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The transversality characteristic class 
and linking cycles in surgery theory 

By JOHN W. MORGAN and DENNIS P. SULLIVAN 

This paper contains two interlocking results. The origin of the first is 
the idea of Thom that the rational Pontrjagin classes of a manifold can be 
defined by transversality. This procedure is a beautiful juxtaposition of 
algebra and geometry. On the algebraic side is the fact that a rational co- 
homology class is determined uniquely by its "periods" or values on the 
rational homology. On the geometric side is the fact that transversality 
produces enough submanifolds of Mx RN with trivial normal bundles to 
generate the rational homology of M. 

The geometric properties of these submanifolds are invariants of the 
manifold M. In fact when the submanifold has dimension 4k, the signature 
of its intersection pairing on 2k-cycles only depends on the homology class 
that it represents in M. Thom uses these submanifold signatures as the 
periods and produces a sequence of rational cohomology classes 

L1, L2, -. ., in H4*(M; Q). 

These Thom characteristic classes are expressed by the famous Hirzebruch 
polynomials in the Pontrjagin classes 

= p1/3, L2 = (7P2 -p)/45Y ... 
when M is smooth. For a more general class of manifolds these classes of 
Thom can be thought of as a natural consequence of transversality and the 
existence of the signature cobordism invariant of closed manifolds. 

In this paper we make use of the stronger facts that the signature is 
defined in Z for manifolds with or without boundary, and that it is additive 
under the operation of pasting manifolds together along components of their 
boundary. 

This last property of the signature imposes significant arithmetic condi- 
tions on the Thom characteristic classes L1, L2, ... of general manifolds. 
These are naturally expressed for odd primes by the statement that the 
Poincare dual of 1 + L1 + L2 + *-- is the character of a natural K-theory 
duality (at odd primes) in the manifold. This result is discussed in [S2] and 
[S4]. 
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464 J. W. MORGAN AND D. P. SULLIVAN 

In this paper we will discuss the arithmetic properties of the L-charac- 
teristic classes at the prime 2. The discussion is surprisingly strenuous. 
For motivation and justification, we offer the remark that a complete de- 
termination of these arithmetic conditions leads one to a complete list of 
homeomorphism invariants for simply connected n-manifolds (n > 4) beyond 
those of homotopy type [S3]. The problem of homeomorphism invariants is 
the origin of the second result of the paper. 

In order to fix ideas, let us see where one is lead by trying to define a 
canonical 2-integral L-characteristic class for topological manifolds. By a 
2-integral L-class we mean a sequence of cohomology classes 

Ji C H4i(M; Z(2)) l y =1, 2, 3, ..., 

where M is the manifold and Z(2) is the ring of rational numbers with odd 
denominator. 

We will discuss our procedure in relation to the construction of Thom. 
First of all, in Section 2 we describe an algebraic result to the effect that an 
integral cohomology class is precisely determined by a set of compatible 
"Q-periods" and "Q/Z-periods" (Theorem 2.1). The "Q-periods" are defined 
as before for rational homology and the "Q/Z-periods" are defined for 
Q/Z-homology. The appropriate local form of this result uses (Q/Z(2,) = Z2?)- 

periods instead of Q/Z-periods for determining Z(2)-cohomology classes. 
The Q/Z-homology classes of M are determined by Z/n-homology classes 

of M. We can try to represent these geometrically by a nice cycle M X RN. 
The appropriate geometric object is a "Z/n-manifold" - a space obtained 
by identifying isomorphic boundary components of a compact manifold 
in "bunches of n". These identifications are to respect orientations. Z/n- 
manifolds can be treated in many ways like oriented manifolds. 

This discussion occurs in Section 1. For example, Z/n-manifolds have 
oriented tangent bundles and a signature in Z/n which is a cobordism in- 
variant. A Gauss map can be defined by embedding the Z/n-manifold so that 
the n-sheets are all tangent at the Bockstein. 

Bockstein 

Z/n-manifold 

The signature is defined by taking the residue class of the integral 
signature of the corresponding manifold with boundary (modulo n). The 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 465 

additivity property of Novikov implies that this residue class is a cobordism 
invariant in Z/n for Z/n-manifolds. 

Now we can use transversality to represent any Z/n-homology class by 
an embedded Z/n-manifold in M x RN when n is a power of 2. This follows 
from the cobordism work of Thom and its extensions by Wall and Conner- 
Floyd. 

We can say nothing about the normal bundle, however, except that it 
is smooth. So this geometric representation is highly non-unique. Thus we 
cannot directly use the signatures of these submanifolds in Z/2k as the 
"Z20.-periods" of our 2-integral L-class. 

To overcome this difficulty we begin a boot-strap operation which first 
solves the problem in case M is also smooth using the explicit homology pro- 
perties of the universal grassmannians. This also gives 2-integral L-classes 
for vector bundles. Then we continue with a construction of the 2-integral 
L-class in the general topological context by an inductive procedure which 
produces first 11, then 12, and so on. At each stage we construct the Z2?- 

periods for a topological Z/2k-submanifold with smooth normal bundle from 
its signature and its inductively defined i-classes in conjunction with the 
smooth L-class of the normal bundle. 

The construction of the smooth L-class is given in Section 3. The for- 
mulae of Hirzebruch only involve odd denominators and so define 2-integral 
classes (since the Pontrjagin classes are integral). These classes are not 
exactly right for our purposes, however. We construct a universal class 

Lso = 1 + 11 + 12 + * * - 

which agrees with the inverse Hirzebruch class rationally and reduces mod 2 
to the squares of the even Wu classes 

1l - V2 12 - V4 * **(o2) 

by a mixed algebraic-geometric argument (Theorem 3.2). This class satisfies 
a good product formula because v2i+1 vanishes in the oriented context. 

In Section 4 we develop the algebraic apparatus for the inductive argu- 
ment indicated above. The result is, roughly speaking, that a cohomology 
class is determined by a set of periods on cobordism classes of submanifolds 
which satisfy certain product relations (Theorem 4.1). 

The brunt of the mathematics in the paper is concerned in one way or 
another with these product relations. One difficulty arises because the to- 
pological product of two Z/n-manifolds has a codimension 2-singularity, 
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466 J. W. MORGAN AND D. P. SULLIVAN 

where the transversal is the cone over (n points) join (n points). This sin- 
gularity can be resolved in a natural way so we have a product operation 
for Z/n-manifolds. Now, however, it is not geometrically clear that the 
signature of this product of Z/n-manifolds is the product of the signatures. 
This is true (Theorem 6.6), but the proof for n even is quite difficult. 

Once we have this product formula we are able to prove one of the two 
main results of this paper. That is we extend the 2-integral L-class to a 
natural characteristic class for all topological RI-bundles. That is if en - X 
is such a bundle we have li(2) e H'i(X; Z(2)). Rationally this class is the in- 
verse of the L-class constructed by Thom. Reduced modulo 2, 1i is (v2%)2. 
The defining property of 1i is that it measures the signatures of transversal 
intersections of manifolds and Z/2k-manifolds mapping into the Thom space 
of C with the 0-section. This result is proved in Section 7. 

This brings us to the surgery theory of the paper. Recall that one of 
the most interesting arguments in the basic paper of Kervaire and Milnor 
on exotic spheres showed how to produce by surgery a 4k-manifold whose 
boundary was a given partially parallelized' (4k - 1)-manifold. It was implicit 
in their discussion that the signature of this 4k-manifold was well-defined 
modulo 8 by the (4k - 1)-manifold with partial parallelization. 

One of our favorite results in this paper provides an explicit geometric 
calculation of this mod 8 invariant of (4k - 1)-manifolds without doing sur- 
gery. Let (M4k-l, F) denote the manifold with its partial parallelization F. 
Let 

TXD To Q/Z 

denote the linking form on the torsion cycles of M in dimension 2k - 1. On 
the odd torsion subgroup of T, I can be algebraically refined to quadratic 
function T q i- Q/Z, satisfying 

(i) q(x) = q(- x) 
(ii) q(x + y) = q(x) + q(y) + l(x, y). 
On the 2-torsion subgroup of T we can represent homology classes by 

embedded submanifolds with a normal field which is compatible with F (see 
Section 5). Using these normal fields we define q on the 2-torsion of T. 

Then we form the Gaussian sum 

The argument of this complex number is an eighth root of unity which 

On the 2k-1 skeleton. 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 467 

determines the signature mod 8 mentioned above (Theorem 5.8). 
We also prove an analogous result for a surgery problem 

L4k-1 ) j4k-1 
g 

between two (4k - 1)-manifolds (Theorem 5.8). In this case, the quadratic 
function is defined on Tg, the torsion subgroup of the homology kernel of g 
in dimension 2k - 1. The argument of the corresponding Gauss sum now 
determines the signature mod 8 of a surgery cobordism of g to a homotopy 
equivalence. 

We study this invariant @(g) in Z/8 determined by embedded cycles 
with normal fields in Section 5. The discussion is mostly geometric. 

Then we use this a priori description to give a formula for the surgery 
obstruction in Z/n for a normal map between Z/n-manifolds of dimension 
4k, 

V4k f W4k 

This formula involves the Z/8 invariant of f along the Bockstein and the 
signatures of V and W (opened up) in Z/8n.2 Namely, 

0f = (1/8)(signature V + ne(3f) - signature W) 

in Z/n (Theorem 5.3). Note that the terms of this formula can all be com- 
puted by intersecting cycles and homologies in V, W, and aV. No surgery 
is required. 

Then we come to the most interesting geometric step of our discussion. 
This arises in the problem of giving a formula for the obstruction in a 
product of two surgery problems. Proposition 6.3 is a local geometric product 
formula which is quite fun to prove. 

The result contains a surprise. It shows for example that the e-invariant 
of a map obtained by forming the Cartesian product of a non-bounding ori- 
entable 5-manifold (e.g. SU3/S03) with a surgery map in dimension 4k + 2 
with non-zero Kervaire invariant is non-zero. 

So the theory of the Kervaire invariant is subsumed by the theory of 
these signature invariants along Z/n-manifolds. 

The general product formula for surgery problems over Z/n-manifolds 

M f > N and L ) Q (Theorem 6.5) reads 

a(f (? g) = i(Q)a(f) + i(N)a(g) + 8a(f)a(g) 

where i is an absolute invariant of manifolds computed homologically. If L 
2 These surgery obstructions were introduced in 1966 by the second author to obtain the 

invariants for the Hauptvermutung. 
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468 J. W. MORGAN AND D. P. SULLIVAN 

has dimension 1, then i(L) is the signature of L in Z/n when 1 _0 (mod 4), 
i(L) is the de Rham invariant of L in Z/2 if 1 1 (mod 4), i(L) is the de Rham 
invariant of the Bockstein of L if 1 2 (mod 4), and i(L) is zero if 1 
3 (mod 4). 

The formula is the subject of Section 6 where the de Rham invariant is 
discussed and defined. 

This paper concludes with two applications of the product formula. The 
first allows us to prove the product formula for the signature of Z/n-mani- 
folds, Proposition 6.6. Then we can finish the construction of the 2-integral 
L-class for topological manifolds. This is done in Section 7 in the more 
general context of bundles. One corollary is a "Hirzebruch formula" for the 
signature of a Z/2k-manifold in terms of the characteristic classes of its 
tangent bundle (Proposition 7.2). 

In the final Section 8 we give the second application which concerns the 
universal spaces for surgery problems Gipl and G/Top. By the same gen- 
eral method used in constructing the transversality characteristic class we 
construct a 2-integral class S C H4*(G/Top; Z(2)). This class figures in a co- 
homological surgery obstruction formula (Theorem 8.7): 

v(f) K<5f -?M, M> + < *(kf - WM), M>. 

Here M GITop classifies the surgery problem f, 5f is the restric- 
tion of the universal class 5 in G/Top, 2m is the transversality character- 
istic class for M, kf is the restriction of the universal class constructed in 
[RS], and WM is the characteristic class which tabulates the de Rham in- 
variant 

Wm = (1 + v2 + v4 + )Sq'(1 + v2 + v . + .)(M). 

The classes 5 and k in the cohomology of G/ Top yield a canonical 
structure theorem for this H-space at the prime 2. We also obtain the 
analogous structure theorem for G/pl. 

Historical note and acknowledgments 

The existence of the two cohomology classes constructed in this paper 
was established by the second author in 1966-1967 by approximately these 
methods. A non-canonical construction of the G/pl-class was outlined in 
the Princeton notes [S2]. The existence of the transversality class was in- 
dependently established in Brumfiel's thesis, MIT (1967), by algebraic calcu- 
lation. 

The new result of this paper is to give these classes canonically. The 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 469 

geometrical analysis employed to overcome the main difficulty here was 
inspired by Rourke's immersed cycle idea in [RS]. 

The surprising twist about the Kervaire obstruction and the signature 
obstruction came as a by-product of the surgery product formula. This latter 
result for Z/2-manifolds was independently obtained by J. Milgram [Ml] 
using homotopy theoretical methods for the purpose of [BMM]. This method 
generalizes the algebraic approach of W. Browder [B2] and later E. Brown 
[B1] to the Kervaire invariant, just as this work generalizes the geometric 
approach of [RS] to the Kervaire invariant. 

In the algebraic discussion concerning the signature mod 8 and linking we 
owe a debt to J. Milnor who verified the key algebraic result by calculating 
the irreducible cases. 

The Gauss sum formula is an elegant form of this result whose proof 
was supplied by Paul Monsky (see note in Section 5). 

This formulation was also found independently by Milgram. 

1. Z/k-Manifolds 

In this section we discuss the techniques of geometric topology which 
apply to Z/k-manifolds. Many standard theorems and constructions in mani- 
fold theory have "mod k" analogues. Z/k-manifolds carry fundamental Zik- 
homology classes (though they do not satisfy Poincare duality with Zik- 
coefficients), have signatures in Z, and have orientable tangent bundles. 
Z/k-bordism groups exist and are related to ordinary bordism by the coef- 
ficient sequence. In fact these geometrically defined groups are the "homo- 
topy theoretic bordism with Z/k-coefficients" groups. The bordism theory is 
also equipped with an anti-commutative associative multiplication defined 
geometrically. 

A Z/k-manifold is a space which is non-singular outside a codimension 
one submanifold where k-sheets come together. Thus each point of the 
singularity has a neighborhood isomorphic to (cone on k points) x (Euclidean 
space). 

part of a Z/4-manifold 
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470 J. W. MORGAN AND D. P. SULLIVAN 

More precisely let M2 be an oriented' n-manifold with boundary together 
with an identification of aln to k copies of a closed oriented (n - 1)-mani- 
fold, &M. 

