

structure of p on the subalgebra generated by dégree 1 only"

depends on the complex structure. These p-forms should have

geometric applications generalzing those of the abelian




differentials or holomorphic l-forms.

ii)  The formality éf the model is a very precise form of
the statement that all higher order cup products (i,e._Mas$§y v?
products) vanish in a Kaehler manifold. This statement inﬁ
its less precise form was suggested to P. Griffiths; J. Mo:gan;.
and myself by P. Deligne for algebraic manifolds as follo&iﬁg
from the unprofed Weil conjecture about the.size of the
eligenvalues of Frobenius on f-adic Cohdmology;

This remark certainly spurred the final form of these
results which had languished in an embryonic state for nearly
a year before Deligne's suggestion. Atthis conference Atiyah
informed me that ten years ago Serre had obserﬁed that certain
triple Massey products of l—dimensionai cohomology clasSes'héd
to vanish because of the (p,g) decomposition on 1 and 2 dimen—J

sional cchomology.
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If M is a-Rieménnian ménifbld, it is interesting in the
study of closed goedesics on M to understand the cohomolog§ |
of the function space of all maps of the circle into M,g\jM)f

If we denote the ordinary loop space of M, i.e. the spécé

of based maps of the circle into M by OM, then we have the

fibration
QM » A (M)
s
i;
7
M{

with a canonical section.

In rational homotopy theory GM isg fairly easy to undersfand
— its minimal model will have one generator for each geheratqr
of -the model for M in one lower dimension and zero differen£ial;
if model for M = A(xl, X5¢ ++.; d) the model fo; aM = A(§l£~§é; 7.,g'
with (dim ¥) = (dim x,) - 1. o

The homotopy structure of A(M) is more subtle and'uses al1
of the information in the model of M. Because of fibration
with section, the generators of the model for A(M) will be~th¢
x;-and the Ei. The differential in the model is defined'as“ |
follows

dxi'is the same as in the

model of M, and

dx. is dx.

where the bar operation on polynomials in the X is defined to

be the unique derivation’ extending the operation X, > §i.

1. acting on right to get the signs correcﬁ




So the model for the'space of all closed curves on M is
A.(‘x_l, ;1, X.2, ;52' cees d)

dx, = dx., dx. = aX..
i i i i

For example let M = 82 with model A(x,y,d) with dim x = 2 and

dy = xz. The model for the space of closed curves on-S2 is.

AMx, %, v, ¥, ) with dx = ax = 0, dy = x2, dy = 2xX.
We claim this formula is valid for simply connected mani-

folds (or even nilpotent spaces) and immediately implies'ihe

following:

Theorem: For all closed simply connected manifolds M, the
space of closed paths on M has infinitely many non-zero Betti

numbers in an arithmetic sequence of dimensions.

Proof: Let x .denote .an odd dimensional generator of the modgl
for M of lowest dimension. (Such an x exists for otherwise':
the modei‘would have only even dim'l polynomial generatofs,%d
would have to be zero, and the cohomology of M would be infinite
dimil.)' Suppose dx is a polynomial in the even generétors

el; ez, ey en. Then.consider in the model for the space of

" all closed curves on M, the family of elements

{'él,\ €y -ne ‘énAi“J} J =1, 2, ..

By the choice of x, de, is zero, so dgi = 0. Also dx is

in the ideal generated by El, 52, cees Eh'by our formula. Since

-these -elements are odd-dim'l and have sqﬂare'zero“we-seé that
the infinite sequence of elements describedrabove are all
closed. None of these are exact because the formula shows the
ideal of boundaries is contained in the ideal geﬁerated-by

90 see QED




This result gives some information on closed geodesics
using the work of Gromall, Mayer, and Klingenberg. One would
like to know however that the Betti numbers of the space oflf_
all closed curves grow arbitrarily large. 1In this case one -
knows -that M has infinitely many distinct closed geodesics
for any metric.
| To have any hope for this one needs to know the Betti
numbers of the ofdinary loop space IM are unbounded. This

gquestion can be analyzed.

Theorem: The Betti numbers of the loop space of a simply
connected finite complex X are bounded iff the cohomology ring

of X 1s generated by one element.

Problem: Is this theorem true for the space of al; cloéed
curves? o

- We close this section by noting that the formula is proved
by'aﬁ induction argument ovexr the Postnikov system. The fiﬁal
formula can be motivated by the_following algebraic problem:

IGiven.a differential algebra A find a new differential
algebra A~ so that the maps of A~ into an arbitrary algebra
C are in one to one correspondenée with the maps of A intq
C with one variable adjoined in degree one.

This is the algebraic aﬁalogue of the relationship between

a space X and the space of all closed cﬁrves on X, AX. Namely,

RN (RS
The solution of the algebraic problem is just the solution
of the homotopy theoretical problem. This idea is used in the

proof and allows one to give analogous formulae for the topologv

of other function spaces.
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i) + If X has a finite triangulation with vertices

Xl,'..-, X

e+ the rationél\de Rham algebra has an explicit

presentation

d; = A(xl, cenr X dxl, ey dxn)/I

where I is the ideal generated by

xl + LI + xn-—l

8%, + ... + dx

1 n
{x' sea X dx- A o w Adx. }
11 tr Ji Js .
where {X., , X: .cevy X: ¢ Xo 4 oue ¥X. }
iy i, i 3y Ty

is not spanned by a simplex.

ii)  -Whitney has defined a canonical chain inverse .to.

integration .

integ Whitney - ,
-.cochains on X ._M£3595a+ é% -;ﬂgfgfatlog cochains on X

These Whitney forms will probablyﬁfiguxé.in:certain
geometrical questions on triaﬁgulated ménifblds‘

For example using the Whitney forms one can construct
a very appealing chain map (ovef Q or R)'froﬁ a subdivision
(over Q or R) up to a coarser triangulation. In the

special case of the figure




this chain mapping carries the one simpléx ﬁé to a one
chain whose coefficient on BC is the ratio of the area -
of APQ to ABC. |

_ This construction can in turn be used to define a
natural intersection for chains in the dual subdivision
of a manifold. For this one uses the composition

st barycentric

subdivision

dual subdivision =+ 1

Whitney
initial triangulation
to push a chain on the dual subdivision back to the original
triangulation. Then intersection witﬁ another chain in

the dual subdivision can be calculated.




