A REMARK ON THE LEFSCHETZ FIXED POINT FORMULA FOR DIFFERENTIABLE MAPS

M. SHUB and D. SULLIVAN

(Received 10 September 1973)

IF 0 is an isolated fixed point for the continuous map $f: U \to \mathbb{R}^m$, where U is an open subset of \mathbb{R}^m , then the index of f at 0, $\sigma_f(0)$, is the local degree of the mapping Id-f restricted to an appropriately small open set about 0. If 0 is an isolated fixed point of f^n , then $\sigma_{f^n}(0)$ is defined for all n > 0, where f^n means f composed with itself n times restricted to a small neighborhood of 0. We will use a little elementary calculus to show:

PROPOSITION. Suppose that $f: U \to R^m$ is C^1 and that 0 is an isolated fixed point of f^n for all n. Then $\sigma_{f^n}(0)$ is bounded as a function of n.

The proposition is not true for continuous functions as the mapping of the complex plane $f(z) = 2z^2/||z||$ shows. In fact, for this f, $\sigma_{f^n}(0) = 2^n$. Our interest in the proposition arose from the Lefschetz fixed point formula as applied to a smooth endomorphism f of a compact differentiable manifold M. The Lefschetz formula says that the Lefschetz numbers

 $L(f^n) \equiv \sum (-1)^i$ trace $f_{*i}^n : H_i M \to H_i M$

can be computed locally by these fixed point indices,

$$L(f^n) = \sum_{P \in Fixf^n} \sigma_{f^n}(P),$$

provided that the fixed points of f^n are isolated.

COROLLARY. If $f: M \to M$ is C^1 , and the Lefschetz numbers $L(f^n)$ are not bounded then the set of periodic points of f is infinite.

In particular, any C^1 degree two map of the two sphere, S^2 , has an infinite number of periodic points and hence an infinite non-wandering set [see 1].[†] The corollary suggests the possibility of getting sharper estimates on the asymptotic growth rate of $N_n(f)$, the number of fixed points of f^n .

Problem. If $f: M \to M$ is smooth, is

$$\limsup \frac{1}{n} \log |L(f^n)| \leq \limsup \frac{1}{n} \log N_n(f)?$$

[†] Note that the one-point compactification of $f(z) = 2z^2/||z||$ is a continuous degree two map of S^2 with only two periodic points.

As remarked in [1] this inequality is rather obviously true for the set of C' endomorphisms f of M which have the property that all periodic points of f are transversal. Then, of course, $|L(f^n)| \leq N_n(f)$.

We now proceed with the proof of the proposition. In all that follows below f is C^1 and 0 is an isolated fixed point of f^n for all n. The idea is to try to approximate $I - f^n$ by $(I + f + f^2 + \cdots + f^{n-1})(I - f)$ so that if $I + f + f^2 + \cdots + f^{n-1}$ is a local diffeomorphism then degree $(I - f^n) = \pm$ degree (I - f). To make this precise and to do the estimates we work with the derivatives of f^n at 0 which we denote by Df^n .

LEMMA 1. If $\sum_{j=0}^{n-1} Df^j$ is non-singular then $\sigma_f(0) = \pm \sigma_{f^n}(0)$.

Before we prove Lemma 1 we will show how it proves the proposition. $\sum_{j=0}^{n-1} Df^j$ is singular precisely when n = mk, k > 1, and Df has a primitive kth root of unity as an eigenvalue. For each integer n, let λ be the least common multiple of these orders k. Then we may apply the proposition to see that $\sigma_{f^n}(0) = \pm \sigma_{f^{\lambda}}(0)$. (If $(k_1, k_2, ...)$ are the orders of roots of unity in the spectrum of Df, then $(k_1/g.c.d.(k_1, \lambda), ...)$ are the orders for Df^{λ} . But now n/λ is not a multiple of any of these orders greater than 1.)

Since we only need finitely l.c.m.'s λ to take care of all the integers *n*, this argument proves the proposition.

A standard fact that we shall use in proving Lemma 1 is:

LEMMA 2. If $h, k: U \to \mathbb{R}^n$ are continuous, have 0 as an isolated 0 and ||h(x) - k(x)|| < ||h(x)|| then degree (h) = degree(k).

Proof of Lemma 1. Let $f = Df + \theta_1$ and $f^n = Df^n + \theta_n$.

Then
$$I - f^n = I - Df^n - \theta_n$$

= $(I + Df + \dots + Df^{n-1})(I - Df) - \theta_n$
= $(I + Df + \dots + Df^{n-1})(I - f) + (I + Df + \dots + Df^{n-1})\theta_1 - \theta_n$.

We will show by induction that given (n, ε) there is a neighborhood $U_{n,\varepsilon}$ of 0 such that

$$\left\|\left(\sum_{j=0}^{n-1} Df^{j}\theta_{1}-\theta_{n}\right)(x)\right\|<\varepsilon\|(I-f)(x)\| \text{ for all } x\in U_{n,\varepsilon}.$$

So that if $\sum_{j=0}^{n-1} Df^j$ is non-singular then by Lemma 2,

degree $(I - f^n)$ = degree $(\sum_{j=0}^{n-1} Df^j)(I - f) = \pm$ degree (I - f).

To estimate $\sum_{j=0}^{n-1} Df^j \theta_1 - \theta_n$ first observe that $\theta_n = \sum_{j=0}^{n-1} Df^{n-j-1} \theta_1 f^j$ as can easily be seen by induction. So

$$\sum_{j=0}^{n-1} Df^{j}\theta_{1} - \theta_{n} = \sum_{j=0}^{n-1} Df^{n-1-j}\theta_{1} - \sum_{j=0}^{n-1} Df^{n-j-1}\theta_{1}f^{j}$$
$$= \sum_{j=1}^{n-1} Df^{n-1-j}(\theta_{1} - \theta_{1}f^{j}).$$

By the mean value theorem

$$\left\| \left(\sum_{j=0}^{n-1} Df^{j} \theta_{1} - \theta_{n} \right)(x) \right\| \leq \sum_{j=1}^{n-1} \| Df^{n-1-j} \| \| D\theta_{1} \|_{Un, \varepsilon} \| (I - f^{j})(x) \|$$

where $||D\theta_1||_{U_{n,\varepsilon}} = \sup_{x \in U_{n,\varepsilon}} ||D_x\theta_1||$. Since $D_0\theta_1 = 0$ it clearly suffices to prove inductively that given j < n there is a neighborhood V_j of 0 and a $0 \le k_j < \infty$ such that

$$||(I-f^{j})(x)|| \le k_{j}||(I-f)(x)||$$
 for all $x \in V_{j}$.

Since

$$I - f^{j} = \left(\sum_{i=0}^{j-1} Df^{i}\right)(I - f) + \sum_{i=0}^{j-1} Df^{i}\theta_{1} - \theta_{j},$$

we can inductively choose $U_{j,\epsilon}$ so that

$$\|(I-f^{j})(x)\| \leq \sum_{i=0}^{j-1} \|Df^{i}\| \|(I-f)(x)\| + \varepsilon \|(I-f)(x)\|,$$

and we are done.

REFERENCE

1. M. SHUB: Dynamical systems, filtrations and entropy, Bull. Am. math. Soc. 80 (1974), 27-41.

Queen's College, New York Massachusetts Institute of Technology