These data determine a (closed) "oriented Z/k-manifold" by collapsing the k 
copies of 3M together. Call the quotient M,. We will always assume without 
further mention that the sheets are labeled 1, 2, *--, k near the Bockstein 
AM. This is important for gluing Z/k-manifolds together. A closed oriented 
manifold is thus a Z/0 = Z-manifold. 

More generally a Z/k-manifold with boundary is determined by (1) an 
n-manifold with boundary M, and (2) k disjoint embeddings of a compact 
(n - 1) manifold 3M in AM (everything oriented). 

aM (e ._ 
These data upon collapsing yield a Z/k-manifold M, pictured. 

I We adopt the following convention. If a manifold with boundary is oriented, then AM 
receives an orientation by taking the inward normal as the last vector. With these conven- 
tions a(Mm x Nn) = Mm x aNn+( - 1),nMm x Nn. 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 471 

The boundary of the Z/k-manifold is formed from AM - int k(QM) by col- 
lapsing the k copies of (a(JM)) together. 

From this description it is clear that closed Z/k-manifolds have funda- 
mental homology classes with Z/k-coefficients, and Z/k-manifolds with 
boundary have a relative fundamental class. Thus they serve as geometric 
representatives of Z/k-homology in any space. This is one of the main reasons 
for studying them here. 

A map between Z/k-manifolds is a map of the quotient spaces, which 
sends the singularity to the singularity, and preserves the (cone on k) 
structure (with the labeling) near the singularity. Thus embeddings have 
normal bundles, and we have a theory of transversality. 

We turn to the bordism theory of Z/k-manifolds, denoted Q* (X; Zik). 
The existence of a fundamental Z/k-homology class provides a "Hurewicz 

hk 
homomorphism" Q*(X; Zik) k H*(X; Z/k) given by considering a Zik- 
manifold in X as a Zik cycle in X. There is a long exact sequence and a 
commutative ladder 

. . . , QQ*(X) Q*(X) ) Q *(X; Zik) - Q* 1(X) - * 

(1.0) {h {h {hk {h 

-,H* (X) H* (X) 
r 

H* (X; Z/k) - H* -,(X)>* 
Reduction, "r", is obtained by considering a closed manifold as Z/k-manifold 
with empty Bockstein. 

From the long exact sequence, and transversality, we see that Q* (X; Z/k) 
is naturally isomorphic to &i*+1(X+ A Tk), where Tk is the Moore space, 
S' Uk D2. This last group agrees with Anderson's general homotopy theo- 
retic definition of any homology-theory with coefficients. (Idea of proof, due 
to Tom Dieck.) 
Let Sk T ,k be 

{I} U cone({e Si }=o.k-1)cS U xD2 
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472 J. W. MORGAN AND D. P. SULLIVAN 

k 

Si 

Then Sk has a normal bundle, everywhere except at 0, where k lines come 
together. Two stage transversality, first with respect to 0 and then with 
respect to Sk in Tk, produces a Z/k-manifold from any manifold mapping 
into Tk?. 

Corresponding to the maps i: Z/k Z/k. 1 and Z/k 1- Z/k, we 
r 

have maps Q. (Z/k) - >Q (Z/k . 1) and Q*, (Z/k . 1) 2I Q * (Z/k). Geometrical- 
R 

ly they are given by 

partial 
splitting 

replication apart 
k=l=2 

Thus R is formed by gluing together 1 copies of the Z/k-manifold along the 
Bockstein and r* is formed by opening up the k. 1 sheets into I copies of k- 
sheets (here we use the numbering). We may glue two Z/k-manifolds with 
boundary together along a common submanifold of the boundary of each. 
(For this we need the labelings to know how the sheets fit together.) 

Using the maps R, define Q* (X; Z,.) = lim {Q* (X; Z/pn), R}. A repre- 
sentative for a ZP bordism element is a Z/pn element. It carries a funda- 
mental class in ZP. homology. Thus we have a "Hurewicz homomorphism" 
Q *(X; Zpo)- ) H* (X; Zpoo) 

If Mn is a manifold with boundary let the signature of M, I(M), in 
Z be the signature of the intersection pairing H,,2(M; Q) (D H,,2(M; Q) Q 
if n- 0 (mod 4) and zero otherwise. 

PROPOSITION 1.1. If n is even, I(M) _ X(M) + XZ(&M) (mod 2), where 
X(M) is the Euler characteristic of M and XZ(&M) is the rational Euler semi- 
characteristic of aM. 

Proof. The intersection pairing Hn,2(M; Q) ( Hn,2(M; Q) - Q is given 
by x (0 y <PD(x), i*y> where i*: Hn/,(M; Q) Hn12(M, aM; Q). Thus the 
pairing is singular, and its radical is image j*: H,,2(DM; Q) - Hn/2(M; Q). 
Thus I(M) _ dim (coker j*) (mod 2). Using the long exact sequence 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 473 

0 - cokerj* -* H12(M, aM; Q)- > Hn,21(&M; Q) - * 

) H1(M) - H1(M, AM) - H0(&M) - Ho(M) - HO(M, aM) 

and Poincare duality, we see that 

dim (coker j*) E' . dim (Hi(M; Q)) + 1n{27' dim (H4&M; Q)) (mod 2). 
This first term is X(M), and the second is XZ(&M). 

If Mk = (Mn, 3M1, q) is a Z/k-manifold, then its signature, I(Mk), is the 
signature of M. It is an integer. We denote its residue modulo k by I(Mk). 

THEOREM 1.2. (Novikov's additivity theorem, see [N].) If M1 and M2 
are oriented manifolds and 9: A-1 B"' is an orientation reversing iso- 
morphism where An- - JaM1 and B"' - aM2 are submanifolds with 
empty boundary then I(M1 U P M2) = I(M1) + (M2). 

PROPOSITION 1.3. If Mk bounds a Z/k-manifold then I(Mk) 0 (mod k). 

Proof. The proof follows easily from 1.2 and the following picture: 

I w } 

This shows that the signature reduced modulo k is a Z/k-bordism invariant. 
From the definitions, we see that the following diagrams commute 

Q*(Z/k) Zlk Q*(Z/k*I) > Z/k*I 

{R { {r* {r 

Q* (Z/k l) Z/kl1 Q*(Z/k) Z/k 
Thus I induces a map Q*(Zp.) - ZP-. 

We now give a geometric definition of the tangent bundle of a differ- 
entiable Z/k-manifold. Embed aMk - RN for some large N. Embed c(k) in 
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474 J. W. MORGAN AND D. P. SULLIVAN 

R2 so that all lines are tangent at the cone point, i.e., in a cusp-like manner. 

The product of these two embeddings, gives one of aM x c(k) -* RN+2. 
Its boundary is AM x ki = aM. Extend this embedding to one of M. Together 
these embeddings define one of Mk- > RN+2. The tangent bundle is the set 
of tangent planes with the natural topology. It is well-defined since all planes 
over the Bockstein agree. We denote this bundle TM. Taking perpendicular 
planes gives 2M. 

Another description of the tangent bundle which works in the pi case is 
to take TR and use d(9,,j) to identify TM IaM,, with TR I 3Mj, 'P,,j being the 
isomorphism between the ith and jth copy of aM. For any stable characteristic 
class a and for any closed Z/k-manifold M, we may form the characteristic 
number <a1,, [M]> e Zik. Since ZWk I &Wk = Zawk @ s' for any Z/k-manifold with 
boundary, we see that the above characteristic numbers are Z/k-cobordism 
invariants. 

If M2 is a Z/2-manifold with non-empty Bockstein, then M has the struc- 
ture of a non-orientable manifold. Let TM be its non-orientable tangent 
bundle. wl(TM): Mu SI is dual to 3M. We have the equation 

(1.4) TM (D wlw()) TM &s 

where @Y , ) SI is the non-trivial line bundle. To see this equation note that 

TM2 I (M2a-M) = TM2| (M2 -aM). Thus the difference element is in AM x 
I/(3M x AI). Since the "difference" is constant along AM, the "difference" 
comes from some bundle over SI via w,. From the following picture one 
sees that this bundle must be non-trivial: 
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The product of two Z/k-manifolds Mk- x Nkn is not immediately a Z/k- 
manifold. It has the correct structure everywhere except along 3M x 3N. 
We can cut out a neighborhood aM x c(k) x AN x c(k) and replace it by 
aM x AN x WI, where WI is a Z/k-manifold with boundary k*k = (c(k) x 
k) U ( - k x c(k)). Such a manifold exists since Q,(Z/k) = 0. The product is 
well-defined up to bordism since Q2(Z/k) = 0. Thus it forms a multiplication 
Q*(Z/k) ? Q*(Z/k) - Q*(Z/k). We denote the product of Mk and Nk by Mk (0 
Nk if both M and N are Z/k-manifolds with non-empty Bockstein. If one of 
them is a closed manifold, the product is usual Cartesian product and we 
denote it by M x N. 

The multiplication is associative since (Mk (? Nk) (? Pk and Mk (? (Nk (0 
P,) agree everywhere except near aM x AN x aP, where the difference is 
in the transverse direction. Thus the obstruction to associativity is an ele- 
ment in Q3(Z/k) = 0. 

There is a natural map Mk 03 Nk - Mk x Nk which is the identity off 
of a neighborhood of 3M x AN. Near this submanifold it is 

3M x 3N x Wk lXl A3M x 3N x (c(k) x c(k)), 

where w is some map Wk c(k) x c(k) extending the Id on k*k. Also 
P* [Mk A) Nk] = [Mkf] ? [Nkn], thus p is an orientation preserving homeomor- 
phism almost everywhere. 

PROPOSITION 1.5. ZmkQ&Nk is stably equivalent to p*(ZMk X Z-Ak) & w a 

where ' WI/{lW} is a vector bundle and r: M(O No (aM x AN x Wk/{&} 

Wk/{a} is the natural map. 

Proof. Over the complement of (M x AN x Wk, 7M?N and 7M X T.N are 
equal and p is the identity. Thus we have a natural difference element de- 
fined by an isomorphism outside a neighborhood of (M x AN. Since the 
isomorphism is constant along (M x AN, the proposition follows. 

Note. If k is odd, then the bundle C is 0, but if k is even it is non-zero. 
Fortunately, this error term is only a psychological barrier. It sends no 
shock waves through our calculations. 

2. Cohomology classes and homomorphisms 
In this section we will prove that an integral cohomology class in a 

complex of "finite type" is just a pair of compatible homomorphisms H*(X; Q) 
Q and H*(X; Q/Z) > Q/Z. More precisely we have the following: 

THEOREM 2.1. If X is a CW complex with finite skeletons then H'(X; Z) 
is naturally isomorphic to the group C(X), of commutative diagrams 
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I H(X;Q) Q 
C(X) = 1* 7r J 

Hi(X; Q/Z) - Q/Z 

The natural isomorphism is given by evaluation. 
There is an analogous local result. 

THEOREM 2.2. If X is a CW complex with finite skeletons, H'(X; Z(p)) 
is naturally isomorphic to the group Q(p)(X), of commutative diagrams 

Hi (X; Q) Q 

6(') (X) 7r* =r 

Hj(X; Zp) >Z 0P 

The isomorphism is given by evaluation. 

Theorem 2.2 should be viewed as the localization of Theorem 2.1 at p. 
In fact, it is proved by tensoring 2.1 with Z(p). Theorem 2.1 is a reformula- 
tion of Pontrjagin duality. The theorem is proved by constructing an 
isomorphism between e(X) and Hom, (Hi(X; S1), S). By considering ho- 
mology with real coefficients, R, we see that a homomorphism H,(X; Q/Z) 
Q/Z occurring in a diagram of e(X) determines a continuous homomorphism 
H(X; S1) - S1. Conversely, given a continuous homomorphism H,(X; S1) 
S1 we may restrict to the torsion subgroups and obtain a homomorphism 
H,(X; Q/Z) - Q/Z. We may also lift the continuous homomorphisms to the 
universal covers to obtain a homomorphism H4(X; R) - R which preserves 
the integral lattice. This in turn upon tensoring with Q gives a homo- 
morphism H,(X; Q) )Q. 

Once we have the isomorphism between C(X) and Hom, (H,(X; S1), S1) 
we complete the following diagram: 

H,(X; Q) -Q 

Eval ]j | * 7 

Hi(X; Z) H,(X; Q/Z) - Q/Z 

Eval Hom, (H (X; S1), S1) 

Pontrjagin duality tells us that the lower evaluation homomorphism is an 
isomorphism, see [P]. 

Before beginning the proof proper, we recall some definitions and facts. 
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Definition 2.1. 

Z(,) {a/b E Q I (b, p) = 1} 

Z(V, = lim (Zo Z) 
(n, p) =1 

Z,. = lim {Z/pn, inclusion} 

There is a natural isomorphism QIZ(,) = 1Z3.o It is defined by a/bp" H- 

[a] . [b]-1 Z/ppn >Zi. This map Q Z is easily seen to have kernel 
Z(v). QIZ ? Z(p)- Z, and Q/Z > S1 is the subgroup of torsion elements. 

Theorem 2.1 Theorem 2.2. Since Z(p) is a direct limit and homology 
commutes with direct limits, examining the appropriate chain complexes 
shows 

Hi(X, Z(p)) -Hi(X, Z) ? Z(P) for X of finite type 

and 

H3(X, Zpn) -IH(X; QIZ X Z(p)) = Hj(X; QIZ) X Z(p) for all X. 

Let C(p, equal the group of commutative diagrams 

H(X;Q) Q 

7r1* 
7r 

J 
Hj(X; Zp-) ZP 

Then we have the following commutative diagram 

C ? Z(P) 

Hi(X; Z(p) v { 
eve 

(P) 

where 

H(X; Q) Q H(X; Q) a/bQo 

Hi(X; Q/Z) QlZ i(Xa QIZ)Z aa/b Q/Z g Z I 
The upper isomorphism is given by 2.1. 

If '2((a, a) ? a/b) is 0, then a,, is O and a 0 a/b is 0. Since (b, p) = 1, 
this implies Hj(X; QIZ) a Q/Z - ,) ZAp is 0. Since X is a complex of 
finite type and a agrees with 0 on the image of rational homology, some large 
multiple FX.a is 0. The previous statement says X may be chosen prime to 
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p. Thus 

(a0, a) ? a/b = (a, a).aX (D 1/Xb = (0, 0) (D 1/Xb = 0. 