The motivation for this entire work on combinatorial
forms and de Rhiram theory came at this peint because it
was hoped a sufficiently beautiful star operator_cbuld’beg.'
constructed combinatorially to find a formula for the
Pontryagin classes.

To find these formula for the Pontryagin classes it;
is sufficient to find a vertex formula for the signature’”
of a triangulated 4k-manifold. This veftex formula can
in turn be found if a symmetric transformation Cék_'i 3 ct
can be constructed so that |

i) * d = o*

|+

ii) * 5 = + a*
iii} * is local in character
iv} *:is.a matrix for cup product folldwed'by evalua=~
tion on the orientation-class. |
v) the eigenvalues of * are contained in

{0: + lr ‘1}

[




APPENDIX H (Hirsch Method)

If G+ E » M is a principal G-bundle over a manif
fold M, and {{ is a differential algebra mapping to the
forms on M thch computes the cohomology of M, then

e A(xl, cevr X))
can be supplied with a differential in such a way that$
the cohomology of E results. Herxre A(xl, ...,'xn) is the‘
cohomology of the fibre G and—dtlﬁxi) is ciﬁl where ci.is 
a representative of the characteristic ciaés of E.

This same method is applied inductively to Postnikov

systems to prove the theorems of the paber.

Now we are inductively considering principal fibra-

tions

where K has one non-zero Abelian homotopy group in dimen-
sion in > 1. - |

Using the Hirsch method ahd the existence of the
rational de Rham algebra which is commutative and correctly
compﬁtes cohomology we can'inductively construct différen—
tial élgebras of the minimal model type which cbmpute
the cohomology of.the spaces {X . .} in any countable
system of maps like the T

At each étage in the construction we are adding a
vector space of generators of the same rank and dimension

of the homotopy group of K to the algebra for Xn to obtain




the algebra for Xn+l'

This fact and'the uniqueness property of the model
which is an algebraic analogue of the corresponding pro-
perties for Postnikov systems provide the skeleton of thei 3

proof of theorem B.




APPENDIX N (Non-Simply Connécted Spaces and Nilpotent groups)

When the first Betti number is non-zero, the construc=

£ion of the minimal model 6f the de Rham.algebra has
possibly infinitely many steps in each dimension.

For example, the subalgebra of the model generated
.by the generators in dimension one is an i?creasing union

of exterior algebras with differential

Al = ngﬂ Al,n'

Al’o is the exterior algebra on the first cohomology -

with d = 0, and hy , is obtained from Ay p-1 PY adjoining

a vector space of generators in degree one of the same
rank as the Abelian group, C 1/C where {C } are subgroups

of the lower central series of T defined by

0 = 1’ and C +1 = [C ,wl], n > 0.

A dlfferentlal is defined which determlnes the struc-

FC

ture of the extension. of nilpotent.groups
0~ ¢\ y/C, > m/c + "/Cpoy * 1
tensored by Q or R whichever is relevant.
This determination of structure uses two facts
i} a nilpotent group over Q or R determines and
is determined by its Lie algebra (over Q or R) using the
expontential isomorphism.
| ii) the Lie algebra over Q or R when dualized is
nothlng other than an exterior algebra on a vector space

in degree one with a differential.




mines the nilpotent quotient 'rrl/Cn tensored by Q or R. -

1t is perhaps important to note that the minimal model
A:of the de Rham algebra is constructed in a purely
algebriac computational construction as indicated in the; '
text above. The structure of the model then determines
the form of the lower central series of Ty {(over Q and R)'
and so on for the further rational or real hpmotopy theory.

The subalgebra A, of A mappinghtd the de Rham algebra

1
is constructed so we have an isomorphisﬁ-of Hl and an injec-
 tion oh Hz. Then 2 dim'l generators are added in a possibly
infinite sequence.of steps. The firstrstep creates an
‘isomorphism on G and the later steps produce an injection -
on'H3. Then 3 dim'l generators are added in a possibly :
infinite sequence of steps, 4 dim'l, and so on to build..
the complete model.

The structure of model over Q for the rational de Rham
- algebra of a space corresponds (via the Hirsch calculafion:
described in Appendix-H) -to a tower of spaces and maps. .
Each map in the tower is a principal fiﬁration where the-
fibre has one non-zero homotopy group which is a rationéi
;veétor space.

This tower of spaces is the rational homotopy fy@e of
the space which is defined in general for all spacés
regardless of the fundamental group.

We have described above the relationship between the
Al of the model (énd therefore the tower)rand the lower
central . series of the fundamental group of the space. The
significance of the higher dimensional structure of the
model and the tower for the general non-simply connected-
spacés is somewhat complicated and not yet completely

undergstood except in a philosophical way.




" APPENDIX F

Strictly speaking the theorem is correctly stated
for spaces with finite Betti numbers. It is easy to
treat the general case however. One oniy needs to observe
that any space is a union of its finite subcomplexes
and the (Q-cohomoclogy of the union is the inverse'limit
of these finite dimensional cohomblogies.

Thus in the theorem we really'needrihverSe limits

of models for spaces with finite Betti numbers. Alter-

natively we could dualize these to coalgebras.