This shows X is 1-1. 
Given (,So, S) in C(P, we can choose X prime to p so that X,80 preserves 

the integral homology. Then X,80 determines a partial homomorphism 

Hi(X; Q/Z) --- > Q/Z, that is on the image of rational homology. This partial 
homomorphism is compatible with the partial homomorphism defined by X, 
on the image of H(X; Zp-) (where we regard Zp (c Q/Z). The subgroup 
generated by these images is a direct summand so we can construct a com- 
plete homomorphism H(X; Q/Z) Q/Z compatible with (X,8, x). Thus 8 
is onto since X is prime to p. 

Thus 2.1 2.2. 

Proof of 2.1. Step 1. Construction of the evaluation homomorphism, 

Hi(X; Z) ev e(X) 
The natural isomorphisms Q ( Z = Q and Q/Z ( Z = > Q/Z induce 

evaluation pairings Hi(X; Z) (D Hi(X; G) G for G = Q or Q/Z. We define 
Eval: Hi(X; Z) C(X) by 

KX, > 
Hi(X;Q) <>Q 

Eval X >* ' <x > ' 

Hi(X; QIZ) -', Q/Z. 

The diagram clearly commutes, and Eval is a natural homomorphism. 
According to the outline in the beginning of the section we need only 

construct a natural homomorphism Ax C(X) Hom, (Hi(X; S1), Si) so that 
(i) Ax is a monomorphism. 
(ii) The following diagram commutes: 

Eval` e(X) 
Hi (X; Z) Kx Ax 

\;~ Hom, (Hi(X; Si), S 1). 

Step 2. The construction of Ax. 
Associated to the diagram 

0 ) Z Q >Q/Z >O 

1> 1? 
O-* Z-----R- S1 --0 
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there is a commutative ladder of long exact sequences 

, Hi(X; Z) , Hi(X; Q) ,Hi(X; QIZ) , Hi-l(X; Z) > 

{ mono {i* 
> 1-Ii(X; Z) , Hi(X; R) P* Hi (X; S' ) Hil(X; Z) ' 

From this diagram one easily proves that 
(a) i* is 1-1 
(b) ker p* = image (Hi(X; Z) H4(X; R)) 
(c) (image i*) + (image p*) Hi(X; S1), and 
(d) (image i*) n (image p*) = image (Hi(X; Q) Hi(X; S')). 
From these four statements it follows easily that given hl: H(X; R) R 

and h2: H(X; Q/Z) - Q/Z satisfying 
(i) hl (image Hi(X; Z)) -Z 

(ii) the composition Hi(X; Q) -* H(X; Q/Z) - Q/Z _ S1 equals 
Hi(X; Q) r- Hi(X; R) hi R P Sl, 
then hl and h2 determine a unique map Hi(X; S') -h S1. Since p* : Hi(X; R) 

- H.(X; Sl) is the universal cover of a neighborhood of the identity, h will 
be continuous if and only if h, is. We now construct the homomorphism Ax. 

Given a commutative diagram 

ao Hi(X; Q) Q 

1Z* 7r 
Hi (X; QIZ) 

a 
QIZ, 

form a,, (? 1R: Hi(X; R) R. This map is continuous since it is R linear. 
It sends (image Hi(X; Z)) into Z, since a0 does. 

p o (a. X 1R) 1Hi(X; Q) - po a:fH(X; Q) - Q S1. 

This agrees with 
i o a o w* : H4(X;Q) - Hi(X; Q/Z) - Q/Z- --S1. 

Thus (a,? ('Rr a) determines a continuous homomorphism Hi(X; S') S1. 
Clearly CT H(X; Q/Z)= a. If we define A,(a0,, a) = i this determines a 
homomorphism e(X) - Hom, (Hi(X; S'), S'). 

To show that Ax is a monomorphism, suppose i = 0. Then a = 0 and 
ao: Hi(X; Q) - Q must lie in the subgroup Z - Q. But the only map 
Hi(X; Q) - Z is 0. Thus A, is 1-1. 

Clearly if ao0= <x, > on rational homology and ao= <x, > on Q/Z ho- 
mology, then A.(ao, a) = <x, > on Sl homology. This completes the proof 
of Step 2 and Theorem 2.1. 
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3. The index theorem at the prime 2 

In this section we will discuss a natural characteristic class for ori- 
entable vector bundles. It will assign to E B, 2E = 1 + 11 + 12 + * with 
1i E H'i(B; Z(2)). The class is an invariant of the geometrical operation of in- 
tersecting proper submanifolds of E with B (or of intersecting bordism 
elements of (D(E), S(E)) with B where D(E) and S(E) are respectively the 
disk and sphere bundle of E). 

2E ? 1Q in H4*(B; Q) is the inverse of the Hirzebruch polynomial in the 
rational Pontrjagin classes of E. It measures the signature of oriented in- 
tersections with B. 

2E reduced mod 2 in H4*(B; Z/2) is the square of the Wu class of E and 
measures the signatures of Z/2-manifold intersections with B. 

2E E H4*(B; Z(2)) 

Square inverse\; 
of Wu E H4*(B; Z/2) Hirzebruch E H4*(B; Q) . 
class class 

The signature of a manifold and transversality extend to the topological 
case. (The lack of four dimensional transversality will cause no trouble.) 
This will allow us to extend the class 2E to a natural class for all topological 
bundles. This is done in Section 7. We will see that this extension plays the 
role in topological theory which in the smooth theory is played by the integral 
Pontrjagin classes and the mod 2 Stiefel-Whitney classes 

(1 + PI + A2 + *j,1+ + W2 42+... 

The following is a list of the germane properties of 2E. The purpose of this 
section is to construct the class and prove all the following properties. 

(i) 2E e H4*(B; Z(2)) is a natural characteristic class for orientable vector 
bundles. 

(ii) 2E 1Q e H4*(B; Q) satisfies (1 + 11 + 12 . . ). (1 + L1 + L2 + ** ) = 1 
where L(E) = 1 + L1 + L2 ... is the Hirzebruch class of E defined by the 
famous polynomials in the Pontrjagin classes [M2], 

Li= pI/3 
L2= (7P2 - p1/45 

(iii) 2E e H4*(B; Z/2) satisfies (1 + 11 + 12**) = (1 + V2 + V2 + *), where 
V 1 + vI + v2 + * is the Wu class defined by the Wu relation (1 + Sq' + Sq2 + 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 481 

... )(1 + v1 + v2 + ***) = (1 + w1 + w2 + .** )', [M2]. The first few polynomials are 

V1 = W 

V2 = W2 + W1 

V3 = W1W2 

V4 = W2 + W4 + W1W3 + W1. 

It is easy to see that the odd Wu classes are zero when E is orientable 
(wjE = 0). 

(iv) If E > B and E' B' are vector bundles, then E x E' 
B X B' is a vector bundle and 2 -EXE' 2?E (0 S, in H4*(B x B'; Z(2)). 

(v) If M f E+ is a map of an oriented manifold into E+, the Thom space 
of E, which is transverse regular to B with inverse image V, then an orien- 
tation of E, UE e HdimE(E+), induces an orientation of V and the signature of 
V = 1(V) <1/L(M) f** ( UE 2E), [MD> where vm is the stable normal bundle 
of M. 

(vi) If the manifold in (v) is a Z/2-manifold, then V is a Z/2-manifold 
and 

signature (V) reduced mod 2 = < VM*f * (UE*2E) , [M]> 
where VM is V(?M). 

We will see that properties (i), (ii), and (iii) characterize 2E. Property 
(iv) is a fortuitous corollary of the vanishing of the odd Wu classes. Properties 
(v) and (vi) should be regarded as the defining equations of 2E. It is these 
properties that we will use later to extend the characteristic class to all 
topological Rn-bundles in Section 7. 

In this section we also give an application to Z/k-manifolds for k a power 
of 2. If vM denotes the stable normal bundle of M then we have signature 
(M) = <2;M' [M]> in Z/k. Finally, we note that 2E is independent of the 
orientation of E and is a stable invariant, thus it has a canonical extension 
to non-orientable bundles. 

We will construct our class in the universal example, BSO For this we 
will use two diagrams. 

Diagram 1. Q* H*(Bso) 
signature{ {<1/L, > 

Z c Q 

v is determined by classifying the stable normal bundle. The commutativity 
of Diagram 1 is equivalent to <1/L(vM), [M]> = I(M), the Hirzebruch index 
theorem. 
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Diagram 2. Q* - H*(Bso) 

signature{ r V2 

reduction / 
Z - Z/2. 

Diagram 2 commutes since < V2(,M), [M]> = X(M), = (signature M)2. 
It follows from the work of Thom and Wall [W1i that v ? Z(2) is onto 

H*(Bso; Z(2))/(Torsion). Thus we can combine Diagrams 1 and 2 to form 

Diagram 3. I41(BL; Z(2)) >" Z(2) 

I {reduction 

H4*(Bso; Z/2) < V2, > >Z/2 

which commutes. 
Since <1KL, > takes values in Z(2) on the image of v ? Z(2) by Diagram 1 

and since v ? Z(2) is onto, modulo torsion, "K<1L, >" in Diagram 3 takes values 
in Z(2) on all of H4*(Bso; Z(2)). To see that the diagram commutes, use the fact 
that Sq'(V2) = 0 and that H*(Bso; Z) has torsion only of order 2. Thus V2 
is the reduction of an integral class and vanishes when evaluated on the 
image of integral torsion. H4*(Bo; Z(2)) is generated by T, the torsion sub- 
group, and Q = image ( (D Z()). "K<1L, >" and < V2, > agree on Q by Diagrams 
1 and 2. They both vanish on T since Z(2) is torsion free and V2 vanishes on 
the image of integral torsion (being the reduction of an integral class). 

Finally we can state 

THEOREM 3.1. 1/L and V2 combine to define a map, 2(2), which makes the 
following diagram commute 

H4*(Bso; Q) iQ 

{w* 22 { 

H4*(Bso; Z2_) -+Z2? 

Proof. Let i: Z/2 - Z2? and 7r: Q > Z2? be the natural maps. Then 
any x e H4*(Bso; Z2_) may be written (not uniquely) as 7r*(y) + i*(z) with 
y eH4(Bs,; Q) and z e H4*(Bso; Z/2). This follows easily from the Bockstein 
long exact sequences 

> H4*(Bso; Q) 
>' 

H4*(Bso; Z2??) H4*-,(Bso; Z(2))> { 21)* i 
x2 r* 9 

a H4*a(Bso; Z(2)) c H4m(B e, Z/2) H4all(Bso; Z(2)). 

and the fact that ima , c im82, i.e., that all torsion is of order 2. 
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Define 
2(2)(7w*(y) + i*(z)) = 7w(<1/L, y>) + i(<V2, z>) 

To show that 2(2) is well-defined, we must show that if r*(y) = i*(z), then 
7r(<1/L, y>) = i(<V2, z>). If wz*(y) = i*(z), use the above ladder to construct 
z with r* z and wr* , (2) *- = A* (y). Then 7w<1/L, y> = i(<1/L, Z>2)I < V2 z> 

<V2, r*(z)> K<1L, Z>2. This last equation uses Diagram 3. Thus 7r(<1/Ly>) = 
i<V2, z>. By definition of 2(2) the diagram commutes. 

COROLLARY 3.2. The above diagram determines a unique 2 E H4*(Bso; Z(2)). 

2 (g) 1Q = 1/L, 
and 2 reduced modulo 2 = V2. Since B,0 classifies vector bundles this is 
equivalent to a natural cohomology class 2E associated to the vector bundle 
E ) B. Thus we have a class 2E satisfying properties (i), (ii), and (iii). 

Proof. The work of Section 2 provides the cohomology class using the 
previous theorem. 2 (? 1Q and 1iL have the same evaluation homomorphism 
on H4*(Bo; Q); thus they agree. 2 reduced modulo 2 and V2 have the same 
evaluation homomorphism on H4*(B,0; Z/2), and thus they agree. (This uses 
the fact that Q and Z/2 are fields.) 

Before proving the multiplicative property of 2 we need a proposition. 

PROPOSITION. V2k+l = 0 in H2k+l(Bso; Z/2). 

Proof. One may make a direct calculational argument. We give a dif- 
ferent argument using Wu's relations: If Nn is a closed n manifold and 
V2k+1 = V2k+1(vN), then 

V2k+l U x = Sq2 k+lX for x . H n-2k-l(N; Z/2) 
If N is orientable, Sq': Hn-'(N"; Z/2) - H%(N%; Z/2) is 0. Thus V2k?1 U x = 

Sq2k+1x = SqSq 2kX = Ofor all x E Hn-2k-l(N; Z/2). Poincare duality implies that 
V2k+1 = 0. Approximate B,, by oriented manifolds whose normal bundles cor- 
respond to the universal bundle to show V2k1 = 0 in H2k+'(Bso; Z/2). 

We now continue by showing SE satisfies properties (iv), (v), and (vi). 

Property (iv). 2EXE'= 2E?2E'* If we work in the universal example, Bs0, 
we must show 

D* 2 = $ (0 2 in H4*(Bso x Bso; Z(2)). 

By the Kiinneth theorem H*(Bso x Bso; Z(2)) has torsion only of order 2. 
Thus to show Q* 2 20 2 it suffices to show 

(* (2 1Q) = (? (D 1Q) (? (? (D 1Q) and @* 
(2)2 = (2)2 
X 

(2)2 

The first is a statement of the multiplicativity of the Hirzebruch L poly- 
nomials as rational classes. (It follows easily from the multiplicativity of 
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the index.) The mod 2 equation becomes (D* (V22*)= V,* ? V22*. Since 
(1 + w1 + w2 + *"') is a multiplicative class 

(1 + V1 + V2 + ***) = (1 + Sql + Sq2+ ...)-1(1 + W1 + W2 + ...)1 

is also multiplicative. Thus 3* V= V (D V in B0. But the odd terms drop 
out by the previous proposition so that 3* V2* = V2* 0V2. Then it follows 
that e* V2= V2* 0 V2*. 

Property (v). If ML E+ is a map of a closed oriented manifold into 
E+ which is transverse regular to B with inverse image V, then an ori- 
entation of E, UE E HdimE(E+), induces one of V and signature (V) = 
<L(z-m)f *f( UE SE), [M]>- 

Proof of (v). M 2 E+ 
J fP 

2)VC4M - E 

V lB 

2VcM = (f I V)*(E). Thus z(V) (f I V)*E = r(M) I V. By the multiplicativity 
of L we have 

L(z-(V)) f *L(E) = i*L(z-(M)) 
or 

L(z(V)) = i*L(z(M))*f*(1/L(E)) 
Thus 

signature (V) = <L(zV), [V]> = <i*L(zM).f*(1/L(E)), [V]> 

Since 2E = 1/L(E) modulo torsion and signature (V) E Z we have 

signature (V) = <i*L(Z(M)) * (f I V)*(2E), [ V]> 

f* UE is dual to i* [V] under Poincare duality in M, and f IV = foi. Thus 

signature (V) = <L(z(M)).f *SE, f*UE n [MI> 
= <L(z(M)).f*(UE.SE) [M> - 

Property (vi). If M, as above, is a Z/2-manifold, then V is a Z/2-manifold 
and signature (V)2 = < VM*f *(UE2*E) [MI>. 

Proof. As above one shows 

<V2, [V]> = <V2(f IV)*V2(E), i*[VI> 
= <VM.f *SE, '*[V]> = <VM.f *(UE.2E), [MI>. 

The proof is completed by showing <V2(V,), [V]> = signature (V)2. By 
Proposition 1.1, X(V) + X8(DV) = signature (V)2. Here let V be the Z/2- 
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manifold V cut open along its Bockstein. X8(D V) vanishes mod 2 since a V 
aV t o V. Thus X(V)2 = X(V)2 = signature (V)2 = signature (V)2. Recall 
that if T(V) represents its tangent bundle as a non-orientable manifold 
<V2(T(V)-'), [VI> = X(V)2. From 1.4 we have that V, = V2(T(V)-'). Putt- 
ing all this together we see that <VI, [VI> = signature (V)2. 

Note. Let 2M= 2,(M) Then in both cases we may rewrite the above 
formulae as 

signature (V) K <2M - f * (UE*2E), [MI>. 
THEOREM 3.3. If MB is a closed Z or Z/2k-manifold, then signature 

(M) = <2M, [MD> 
Proof. (This, of course, is the index theorem at the prime 2.) The case 

of a Z-manifold follows from the usual Hirzebruch index theorem since 
2M ? 1Q = L(z-(M)). If Mn is a Z/2k-manifold, then 1.0 and [W1i show that 
Mn is bordant to r*[WWI + i*[X,"f] where r: Z - Z/2k is the usual reduction, 
i: Z/2 > Z/2k. Wn is a Z-manifold and X2 is a Z/2-manifold. Since the 
signature is a bordism invariant, as is <2M, [MI>, we need only verify the 
theorem for r*[ Wn] and i*[X,"]. For r*[ Wn], <Kw [WI>= I(W) by the closed 
manifold case. Let Yk= i(X2) = 2k-1 copies of X2 joined along 3X2. Then 
<2gy [ Y> = i<2X, [XI>. To see this note that V( Y2k) I (any copy of X2) = v(X,). 
Thus v*([ Y2k]) =i*(V*([X2])) in H*(B,,; Z/2 k). Thus <2,S *[Y2kI>=i<2, V*[X2]>. 
Since signature (Y) = i(signature (X)), if signature (X) = <?x, [XI> then 
signature (Y) = <2ye Y> (i.e., we have reduced the problem to the Z/2-case). 
But we treated this case in property (vi). This concludes the proof of Theo- 
rem 3.3. 

COROLLARY 3.4. If MB L E+ is a Z/2 -manifold mapping into E+ which 
is transverse regular to B with preimage V, then signature (V)2r 

<2M'P UE"SEq [MD> 

Proof. As in Property (v) we see that 

<2M f* UE*2E, [MI> =<2(iM I V) .2((f I V)*E), [ VI> 
= K()M I V O (f I V)*E), [ VI> = <K2(v), [ VI> = signature (V) . 

In Section 4 we will need a multiplicative property of 2. We prove this 
property here. 

PROPOSITION 3.5. Let M and N be Z/2 -manifolds and p: MO N M x N 
as in Section 1. Then 2M?9N = P*(2M 0 2N). 

Proof. According to (1.4) VM?&N= P*(V)M x 2)N) Gw*C where 11: M?N 
W/a. 2c = 1 since H4*(W2/a) = 0. Thus by naturality and multiplicativity of 
2 we have 
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2M?N = 2(2MN) P*2(VM X 2N) 7f (C) 
- 

P*(VM) 
0 

2(N)1 = p*(2M 
0 

2wN) 

4. Cohomology at 2 is dual to bordism 

In Section 2, we showed that H*(X; Z(2)) is naturally isomorphic to the 
group of commutative diagrams 

, H* (X; Q) > Q 

C(2)(X) = {w* 1r 

H*(X; Z2-) - Z24 
provided X is of finite type. In this section we will reformulate the above, 
still assuming that X is of finite type, in terms of homomorphisms on bordism, 
namely: 

THEOREM 4.1. H4*(X; Z(2)) is naturally isomorphic to the group of com- 
mutative diagrams 

Q*(X; Q) Q) 

lQ*(X; Z) 
62, 

Z2) 

satisfying 
(i) LYQ([M, f] [N ]) = aQ([Mq f]) . I(N) 
(ii) 0'2(i* ([M2kg f I &S [N2k])=(2i Xf])*INk 
(iii) LYQ(M , f) = a2(M2k, f) 0 if m $ 0(4) 

where i*: Q*(X; Z/2k) Q*(X; Z2.) and k 1, 2, 3, *9. The equivalence is 
given by 

A = (ao + a1 + a2 + )->(UA,Q. (A,2) 

where aAQ([M f J) = <f*A- 2M, [M> G Q 
aA,2([M~k, f]) = <f *A 2M, [M2k]> Z/2 > Z2 . 

Because of relation (iii) we only need to study Q4*, To do this we con- 
struct homomorphisms 

XQ. Q4*(X; Q) - H4*(X; Q) 
and 

X2: Q4*(X; Z2-) - H4*(X; Z2-) 

defined by 
XQ([1iu, f ]) = f * (2m n [M]) 

and 
X2[M2k, f ] = f* (2M n [M2k]) 
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where [MXk] C Hm.(M2k; Z2?) and the cap product is induced by Z2? ( Z() Z2,. 
These homomorphisms are not degree preserving. In fact they are pertur- 
bations of the "Hurewicz homomorphism" by lower order terms (since 2M = 

1 + ...). By the work of Thom and Conner-Floyd, we know that both 
Hurewicz maps are onto, [CF]. An easy induction argument shows that XQ 
and X2 are thus also onto. It is this "onto-ness" that fails at primes other 
than 2. Thus our analysis works only "at 2". At the odd primes there is an 
analogous theorem using KO-theory (0D Z[fj). See [S2], [S4]. 

The main point of the proof is to show that the kernels of XQ and X2 are 
generated by the relations given in the theorem (e.g., {[Mm, f] J [N"] - 
[Mm, f] * I(N)} generates kernel XQ). Then we have induced isomorphisms 

Q*(X; Q)/{relations} > H4*(X; Q) 

Q*(X; Z2.)/{relations} - H4*(X; Z2-)9 

and C(2,)(X) is isomorphic to the group of commutative diagrams given in the 
theorem. This group, then, is isomorphic to H4*(X; Z(2)) by Theorem 2.1. The 
isomorphism is given by A <f *A, (2M n [MI)> = <f *A2M, [M]>. This is 
an outline of the proof of 4.1. 

First, we note that the relation subgroups are easily seen to be in the ker- 
nels of XQ and X2 respectively. We must show that they generate the kernels. 

Let Mn X be a Q or Z/2k-manifold mapping into X. Suppose inductive- 
ly that f(M -) > X"- - X. By adding elements of the "relation subgroup" 
to the element (M, f) we will perform a cobordism of it in X'i+1' until it is 
in X"-1). Let x, be a point in the interior of the i-cell a. Put f transversal 
to x, with f -'(x,) = Vh-. Then 

Eicells a 0 [V i c Gi(X) ? Qn-i(G) 
for G = Q or Z2?. 

This chain is a well-defined invariant of the bordism class of (M, f) in 
X't', and is 0 if and only if f: M-) X" is bordant in X'i) to a map into X'i-1'. 
This follows easily from usual transversality theory. 

LEMMA. This chain is a cycle and its homology class in Hi(X; Qn-i(G)) 
(G = Q or Z2?) is the obstruction to cobording (M, f) in X('+') until it is in 
X(i-1), 

Proof. D(Ya (? [ VO%-$i) = Eau (? [ Vs%-i] which is an obstruction chain for 
moving D(M- U f ̀ (neighborhood x,)) (which is in X~'-1)) to 0 in X"-1). But 
D(M- U, f'-(nbhdx,)) bounds M- U, f'-(nbhdx,) in X'i-1). Thus the chain 
is 0. 
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If la =?[V Y] =-D( i+z' ? W[W,-), let h,: Si -X' be az-+'. Then 
add E (Si, h,) x [W,"-i] to (M, f). The former element bounds in X'i+'. 
But the chain obstructions of the sum plus (M, f) is 0. Thus (M, f) + 

,((Si, h,) x W,) is bordant in X'i) into X'i-1'. This completes the proof of 
the lemma. 

f -'(nbhd x0~) 

f 

Thus associated to f: M X-i) we have a homology class a E H,(X; Q*(G)) 
G Q or Z,. 

PROPOSITION 4.2. Any a c H4(X; Qn-i(Z2?)) may be represented by a sum 
of products a = x (D a, where xr c Hi(X;Z/2r) and a.r E Q.-i(Z/2r) under 
the map 

Hj(X; Z/2r) (& Q -i(Z/2r) Hj(X; Q.-i(Z/2r)) Hi (X; Q.-i(Z2-o))i 

Proof. We have a short exact sequence 

o - Hi(X)?Q.-i(Z2-) - Hi(X; Q.i(Z2-)) - Hi-1(X)*Q.-i(Z2-) - 0 

We can represent any element in the tensor product term by the product of 
an integral homology class and a Z/2r-manifold. For the Tor term let 
x E Hi-1(X) a class of order 2r and a7r GQ(Z2?) an element of order 2r. Then 
let y be a chain with ay = 2rx. y is a Z/2r cycle and y D ar e H,(X; Z/2r) (D 
Qn-i(Z2.) hits the class in Hi-.(X)*Qn-i(Z2.) created by 2ry = 0 = 2rar. 

The above proposition is the first one in the proof of the Z2? case. We 
will present the rest of the argument in this case and leave the Q case to the 
reader. The Q case is analogous but simplified somewhat by the fact that Q 
is a field. 

We have ML X'i and O(M, f) E H4(X; Qn-i(Z2?))l @(M, f) = r Xr ? ar 
where xr c Hj(X; Z/2 ) and ar E Qni(Z/2 ). Represent Xr by Vr i X's), and 
suppose [ W2r ] = ar. 

Case 1. (n - i) t 0(4). Then form (M, f) - E (Vr, g) ? W2r-'. Since 
C((Vr, () = g* [ Wr ) = [rX 

C9((Vry g) &g W2r = r iX -) = Xr ()[W2r] = r()6r E i n-i(Z2??))i 
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Thus C((M. f)-Ad (Va, g) ? W,4) = 0, and this bordism element may be 
deformed into X"-1). Since n - i % 0(4) we have added elements in the "re- 
lation subgroup". 

Case 2. (n - i) _ 0(4). Here we must use the fact that X2(M, f) = 0 
(which has yet to appear). 

Again write ((M, f) xr 0 ar with Xr represented by Vri -% XKi. As 
before @((M, f) -Ad (Vris g) 0 Wr) is 0, and thus it may be deformed into 
X('-1'. As a result the ith component of X2((Mn, f) )- (Vri, g) ? Wrn t) = 0. 
Since X2(M, f) = 0, the ith component of E X2((Vrg g) ? Wrh") = 0. This 
means E Xr & I(Wr) = 0. Thus ( (V,, g) * I(Wr) may be deformed as an i- 
manifold into X'i-1). Thus (M, f) - E ((Vris g) 0 Wren) + E (Vi, g)I(W) is 
deformable into X('-1'. But once again we have added an element in the re- 
lation subgroup. Since the above argument works just as well if (M, f) is 
replaced by a sum of manifolds of different dimension, downward induction 
allows us to show ((M, f) - E relations) is an element in Q*(X(1'; Z2?) = 0. 
Thus (M, f) = (a relations) provided only that X2(M, f) = 0. This together 
with the analogous argument for XQ completes the proof of 4.1. 

Note that this argument uses nothing about the structure of smooth 
bordism except the fact that Q, (X) H, (X) has cokernel an odd torsion 
group. 

COROLLARY 4.3. The group H4'*(X; Z(2)) is naturally isomorphic to the 
group of homomorphisms { Q4*(X;Z(2)) ->- Z(2) 

Q4*(X; Z/2k) Z/2k vk >_ 1 

such that 
(1) ai, ak are multiplicative with respect to the index, 
(2) the a'k are compatible with i: Z/2k Z/2k+l, and 
(3) a and a'k are compatible with reduction Z(2) Z/2k. 

Proof. Since the {aUk} are compatible with i: Z/2k Z/2k+l they define a 
homomorphism Q4*(X; Z2-) 2 Z2.O which satisfies a2(i*([M2k, f] 0 N2k)) 

a2(i*[M2k, f] * I(N2k)) since all a'k are multiplicative with respect to the index. 
Tensoring a with IdQ induces a homomorphism Q4*(X; Q) ) Q which is multi- 
plicative with respect to the index. One easily sees that the compatibility of 
a2 and aQ with respect to 7r: Qua Z2. follows easily from the fact that ar and 
a2k are compatible with r: Z(2) Z/2k. 

Conversely, given a commutative diagram 
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Q. (X; Q) 'Q)Q 

1Z* 1r 
Q* (X; 200) ZZ201 

LYQ I (im Q*(X; Z(2))) must lie in Z(2). Thus we may define a: Q*(X; Z(2)) Z(2) 

by restriction. Similarly the Uk are defined by restriction. All compatibility 
is easily checked. 

Note 1. There is a Z/2 version of this theorem first proved by Sullivan, 
see [S1], [S2], and [RS]. We could get that theorem out of this by applying 
our theorem to X A T2 where T2= S' U2 D2. However the original proof is 
simplified by the fact that Z/2 is a field. 

Note 2. It is just for convenience that we have taken dimensions congru- 
ent to 0 modulo 4. We could work in dimensions congruent to i mod 4 and 
prove a similar theorem. In fact such a theorem follows by use of the sus- 
pension isomorphism. 

5. Surgery on Z/n-manifolds 

There are two natural geometric situations where diagrams of the type 

Q*(X; Q) Q 

(*) { J 1 
Q*(X; Q/Z) > Q/Z 

occur. 
If E B is a geometric bundle then we have a natural example of (*) 

where X is the Thom space of E. 

Q*(E+; Q) 'Q 

{ E 

Q *(E +; Q/Z) 'Q/Z.y 

UE is constructed by intersecting a manifold in E+ with the zero section 
and calculating the signature. Using closed manifolds we obtain the upper 
arrow by linearity over Q. Using Z/n-manifolds we obtain the lower arrow 
by to the passing direct limit over n. 

In the second situation X is the universal space for surgery problems, 
G/pl. A diagram 

Q4*(G/pl; Q) - Q 

1{ a 
Q4*(G/pl; Q/Z) - Q/Z 
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can be constructed using the classical surgery obstructions. 
A manifold in Gipl, M ) Gipl is by definition a piecewise linear R"- 

bundle over M, E M, and a proper map E -2 Rn which is degree 1 on each 
fiber. 

By transversality we obtain a "surgery problem" or "normal map" over 
M, 

r7 1(0) = L 2M. 

That is, f is a degree-one map of manifolds which is naturally covered by a 
bundle map 

L F 
where vL is the stable normal bundle of L and F is some bundle over M. 

In the above case L is naturally framed in the total space of E so we 
may take F to be the stable bundle vM - E and f results. 

The existence of ]f allows one to begin surgery on f d'apres Browder and 
Novikov to try to make f into a homotopy equivalence. 

More precisely one tries to construct a cobordism Q of L to L' and a 
map Q c2 M so that c IL = f and c I L' is a homotopy equivalence. c should 
be covered by a bundle map )Q 2 F. The triple (Q, c, c) is called a normal 
cobordism and we say in this case that f is "normally bordant" to a homotopy 
equivalence. 

We will explain how the classical surgery theory extends to Z/n-mani- 
folds. For example, we find that surgery to a homotopy equivalence leads to 
obstructions in 

Z/n 0 Z/2 Z/2 

for the dimensions congruent to 0, 1, 2, 3 mod 4. The Z/2 obstructions are 
interesting only when n is a power of 2. 

We will describe how to compute these obstructions without doing sur- 
gery, in terms of signatures. It turns out that the theory of the Kervaire-Arf 
obstructions in Z/2 is subsumed by the "signature obstructions" in Z/n. 

First consider the surgery problem for closed oriented 4k-manifolds 
L L M. A necessary condition for L to be cobordant to a manifold homotopy 
equivalent to M is that the signatures of L and M are equal. Now the dif- 
ference of the signatures is just the signature of the subspace (Ker f)2k = 

(kernel f*)2k in H2k(L; Z)/torsion. 
Here the intersection form is even (see for example the discussion of 
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immersed cycles below) and has determinant ?+1. Thus the difference of the 
signatures of L and M are congruent modulo 8, by the famous theorem on 
quadratic forms (see the generalization, Theorem 5.9 below). 

Analysis of the surgery problem shows that f is normally bordant to a 
homotopy equivalence in the simply connected case if the signatures are equal. 
Thus the precise surgery obstruction for f is the integer 

(5.0) a= 1 (signature L -signature M) . 
8 

Thus af provides us with an a priori definition of the "surgery obstruc- 
tion" and a homomorphism 

Q4.(Glpl) Z.> 

To produce the map Q*(G/pl; Q/Z) Q/Z, we turn to surgery on Z/n- 
manifolds. To do this we will use some well known facts in simply connected 
surgery theory which we state here for completeness. 

(5.1) Let Lm and Mm be closed Z-manifolds and f: L M a normal map. 
The theory implies the following. 

(a) If w11(M) = 0, and m is odd, then f is normally bordant over M to a 
homotopy equivalence. 

(b) Any f is normally bordant to a surgery problem over a simply con- 
nected manifold. (This uses w1(G/pl) = 0.) 

(c) f is normally bordant over M to a map f' with (Ker f')* = 0 for 
* < [m/2] - 1. 

(d) (5.1) a, b, and c and the description of af above are valid if L and M 
have boundaries provided f I AL: AL , AM is a homotopy equivalence which is 
held fixed. 

Remark. The other interesting case for closed manifolds is dimension 
4k + 2. Here the Z/2 obstruction found by Kervaire is the Arf invariant [A2] 
of a quadratic form (Kerf2k+,) - Z/2 found at the last step of the surgery. 
(P is a quadratic with respect to the skew symmetric inner product on 
(Ker f)2k+1 provided by intersection. The quadratic function 9 is rather sub- 
tle. However, in Rourke-Sullivan [RS] there is an a priori calculation using 
immersed cycles. 

Some of these ideas will serve us well in the Z/n-case. 
We turn now to Z/n-manifolds for n = 2k. Let L4m and M4m be Z/2k-mani- 

folds and f be a normal map between them. If f 13L: 3L - 3M is a homotopy 
equivalence, we open L and M up to manifolds with boundary. Here f: L - M 
is a normal map of manifolds with boundary which is a homotopy equivalence 
on the boundaries. 
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/ Lz f < 7 / 

FIGURE 5.1 

So we see that a(f ) = (1/8)(I(L) - I(M)). However, this is the obstruction to 
doing surgery keeping 7 fixed on the boundary. We are not required to do 
that. We must only preserve the structure of (2k copies of some surgery 
problem) on the boundary. 

For example, suppose Q is the trace of some surgery of f restricted to 
one copy of aL in AL to a new homotopy equivalence. Then we can adjoin 
2k-copies of Q to L. 

M 

FIGURE 5.2 

We find a new problem of "interior" surgery. If any one of these obstructions 
vanish as we vary Q we can perform the surgery on the original map to a 
homotopy equivalence. Now the obstruction rel boundary is 

(5.2) 1 (signature L + 2k signature Q -signature M) 
8 

since signature L1 = signature L + 2k signature Q by the Novikov addition 
lemma. 

Now the possible signatures that occur for Q are the multiples of 8.' We 
know signature Q -0 (mod 8) because the form on the kernel of Q - aM is 
even with determinant + 1. On the other hand, 8 and its multiples occur 
using the standard Milnor surgery problem. 

1 For dimension of Q equal to 8, 12, 16, 
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Thus using (5.2) we see the precise surgery obstruction for the problem 
L f M on Z/2k-manifolds, where 3f is a homotopy equivalence, is 

1 -k -(signature L -signature M) reduced mod 2k. 
8 

In the general case where 3f is not a homotopy equivalence we proceed 
as follows. Construct a surgery Q of the odd dimensional problem aL am 
to a homotopy equivalence. Adjoin 2k copies of Q to L as in Figure 5.2 to 
obtain the relative problem 

L1- uX 

with surgery obstruction 

1 (signature L + 2k signature Q -signature M) . 
8 

Now the above remark generalizes: Signature Q has a well-defined 
residue class modulo 8 and every integer in the residue class can occur if 
the dimension of L is greater than four. 

The first part follows by putting two surgeries of af to a homotopy 
equivalence together, 

QO 

5L 

Q1 

FIGURE 5.3 

Then (signature Q0 - signature Q,) equals signature (Q0 U IL Q1) (by Novikov 
again) which is congruent to zero mod 8 as above. 

The second part follows again by using the standard Milnor problem. 

Definition. Let 0(3f) be the residue class modulo 8 of any surgery of 
3f to a homotopy equivalence. 

Now we can write a formula for the precise surgery obstruction in the 
general surgery problem on Z/2k-manifolds in dimension 4n, L 1 M, namely 

This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 17:06:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


THE TRANSVERSALITY CHARACTERISTIC CLASS 495 

(5.3) f= -1 (signature L + 2ko(af) - signature M) 
8 

in Z/2k. 

PROPOSITION. (a) If af is zero in Z/2k, then f is normally bordant over 
M to homotopy equivalence when w1M = w1aM = 0, and the dimension of M 
is 4m, m> 1. 

(b) If f is normally cobordant to any homotopy equivalence then af is 
zero. 

Proof. The first part was proved in the discussion above. 
For the second part, let (Q, aQ) denote the trace of any surgery of f to 

a homotopy equivalence. Then open up Q along its Bockstein and consider 

L 

Qua ~ 'j M. 

FIGURE 5.4 

Here L- M is a homotopy of manifolds with boundary. Then 

0 = signature &Q 
= signature (L U 2kaQ U- L1) 
= signature (L + 2k signature aQ - signature L1) . 

Since signature aQ lies in the residue class mod 8 0((3f) and signature L, = 
signature M we have the desired result 

'(signature L + 2k( -f) -signature M) = 0 
8 

in Z/2k. 

This shows that our understanding of the surgery obstruction on Z/2k_ 

manifolds of dimension 4n depends on our understanding of the invariant 
0(af). 

Before continuing with the e invariant we describe surgery in the other 
dimensions. In dimension 4k + 1, if we can do surgery on the Bockstein 
(5.1)a and (5.1)d then show that we can produce a normal cobordism to a 
homotopy equivalence. However since some multiple of each Bockstein 
bounds, each has 0 index. Thus, in the simply connected case, surgery on the 
Bockstein is possible. This shows there is no obstruction in dimension 4k + 1. 
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In dimension 4k + 2, we can do surgery on the Bockstein to a homotopy 
equivalence by (5.1)b, and we are left with the Kervaire invariant over the 
interiors. We can change the invariant (as in the index case) by multiples 
of n (over Z/n-manifolds). Since the Kervaire obstruction is of order 2, if n 
is odd we can always kill it by changing the Bockstein. However, if n is a 
power of two the obstruction is immutable. Thus f: L m42 - M4m+2 has 
a(f) e Z/2 X Z/n. From the point of view of Z/n-manifolds, Bocksteins, e 
invariants, etc., we have no a priori definition of this invariant. However, 
Rourke and Sullivan's a priori calculation works for any Z/2k-manifold by 
opening it up to a Z/2-manifold and then considering it as a non-orientable 
manifold. 

In dimension 4k + 3, then, the only problem is on the Bockstein. The 
fact that n times the Bockstein bounds a surgery problem implies that n 
times the invariant is 0. So if n is odd, we have no invariant, whereas if n 
is 2k, we have a Z/2 invariant, 

a(f: L4m+3 - M4m+3) = Kervaire obstruction (f I 3L) e Z/2 . 

This completes the description of the surgery obstructions. 

We turn again to the term 0(83f) in the surgery formula 
1 ka Uf = - (signature L + 2k@&f - signature M) . 
8 

Now e(3f) is a rather subtle invariant. It is not a cobordism invariant 
(but rather an invariant of a cobordism). We will see below that its theory 
encompasses that of the Kervaire obstruction which is well known to be 
elusive. 

Thus from now on we concentrate on closed (4n - 1)-manifolds, and sur- 
gery problems 

4,n-1 9 ) 4n-g 

in order to study 0(3f) above. 
Our aim is to give an a priori geometric computation of the invariant 

e(g) e Z/8. 
We begin. 
The interesting part of the homology of a (4n - 1)-manifold M is the tor- 

sion subgroup TM - H21-1(M, Z). The linking number of torsion cycles x and 
x' is defined in the rationals, mod 1, and we have by Poincare duality a perfect 
dual pairing, (x, x') l(x, x'), 

TM (D TM + Q/Z. 

Since we are in dimension 4n - 1, 1 is symmetric. 
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Our analysis of @(g) e Z/8 depends on geometrically enhancing the linking 
on the (non-singular) subspace 

Tg = kernel g* c TM 

to a quadratic form 

Tg q ) Q/Z. 
q satisfies the equations 

(1) q(x + y) = q(x) + q(y) + I(x, y) . 

(2) q(Xx) - 2q(x) 

We describe q. 
First of all the definition of q is canonical on the odd torsion of Tg. These 

self-linking numbers l(x, x) lie in the odd torsion subgroup of Q/Z where di- 
vision by 2 is possible and unique. So we define 

(q(x) to be the unique solution of 2q(x) = l(x, x) 
1 and n2q(x) = 0 where n is the order of x (which is odd) . 

On the critical 2-torsion subgroup of Tg we use the fortuitous fact from 
cobordism theory that homology classes of order a power of two can be re- 
presented by a manifold. 

So represent x e (Tg)2 by an embedded submanifold V of M. The em- 
bedding is produced by general position. Let C be a chain in M whose 
boundary is X copies of V and assume away from its boundary C intersects 
V transversally. We can think of C as a Z/X-manifold in M which intersects 
its own Bockstein transversally. 

i-sheets 

cV V 

FIGURE 5.5 

We obtain a simple picture of the self-linking numbers. If Can V is the 
algebraic intersection number of C and V then 
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l(x, x) = Co .V/X in Q/Z. 

Con V/X is only defined mod 1 because twisting C in a neighborhood of V 
changes Con V by multiples of x. 

However, suppose V is endowed with the extra structure of a nowhere- 
zero normal field F. For the pushed-off cycle V' described by the endpoints 
of F, C. V' is a well-defined integer. 

Thus we may divide the self-linking l(x, x) by 2 using V' and define our 
quadratic function q by 

q(x) = C . V'/2x . 

PROPOSITION 5.6. If x is represented by (V, F), y is represented by (W, G) 
and x + y is represented by (V U W, F U G) where V and its normal field do 
not intersect W and its normal field, then 

q(x + y) = q(x) + q(y) + l(x, y), 
and 

2q(x) = l(x, x) . 

Proof. Let D be a chain whose boundary is X W. Then 

q(x + y) = .L((C + D).(V' + W')) 2X 

= 1 CAV?+ 1-D.W' + 
- 

(DVW + C.W') 
2X 2X 2X 

= q(x) + q(y) + l(x, y) in Q/Z. 

To see that 1/2X(D V' + C. W') = l(x, y) notice that C-D is a one d- 
chain, and 

0 = D(C.D) = C.AD - (_ 1dim c)C CD 
= C XW- XV.D = (C. W- D. V). 

Thus C * W = Do V as integers. By the hypothesis that the field connecting 
W and W' misses V and vice versa, we see that C . W = C * W' and Do V = 
Do V'. This shows that C.n W' = Do V' as integers, so that 

1 (D.V' + C.W') = 1(C.W') = I(xy)eQ/Z 
2X X 

Now the definition of q is independent of the choice of C since x is a torsion 
class. To see this let C' be another chain with AC' = Xx. D(C U (- C')) = 
xx - xx = 0. So C U - C' is an integral class. But the intersection form on 
integral classes vanishes on torsion. As a result (C U - C') . x = 0. Thus 
(CU -C').x = C.x - C'Xx = 0. 
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Also q only depends on the immersion class of (V, F). To see this note 
that the different V's are obtained by twisting around V. 

FIGURE 5.6 

Each twist changes C . V'/2x by 1/2 in Q/Z. However varying (V, F) by 
an immersion always changes V' by an even number of twists as the following 
pictorial experiment with a belt readily shows in dimension 3. 

untwisted 

two twists 

FIGURE 5.7 

More generally, suppose M4m-' lies in the boundary of Q4m and (V, F) 
bounds the immersed manifold with normal field (W, G). Let z be the ho- 
mology class of the cycle Z = X W - C in Q and d the algebraic number of 
double prints of W. Then 

PROPOSITION 5.7. 

-X(C- V') + 2d\2 = z.z . 

Proof. Push W off along G to obtain W'. Add a collar to Q and the cycle 
Z' = \(W' + V' x I) - C' x 1. 

Examining the figure below shows the two contributions to z-z = Z-Z' 
are x(C- V) and 2dx2. (At this point we use the fact that V is embedded to 
gain the 2 of the formula.) 

This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 17:06:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


500 J. W. MORGAN AND D. P. SULLIVAN 

C, 

C VxI Mx2I 

2copies Q 
of W, 2 copies 

((. (~~~~of W 

FIGURE 5.8 

COROLLARY. q(x) remains unchanged if we vary our cycle with normal 
field by an immersed cobordism in M x I. 

Proof. If (V0, F0) U - (V1, F1) bounds (W, G) in M x I, then the above 
proposition shows 

_X((Co - C1)-(Vo - V1)) + 2d\2 = 0 

since there are only zero self intersections in the manifold M x I. Dividing 
by 2X2 gives 

_ C0- V0 C1-V1 + d = o 
2X 2X 

since the cross terms vanish. 

Co- VO and C1. V1, in the above equations, are calculated in a(M x I) = 
M x {1} - M x {0}. Thus if we calculate both CO VO and C1- V1 using the 
original orientation of M, we see that 

C0. V0 C1-V1 + d = o 
2X 2X 

Now we will see how our surgery problem M"' gL N4`- gives us the 
normal fields used to define the quadratic form 

T. v g Q/Z. 

By the definition of a surgery problem, g is covered by a bundle map 
OM 9 E where E is some bundle over N and OM is the stable normal bundle of 
M. Now an immersion class with normal field in M in homotopy terms is 
nothing more than a map V2n-1 fL M4n-1 and the choice of a (2n - 1)-bundle 
72n-1 in the class of the "potential stabilized normal bundle", 

f *YM - V = ?VV f *VM * 

This choice means choose ' and a stable isomorphism 
y2n-1 1 (VV - f*AM) - 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 501 

The equivalence of these notions follows from immersion theory. 

So choose V f- M representing x in kernel g* n2-torsion H2n,1M so that 
f g b 

the composition V - M 9 N bounds Q -0 N. This is done by examining the 
bordism of the mapping cylinder of M -% N rel M. 

Now choose immersion data for V with a normal field that "extends over 
Q". That is, a (2n - 1)-reduction of the stable bundle )Q - b*E. 

Note. (i) Q - b*E is isomorphic, after restriction to aQ = V, to V, -f *VM 

using -. 

(ii) Q is homologically 2n - 1-dimensional so (2n - 1)-reductions are 
possible. 

We claim that the resulting q(x) is independent of choices and we have 
our desired quadratic function. 

Before discussing this point we will explain how q(x) is used. From [S3] 
we have the following 

THEOREM 5.8. Let Mn-l' 9 N"n-' be a surgery problem of (4n - )-mani- 
folds. Let T, denote the torsion subgroup of the kernel of g* in dimension 
2n - 1 with the quadratic function 

Tg qv) Q/Z 

defined by the cycles with normal fields produced by g. 
Form the Gaussian sum 

Ex e2Z Tge 

Then the argument of this complex number lies in Z/8 c S' and deter- 
mines the surgery invariant @(g). In fact, we have 

i/order Tg e(I4e"() = EXeT e27it(x) 

We will sketch the proof. The validity of the formula and the invariance 
of our definition of q from the choices make use of the trace of the surgery 
of g to a homotopy equivalence. 

I: Proof that q is well-defined. 

Write the trace of the surgery Q as Q0 U0 Q, where Q0 is obtained from 
M by attaching handles of index less than or equal to 2n - 1; Q1 is obtained 
by attaching (2n - 1) bundles to aQ, - M; and q I (aQ - M) is a homotopy 
equivalence. 
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G 

QO ~~~~Nxl 

FIGURE 5.9a 

Let g, = G iQo n Q1. The inclusions into Q0 induce an isomorphism 

Tg -Tgj. 

Choose submanifolds with normal fields (Vi, Fa) and chains Ci by the 
above procedure for the computation of q on Tg. 

We can assume by general position that this geometric material avoids 
the spheres that are successively removed by surgery from M to get M, = 
Qo n Q1. Thus this geometric material exists naturally in M1 where it serves 
for the computation of q on Tg1. Thus q on Tg and q on Tg, agree. 

Note. Q0 has an orientation C)Q which when restricted to the boundary 
gives 0M1 and - M. It is when we use CM1 and + CM that the linking pairings 
and quadratic functions agree. 

This proves we need only show that q is well-defined for a map like g, 
which is (2n - l)-connected. 

If Wg, denotes the mapping cylinder of gl, the connectivity implies the 
2nt" bordism group of (Wgl, M1) is isomorphic to the 2nth-homology group. 

So let V. ). M1, X, N, i = 0, 1, be two choices of submanifolds in M, 
with bounding manifolds in N for the computation of q(x), where x C Tg1 - 

H2n( Wg1, M1). By the bordism remark above there is a (2n + l)-manifold R in 
Wg1 whose boundary is -X0 U V0 S U a, X1 where S is a bordism in M1. 

FU b 

FIGURE 5.9b 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 503 

Choose independently the bundle data on Xi for the separate computa- 
tions of q(x). 

Now we can assume the data chosen over XO extend over S since S/VO 
has homological dimension less than 2n. 

We claim that the bundle data induced from XO U O S on V1 agree with 
that coming from X1. This is the crux of the argument. 

Assuming this for the moment, the proof is completed as follows. Use 
the data on S to immerse S and apply the corollary of Proposition 5.1. 

Now we turn to the claim. 
Let v denote the stable bundle aR - E over the closed 2n-manifold AR. 

We can assume we have a 2n-bundle representing ay, with non-zero sections 
over XO U 0S and X1. The agreement of these sections over V1 is the point 
in question and this disparity may be easily identified with the mod 2 obstruc- 
tion to cross section for y, W2ny. 

Now the Thom space of a, T-Y, is S dual to the Thom space of E over AR 
since a= vR- E, [All. Thus w21Y =Sq2` (Thom class of a) can be calculated 
from XSq2n (Thom class of E). 

Now E over N4"' is fiber homotopy equivalent to the normal bundle of 
N4n'. Then XSq2" (Thom class of E over N) is just the 2n1" Wu class of 
N4n-1 which is zero. 

II: The relationship between the quadratic function TV - Q/Z and the 
invariant 0(g). 

The relationship between q: T, Q/Z and the 0-invariant 0(g) is a con- 
sequence of the following theorem of analytic number theory. 

THEOREM 5.9. Let V be a rational vector space with a non-singular 
quadratic form q: V-n Q which is integeal on a lattice L c V, i.e., a subgroup 
of maximal rank. Let L* denote the dual lattice, 

y e L* if and only if (y-l) e Z V 1 e L, where y-l = q(y + 1)- q(y) - q(l). 

Then 

l/order L*/L e( /4)signature q e L*L e2q(x) 

Notice that the left hand side has length Vorder L*/L and argument 
e Z/8 C , S' equal to signature of q mod 8. 

This theorem is proved in [S3]. 
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We still have some geometric-homological work to do to be able to apply 
this theorem. 

Historical Note. The use of Gaussian sums in a surgery problem was 
first made by Ed Brown. He was stimulated by Paul Monsky to write the 
Arf invariant of a form 9 on a Z/2-vector space V as 

A(P= Arg(E.eV ( -1) 9' x) . 

On the other hand, the second author was aware of the "analogous re- 
lation" 

aeczret't4)= e27iq (x) 

Rn 

where a is a constant of volume and r is the signature of the quadratic form 
q in the real vector space Rn. 

The formula of the theorem resulted as a common generalization of these 
two situations. There is even a short heuristic proof using the Fourier de- 
velopment of e2,ifq(=x) This proof was only "heuristic" because the integral 
above is improper. Paul Monsky then showed the second author how the 
difficulty could be avoided using the Poisson summation formula. 

Milgram, working independently in California, found the same formula 
almost simultaneously. In fact, he claims the result can be adapted from the 
classical literature. 

So consider again the trace of the surgery to a homotopy equivalence. 

M~~~M 

aQ=M`U-M` 

FIGURE 5.10 

Let K, T, F denote respectively the kernels of the various homology 
maps, their torsion subgroups and their torsion-free quotients. 
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Consider the diagram 
0 Tg 

1 f f^ * 
T22(Q aQ) T2n 1Q i2 

... -k K2nQ - K2n(Q, aQ) > K2.- k . 

h2L 
I 

h'* 
F2nQ F2n(Q, NQ) F2-..A 

0.- 

Since G has degree one the middle row is exact being a natural summand 
of the full homology exact sequence of (Q, aQ). The natural complement is 
the corresponding sequence for N x I. 

The bottom and top rows can be regarded as chain complexes. 
From this we see 
(i) The signature of Q can be computed from the pairing in K2nQ or 

F2n(Q). 

(ii) The deviation from exactness in the upper sequence at the Tg point 
is naturally isomorphic by the "Bockstein map" to the deviation in the lower 
sequence at the F2.(Q, aQ) point. 

Thus we may write the short exact sequence 

(*) O >0 F2,(Q)/Ker i L Ker h* Ker f*/im f -* . 

From here the proof will proceed by showing 
(i) Ker h* (? Q has a non-singular quadratic form q which is integral on 

the lattice F2f(Q)/Ker i and Ker h* is the dual lattice. 
(ii) q induces the same form on Ker f*/im f as q I Ker f * where we use 

the original orientation of M to calculate q (not the one induced on M as the 
boundary of Q). 

(iii) E((g) = signature (Ker h* ? Q). 
(iv) Arg (I eT e2,-r gi) - Arg( eKerf*/fmf e27 gi (). 

From the above, (*), and Theorem 5.9 we see 

e~ir/4)(6(g=) Arg x e K erf*!imf e 2ri(x) 

Arg (1xeKerf*/imf e 2i(x) - Arg (IET9 e2,,iq(x)) 

Thus HTord(er Tg e (ir4x) = ,g T e2riq<Z or Arg (E. e 
e2riq(x) C Z/8 C S' is 

equal to ((g). 
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(i) F2ff(Q, aQ) is dually paired to F2nQ by intersection. Thus by restrict- 
ing this pairing to Ker h* we have Ker h* (0 F2",, - Z. We wish to show 
Ker h* annihilates Ker i. So let a C Ker h* and fi C Ker i. a c Ker h* means 
that aa is a torsion element. Thus 'xa may be regarded as a class in interior 
Q. ,8 X Ker i means some multiple X',e may be pushed to the boundary of W. 
Thus Xa-X'1c = 0. This implies ao-, = 0. Thus we have a pairing Ker h* 0 
F2,,(Q)/Ker is Z. To show that this pairing is non-singular note that 

FIGURE 5.11 

Ker h* - F2,,(Q, aQ) is a direct summand. Thus a homomorphism on it ex- 
tends to F2,,(Q, aQ) and so comes from F2,,(Q). This provides an element in 
F2,,(Q)/Ker i hitting any homomorphism. Summarizing we see that intersec- 
tion induces an isomorphism of (Ker h)* with (F2,,(Q)/Ker i)*. (Ker h)*0&Q = V 
has a natural quadratic function defined as follows. If x G (Ker h)* then 
some multiple Xx = i(a). Define q(x) = x- a/2X. q is actually integral on 
F2,,(Q)/Ker i > (Ker h)* ( Q since x.x E 2Z for x e Ker (G)2,, = K2,,(Q), 

and as we have seen (Ker h)* is the dual lattice under q. 

(ii) q defines a quadratic function q' on the cokernel which by (*) is 
Ker f*/im f. It is given by q'(x + im f) = q(y) where ay = x. Of course, 
q(y) = Z2/2X2 where z e K2,,(Q) and z H-- xy. 

There is, however, another definition of a quadratic form of Ker f*/im f. 
It is obtained by restricting q on Tg. To get a form on the quotient we must 
show that q I (im f) = 0. But this will follow from the more general fact 
that on Ker f *, q = q'. To prove this let x e Ker f *. Choose y e K2,,(Q, aQ) 
with ay = x. If x is 2-torsion, pick y also 2-torsion and represent y by 
an immersed manifold W, with a normal field (which exists since W is of 
homological dimension 2n - 1). Let C be a chain in M with AC = Xx. Then 
we may use a W >-. M with its normal field and C to compute q(x), since 
(W - Q - N x I, normal field) when restricted to the boundary gives a 
permitted normal field for a W c aQ. 
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By Proposition 5.7 

q(x) = C. V/2x = Zwhere z E K2n(Q) hits Xy 
2X2 

and where we use the orientation on M coming from that on Q. Thus with 
this orientation q' - q. However, this orientation is the negative of the 
original orientation on M. Using it changes the sign of q. Thus q' = q on 
2-torsion. On the odd torsion we need only know that the induced linking 
pairings agree (again we use the orientation on Q to calculate one linking 
pairing and the original orientation on M to calculate the other). This follows 
from a cruder analogue of the above in which (W, normal field) is replaced 
by chains, X and X', in Q with boundaries x and x' respectively. 

(iii) @(g) -signature (Q) mod 8. Since Ker i/im h and Ker h*/im i are 
torsion 

(F2.(Q)/im h) (? Q = (F2,(Q)/Ker i) C) Q = (Ker h*) ?) Q 
Clearly the intersection forms on all the groups agree. Thus they all have 
the same signature. Signature (Q) = signature (F2,f(Q)/im h) 0 Q since 
im h > radical of the intersection pairing on F2 (Q). 

(iv) LEMMA. Let T be a finite quadratic space, coming from a quadratic 
on a rational vector space as in Theorem 5.9. Let A > T with q I A = 0. 
Form A TV A*, and let H = Ker i*/im i. Then H has a natural quad- 
ratic function q, which is non-singular and 

Arg (CE6H e2riqH(x)) = Arg (E e27iq(x)) 

Proof. We have already shown how to define qH. It is non-singular since 
A c annihilator (annihilator (A)) is an isomorphism. This is a counting 
argument using the fact that i*: T - A* is onto since Q/Z is infective. Call 
(the annihilater of A) = Ker i*, CT. Let (V, q) be the quadratic form on a 
rational vector space, L a lattice on which q is integral with (L*/L, ) -(T, q). 
Form 

>L- >L*- T >O 

0 >L >X a( >O 

0 - L - K - A - 0 
where K =r-'(A), X = a-'(CT). 

Claim. (i) q I K is integral 
(ii) XK= K* 
(iii) C/K = a/A = H. 

(i) If k e K, then q(k) is in Z since ii([k]) = 0 e Q/Z. This follows from 
the fact that [k] E A where q vanishes. 
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(ii) x keZ for all keK if and only if [x].a = 0 for all aeA. Here 
[x] C T. [x] * a = 0 for all a e A if and only if [x] C (e if and only if x e C. 

(iii) is clear. 

Since K >-* XC - V are dual lattices under q as are L - L* V, 
Theorem 5.9 implies 

Arg (I. e27riq(z) e(-ir/4)sIgn(V ) = Arg ( . e-2riq(z) 

We finish this section with some computational examples of Theorem 5.9. 
Let T = Z/p, p prime, with generator u and q(u) = X/p. Let -e2rip 

Then 
e T 2e=iq(x) 1 + _J p2 

Let (8) = +1, or-1 depending on whether or not y is a square mod p. 
Then, since all y # 0 which are squares have 2 square roots, we have 

de T e27'iq(z) = 1 + 25 ( 2 _ ( )\ 
= 1+ El<V:P-1 e + Elgy- (YP p 

= 1-1+( )E5<-(Y)8 

By a theorem in Gaussian sums, [BS], page 349, the last summation is 

iP p 3(4). 
Thus Arg .eT 2riq(z) is 4 or 8 for p _ 1(4) and 2 or 6 for p -3(4). It is true 
in general that the odd torsion only contributes arguments of order 2 or 4. 

As another example, let 

2 1 0 0 
1 2 1 1 

A= 0 1 2 0, 

0 1 0 2 

i.e., the matrix associated to 
* * 
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Then det (A) = 4 and signature (A) = 4. Let A: 34 Z e4 Z* where xl, 
X2, X3, and x4 are the natural generators of e4 Z. 2(x* - x*) = A(x1 -x3) 

and 2(x* - x*) = A(x3 -x4). Thus T = coker A is Z/2 33 Z/2 generated by 
(x* - x*) and (x* - x*). 

q(x*x*) = <( - x*), A-12(X* -X*)> 

4 
<(i*-X3), (Xl-X3)> _ + 1 IeQ/Z. 

4 4 2 

Likewise q(x* - x4) = q(x* - x4) = 1/2. Thus 

E e2 - 1 + 3er5 = -2 = V e 

This is the space that arises in (Kervaire problem) X (Z/2, 1/2), i.e., it is the 
signature 4 problem that relates Kervaire obstructions to Z/2 signature 
problems. 

6. Product formulae 

In this section we will study product formulae for surgery problems of 
Z/2r-manifolds. First we consider the surgery obstruction for the product of 

f a surgery problem with a manifold, denoted (M - N) A) L. Then we pass 
to the general product. As a model for this result, consider the Z/2-manifold 
formula for the Kervaire obstruction. If 1 + m -2(4), i.e., we are in the 
"Kervaire dimension", 

a((Mm f ) Nm) (3 L) = u(M f2 N) * (signature mod 2 of L) 
[RS], [S1]. Our result are analogous but more complicated in the index case 
(1 + m -0(4)). Let Mm, N-, and L' be Z/2r-manifolds with 1 + m -0(4). 
Then we have the following basic formula 

U((Mm a Nm) A) L') = 6(M-f N).i(L) 

where i is an invariant of the hornological structure of L. There are four 
possibilities for i depending on the four possible pairs of dimensions 0 + 0 = 

0(4), 1 + 3 -0(4), 2 + 2 _ 0(4), and 3 + 1 _ 0(4). The values of i(L1) are 
described by the following theorem. 

THEOREM 6.1. Case (0). If 1 -0(4), then i(L) is the signature of L in 
Z/2r. 

Case (1). If 1 1(4), and, if in addition, L is a closed Z-manifold, 
i(L) is the rank mod 2 of (torsion H2k(L; Z)) (3 Z/2. (Here the product 
a(M 1 N) . i(L) is formed in Z/2 and then considered as an element in Z/2%.) 
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Denote this invariant of manifolds d(L) after de Rham who first considered 
it. For the general case in this dimension see (1') below. 

Case (2). If I _ 2(4), then i(L) is just the de Rham invariant of the 
Bockstein of L, d(QL). 

Case (3). If 1 3(4), then i(L) = 0. 

To treat Case (1) in full generality we must extend the de Rham in- 
variant to Z/2r-manifolds (in analogy with the way the index is generalized 
to Z/2r-manifolds to treat Case (0)). Our generalization of the de Rham in- 
variant is as follows. Let W4k"1 be an orientable manifold with boundary. 
The signature of a W is 0 so we may choose (G >- H2k3( W) a maximal torsion 
free self-annihilating subspace with 1/2 the total rank, see [M3]. Define Tw 
to be the following torsion group 

Tar = torsion {H2k( W)/i*(G + torsion H2k3( W))} 

where i: a We- W. 
Then there is an extension of geometric linking which gives a non-singular 

skew-symmetric pairing 

We define d(W, d) to be the de Rham invariant of this pairing, i.e., 
d(W, d) = rkZI2(TW, d ( Z/2). If L41+1 is a Z/2r-manifold choose any maximal 
self-annihilating subspace D c H2,(3L). (Such a subspace D will have rank 
equal to 1/2 the rank of H2#(3L) since I(aL) = 0.) Open L up to form L a 
manifold with boundary. AL = 112r AL. The invariant d(L, De.. * * D) C Z/2 
is an invariant of L independent of D. 2r 

Case (1'). i(L) = d(L, D @ ... ** D) e Z/2. 

Let us begin our proofs of the cases in (6.1.) 

Case 3. We can assume (after a cobordism of range and domain) that 
the manifolds in question have simply connected Bockstein and when opened 
up are simply connected. 

Then, since dim N 1 (mod 4) we may perform surgery on f to make it 
a homotopy equivalence. f (D (Identity L) is also a homotopy equivalence 
and the surgery obstruction of the product is zero. Since i(L) = 0 in this 
case, this proves Case 3. 

In Cases (0) and (2) we may assume by the statements 5.1(a), (b), and 
(c) that M2m f2 N2m is a surgery problem over closed manifolds, and is (m - 1)- 
connected. 

In Case (1) we can assume M 3 aN has this form. 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 511 

Our first task is to compute the e invariant of: 
(i) Cases (0) and (2), 

h = IL X If, 
h 

ALxM - aLxN, 

(ii) Case (1), 

h = LL X af, 

Lx aM-*L x AN. 

These problems are all of the form 

Q x M2m h- Q x N2m, 

h = I x f 

where Q, M, and N are closed and oriented, and Ker f has torsion free 
homology concentrated in dimension m. 

To compute E for such a problem we need to know the quadratic function 
associated to the linking form in torsion (Ker (I x f)). Since Kerfj is free 
and 0 unless i = m, the group Th is equal to 

torsion (H1Q) ? Ker fin, 

where dim Q = 21 + 1, dim M = 2m. 
The linking pairing on this subspace can be determined homologically 

and satisfies the formula 

(6.2) l(x ? y, x' ? y') = l(x, x')(y-y') 

where y y' denotes the intersection pairing in Hm(M). Thus we know the 
quadratic function q on the odd torsion subgroup of Th by a formal homo- 
logical calculation. A more complicated formula (6.3 below) derived geo- 
metrically is needed to calculate q on the 2-torsion. 

Let x ? y be a generator of the 2-torsion subgroup of T,. We will see 
how to use f to represent y (or some odd multiple) by an immersed manifold 
U in M. We will also represent x by an embedded submanifold VI of Q21' 
with nowhere-zero normal field. A map VI - Q can be found by general 
bordism theory which says Q.(Q) 

h 
H*(Q) has an odd-torsion cokernel. Since 

x is a 2-torsion class there must be some V f1 Q representing x. VI Q21+1 

is embedded and has a nowhere-zero normal field by general position. We 
represent y (or some odd multiple) by U s M so that f(U) bounds Wm+' in 
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A~~~~~~~ 
C 

U~y 
Q M 

FIGURE 6.1 

N. This again follows from the bordism theory as above. As in Section 5 we 
use the bundle information in the normal map to reduce f *M - u to an m 
bundle. This provides an immersion of Um in M2m. 

Let du denote the algebraic number of double points of U in M for m, 
even and the actual number of double points of U in M for m odd. Let 4v 
denote the Euler number of the normal subbundle to V perpendicular to the 
field. Let l denote the algebraic number of points in the intersection of V', 
the cycle described by the endpoints of the normal field vectors to V, and C, 
a chain whose boundary is xV where X = order x. lv/X = l(x, x) by definition. 

One of the main geometric points of the paper is the following: 
Local product formula 

(6.3) q(x y) = (l + (-1)mlv + Xzv)du 
2X 

Proof. Recall V is embedded in Q with a chosen normal field. Also, the 
immersion data (in terms of a bundle reduction) for U in M has been chosen 
so that it "extends" in the sense of Section 5 over some manifold W in N 
whose boundary is U. Thus V x U has a natural immersion in Q x M with 
normal field and the bundle data for this clearly "extends" over the manifold 
V x W in Q x N. By the recipe of Section 5 we have a suitable immersed 
cycle with normal field for computing the quadratic function on x X y. 

We assume that the leaves of C come into V along the negative of the 
field (Figure 6.1). We will use a small isotopy of C in Q which moves V a 
small distance "down" along the field. 

Think of C x U as fibered over U with fibers C. Near each double point 
P of U push the C fibers down slightly using the isotopy of C in a damped 
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~~~~~~~~~~~~~(CX U), 

branch 1 

FIGURE 6.2 

manner over a small neighborhood of P in branch 1. 
We obtain a new chain (C x U)1 whose boundary is now embedded and 

fibers over U cM (Figure 6.2). We want to calculate the generic intersection 
of this embedded cycle (V x U)' pushed down slightly along the normal field 
with (C x U)1. 

Now U has a non-zero normal field in M because the normal bundle to U 
extends over the manifold W. Let U, denote a generic translate of U along 
this field (Figure 6.3). Push (C x U)1 fiberwise to a new chain (C x U)8 
lying over U, in the same way (C x U)1 lies over U. Now (V x U)' inter- 
sects (C x U), only over points like P, and P_ in Figure 6.3. 

FIGURE 6.3 

Over P? and P_ we have respectively 

FGand 4 

FIGURE 6.4v 
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514 J. W. MORGAN AND D. P. SULLIVAN 

The intersection is generic over P. with l intersection points. Over P, 
we move the fiber V' of (V x U)' to intersect C transversally, and we have 

vi 

FIGURE 6.5 

Iv + xX, intersection points. The signs associated to P, and P. by the in- 
tersection of U, with U are respectively + and - if m is odd. If m is even 
each has the sign of the double point P. So we see that the contribution over 
P to the generic intersection of (V x U)' and (C x U), is 

Iv + XXv + (-1) Iv X 

Adding over all double points we obtain the desired formula 

q(x G y) = (Iv + (-1)-lV + XXV)dUQ/Z 

Proof of product formulae. We can apply the local geometric product 
formula to deduce the surgery formulae above: 

Case 0. In case m is even, then 1 is odd. Thus Xv is zero by skew-sym- 
metry, v being an orientable 1 bundle over an l-manifold. du is clearly (1/2)(y. y), 
and lv/x is the self-linking number l(x, x). Thus (6.3) becomes 

q(x 0 ) = -(Y-y).l(x, x) e Q/Z. 2 

So we find ourselves in the situation of the algebraic Proposition 6.7 
which tells us the e invariant of Th I Q/Z associated to the surgery problem 

h 
aL x M-a aL x N is zero. 

By formula 5.3 we find that surgery obstruction for (M L N) 0 L, m 
even, is just 

1 (signature M x L -signature N x L) 
8 

or 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 515 

a(M- a- N) -signature L. 

So i(L) is signature L and this proves Case 0. 

When m is odd y L d, (mod 2) defines a quadratic function on Kf = 
(kernel f*), with values in Z/2 associated to the intersection form on Kf. The 
proof that d, as constructed by our procedure depends only on y E Kf is ex- 
actly like the proof of Section 5 about the quadratic function q. The fact 
that 9 is quadratic and associated to intersection follows immediately from 
the figure. 

U+ U, 

duc, = du + du, + Us U' 

FIGURE 6.6 

This discussion is more detailed in [RS] where it is shown that the Arf 
f invariant of 9 is the Kervaire surgery obstruction of M f N. Again the 

discussion of Section 5 can be adapted to show this. 

Now we turn to the Euler number term in the formula X4 which bears 
a rather pretty relationship to the self-linking number of homology class x 
determined by V. 

Suppose we have V2k c int M4k+l and a chain C whose boundary is X VU A 
where A c aM4k+l. We assume that C intersects V transversally in l points 
and that in AM, A. A 0= . Then it follows that 

s == XV' + 1vES + A 
is homologous to zero in the complement of V. Here V' is again the pushed- 
off cycle defined by the normal field and S is the boundary of an oriented nor- 
mal disk to V. Thus e as a cycle in the normal sphere bundle to V U AM 
must have zero self-intersection. (Make the part of C outside the normal disk 
bundle to V transversal to itself and examine the boundary of this one cycle.) 

Computing this intersection gives 

X2(V'. V') + 2Xlv(V'.S) + (lV)2(S.S) + [A].[A] 0= 

or, 
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X2Xv + 2Xlv = 0 

or, 

(6.4) 2Xv =-1v/ X. 
2 

Applying this to the case where A = 0 and AC = X V we see that Xv is even 
or odd depending on whether l(x, x) is zero or not in Z/2 c Q/Z. 

So formula (6.3) becomes 

q(xD y) = 1(x, x) * 9(y) 
where on the right we multiply in Z/2 and regard the result in Q/Z. Thus 
we find ourselves in the algebraic situation of Proposition 6.8 below which 
computes the e invariant of Kf (0 TL - Q/Z to be 

4(Arf 9) * (rank T8L ( Z/2) e Z/8 . 

From this we may prove Cases (1) and (2). 

Case (1). e(L"1+' x (M WN)) = 4d(L). a(3f). Of course a(3f) = a(f) 
by definition in this case. Since signature of L x M = signature of L x N = 0, 
formula (5.3) tells us a(L x (MLf N)) = d(L)a(f) e Z/2 > Z/2k. Thus 
i(L) = d(L). 

Case (2). 0(aL x (M4m+2 =N4m+2)) - 4d(aL) . a(f). Again since signature 
L x M = signature L x N, (5.3) yields a(L41 t2 (D (M f N)) = d(QL) . a(f) e 
Z/2 -> Z/2k. Thus i(L41+2) = d(3L) in this case. 

Case (1'). Before beginning the proof of (1') proper we study the gener- 
alized linking pairing mentioned in the introduction to this section. Let 
W4k+l be an oriented manifold and let (d c H2k(a W; Z)/Torsion be a maximal 
self-annihilating subspace. Its rank is 1/2 the rank of H2k(a W). For the ex- 
istence of such a subspace see [M3]. Let 

Tw,a = torsion [H2k( W)/i*((d + Torsion H2k(a W))] 

where i*, is the map induced by inclusion. Let x e Tw,, Represent x by a 
cycle X2k , W. Some multiple of X, XX, is homologous to A e G + Torsion 
H2k(a W). Let C2k+1 be a chain whose boundary is XX - A, where as before 
the X sheets come into X in a cusp-like manner along a normal field. For 
any y e Tj, let Y be a cycle representing it. Define l(x, y) = (1/X)C. Y 
where Y is shifted to miss X. 

LEMMA. 1: Tw(a e Tw&e Q/Z is a well-defined, skew-symmetric, non- 
singular pairing. 
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THE TRANSVERSALITY CHARACTERISTIC CLASS 517 

Proof. Let C' be another chain with boundary XX - A' for A' e (G + 
Torsion H2k(a W). Then C U - C' is a chain with boundary A' - A. Since 
some multiple of Y, p Y, is homologous to A" e d + Torsion, we see that 

(Cu -C') *. Y = (A'-A).A"f= O, 
f1t 

since ((d + Torsion H2k(a W)) is self-annihilating. Thus we see that C. Y = 
C'. Y. Thus (1/X)C. Y = (1/X)C'. Y. If we shift Yaround we change (1/\)C. Y 
only by integers. The proof of this is the same as in the closed manifold case. 
Thus l(x, y) e Q/Z is well-defined. To calculate l(y, x) we must take D with 

w \ / 

FIGURE 6.7 

AD= Y- A", A" e d + Torsion H2k(aW) and form (14p)D.X. C*D is a 
one-complex whose boundary is 

xX*D + CLAY + ADA" = xX.D + CLAY. 
Thus since X. D = D * X and a(C. D) = 0, we have 

o = XDX-X + eC Y 
or 

o D 1XDX+ C. Y 

or 
l(y, x) + l(x, Y) = 0, 

i.e., 1 is skew-symmetric. We will not need the fact that 1 is non-singular. 
This, however, will follow from the calculation of the surgery kernel in Case 
(1'). For these reasons we do not include an algebraic proof. 

Now we consider Case (1') for Z/2-manifolds. We have f: M4k+S N4k+3 

a surgery problem between Z/2-manifolds and L41' +la Z/2-manifold. We wish 
to calculate a(f 1L: M (O L- N ? L). 
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We first form a nice representative Z/2-surgery problem in dimension 
4k + 3 whose surgery obstruction, i.e., the Kervaire invariant along the 
Bockstein, is non-zero. Let K4k+12 S4k+ be the usual Kervaire surgery 
problem. We claim that this problem admits an orientation reversing in- 
volution. Namely, on 

K -4k+2 = Z (S2k+z) #(S2k+1) U c(boundary) 
plumb 

we exchange the two copies of Z(S2k+l) and then extend by coning over the 
boundary. On S4k+l we use the antipodal map. One checks easily that these 
involutions are of degree -1 and that the normal map may be taken com- 
patible with respect to them. 

Let X I 3 y4k+3 be the Z/2-surgery problem K4k+l X I/z L S4k2 X I/Z-' 
where v and v' are the involutions just described. Clearly a(fr)= (the 
Kervaire invariant of z- I 6X) = 1 Z/2. If f: M4k+3 , N4k+3 is a general 
surgery problem between Z/2-manifolds, and L'1+1 is a Z/2-manifold, then 
f(il,: M(3L-N(?L is homotopic to a homotopy equivalence if f is. If a(1f) = 1, 
then M 1i xf L N i Y has obstruction 0. Thus a(M? L N? L) = 
a(X D L- Y L). Thus we see that in general a(M (D L N(3 L) 
a(f I aM) . c(X L Y ? L), and hence if suffices to consider the latter 
problem. Of course 4u(X(?L -$ YL) = O(f ( 1: a(X? L) - (Y? L)) 
in Z/8. 

One sees easily from the definition that 
a(X ? L) = (K x L)/x X idaL, 

a(Y( L) = (S x L)/x' X idaL, 
and 

(fr (?1L) 18 = k x id-. 

Here L is the Z/2-manifold L opened up along its Bockstein; id8L: 6L1-> 3L2 
is the identification of the two copies of aL in aL. Notice that z- x id8L and 
T' x id,, are orientation reversing and thus K x L/z x idL and S x L/x' X id8L 
are oriented manifolds. 

FxURL Sx 6.L 

FIGURE 6.8 
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We will do surgery on the codimension one manifold K x 3L until it 
maps by a homotopy equivalence to S x AL. After doing this surgery we 
will have a new surgery problem. The torsion of its kernel in dimension 
(2k + 1) + 21 will be H2k+l(K) ?D TZDeD where D c H2,(aL) is a maximal self- 
annihilating subspace. The linking pairing on this torsion kernel will be 
given by 

t(x ? y, z Ow) = (x-z).l(y, w) 

where x-z is intersection on H2k+l(K) and l(y, w) is the linking pairing defined 
in the previous lemma. We will also show that the quadratic form on this 
torsion group is given by q(x ? y) = pa(x) . l(y, y) where ,cc is the Kervaire 
quadratic form on H2k+l(K). Thus by the algebraic Proposition 6.8 below 
we see that E of this surgery problem is 

4 - o(K- > S)-d(TZ,DC+D) = 4-d(TZ, DffD) 

Case (1') is then completed by showing that e of this problem equals e of 
the original problem. This is proved by showing that the signature of the 
trace of the surgeries between them is 0. Thus i(L) = d(L, D e D). This 
is an outline of the proof of Case (1'). 

kxl 
We wish to do surgery on K x 3L S x 3L in a special manner. 

F 
Namely we will inductively do surgery to produce W - S x 8L with a-W= 
K x 3L and F I a+ W more and more highly connected such that 

(1) Ker* F - H2k+l(K) ?D M, 
(2) Ker* (F I a+ W) H2k+l(K) ? M+ for appropriate graded groups M 

and M+, and such that 
(3) The inclusions &- W-) W and a+ W-) W preserve these tensor product 

splittings. 
Suppose we have produced such a W with F j&+ W (2k + 1 + i)-connected. 

Then do surgery on classes representing 

{x ( a,1, y ( a,, * * *, X (a a., a (a a., X (x?'1, Y (y?81, * (9)8 Y (x yf8} 

where x and y are the usual generators for H2k+l(K), {a1, ..., an} is a basis 
for M+/Tor in dimension i + 1 and 1,8, . . ., 38}9 generate Tor M+ in dimension 
i + 1. These surgeries enlarge the normal bordism W, so that it still satisfies 
(1), (2), and (3) above and in addition F I a+ W is (2k + 1 + i + 1)-connected. 
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We do this for i<21 - 1. Thus we may assume 

r0 * ?_2k + 21- 1 
eH2k+l(K) (D H2,(3L) *= 2k + 21 + 1 

and that Tor K2k+21(F I ?+ W) = H2k+l(K) ( Tor H21_(3L). Now we do the same 
type of surgery as above. This produces a new normal bordism 

F 
WSx aLx I 

satisfying (1), (2), and (3) above with 

Ker(Fla?W)* ( 0- k 2+ 
lH2k+l(K) 0 [(H2,(aL)/Tor) E F] *-2k + 21 + 1 

where F is a free abelian group. 
If we did surgery in dimension 2k + 1 + 21 - 1 on 

{xa,, ya, .. , x 0 a,, y 0 a, x (l, y@ (Dl ..., x (D f31 y & jf1*8} 

where {a1, *.. , aj} are a basis for (M+)2,-1/Torsion and {,81, *.., lj8} generate 
Torsion (M?)2I1, then F has two generators bi and b' for each Ahi. x 0 bi (or 
y (0 bi) as a class in H2k+l+21(a+ W) and then included into H2k+l+21( W) has the 
same image as the inclusion of x 08 fl (or y 0 fl*) e H2k+l(K) (0 H21(aL) into 
H2k+l+2( W). Here fl* e Torsion H2,(QL) is the dual element to fi. The class 
x (0 b' (or y (0 b') is given by the following cycle. 

W 

Kx JL- 
FIGURE 6.9 

Let Xi be the order of (x 0 fEW), hi the handle added along the sphere 
representing the class of x 0ei in + W, Ci a homology in &. W from 
Xi(x &fl) to 0, and wi a homology from x f3, in &_W to x &fi in a+W. 
Then x (0 b is represented by Xihi U ?i4oi U Ci. Thus the intersection pair- 
ing on Ker (Fl a+ W) = H2k+0(K) 3 [(H2,(QL)/Tor) (D F] is the usual inter- 
section pairing on H2k+,(K) tensored with 
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H21,(3L)/Tor bi's b's 
intersection 
in H21(aL) 0 * 

o 0 I 

By changing the b~'s we may make this matrix 

intersection 
in H21(QL) 0 0 

o o I 

o I 0 

Now we do surgery in dimension 2k + 1 + 21. Let D c H21(3L) be a 
maximal self-annihilating subspace and (di, ..., dj) a basis for D. We do 
surgery on spheres representing 

{x dl, y dl, ..., x $ dk, y dk, x bly ybl, ..., x~bs. ybs}. 

We must first show that this is possible, i.e., that the pairwise intersection 
numbers of these classes are all zero and that the self-intersection form 
vanishes on them. Since all of the classes are homologous in W to classes in 
a W = K x AL it is sufficient to make the calculations on their images in 
& W (see [RS] or for example Proposition 5.7 and its corollary). But - W = 
K x 3L, thus the intersection form is intersection in K tensor with inter- 
section in 3L, and by [RS] the self-intersection form in K x 3L is 
[e *. where ,a is the self-intersection form in K and * is intersection 
in AL. Now x di in iLW is x di whereas x bi is x fl*. Since 
(D + Torsion) * (D + Torsion) = 0, the intersection and self-intersection forms 
are 0 on the subspace. Thus we may perform surgery on these classes. 

Since we are doing surgery on a "subkernel" in Wall's notation, i.e., a 
subspace of 1/2 the rank of Ker (F I + W), the result enlarges W to 

F' W'- , S x 3L x I 

satisfying (1), (2), and (3) above and with F I a- W = k x 3f: K x LP S x UL, 
and F I a, W a homotopy equivalence. 

Now we form (K x LI-) x I U W' x I. 
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KxLl/ 

C 

a+ W / 

Using the Meyer-Vietoris sequence it is easy to calculate Ker(G a, C). It is 
the same as the kernel of 

W' UK x L U W' S x L 

Gla+C 

Since all of the kernel groups of the various pieces split as tensor products 
of H2k+l(K) with some group, so does the kernel of G. Ker(G I a+C) 
H2k+l(K) (D (MG)*. MG is calculated from the following sequence: 

)~ H*(3L) EE H*(8L) >H* (L) (D M, ED M, ~ MG ~ 
From this we see that 

(MG)21 [H2,(L)/im i*(D + Tor H2,(3L) ?) D + Tor H2#(3L))] 
? Free abelian group. 

Thus Torsion H2k+21?l(Ker GI a+C) _ H2k+l(K) (D TTDeD 

Next we must show that the linking pairing and quadratic form on this 
torsion group are as claimed. Given a and b in Ty,D@D and x and y in H2k+l(K), 
represent x ? a and y ? b by disjoint cycles X and Y in K x L. Some multi- 
ple of X, \X, is homologous to i1*(A) + i2*(A') where A and A' represent 
homology classes in H2k+l(K) (D (D + Torsion H21(3L)) and il, i2 are the two 
inclusions of K x 3L into K x L. Both A and A' bound in W. Let the union 
of these three homologies be Q. 

W' KxL 

By definition l(x ? a, y ? b) = (1/X)Q. Y. This also equals (1/X)D Y where 
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D is the homology of XX to i1*(A) + i2*(A'). Since K x L is a product, this 
intersection is (x. y) l 1(a, b) where x * y is intersection K and l(a, b) is the link- 
ing on T(LDSD) I 

Note. One copy of W' is attached by the identity to K x 3L1. The other 
copy of W' is attached to K x 8L2 by (z- x id). Thus to know that A' bounds 
in W' we must know that (z x id)*A' bounds. But by the way we did surgery 
to create W' if x 0 a bounds in W so does z(x ? a). 

To calculate q(x ? a) we must take Q and intersect it with X' where 
X' is a pushed-off copy of X using normal fields coming from the surgery 
problem. Since K x L - S x L is a product surgery problem x 0 a is re- 
presented by a product S2k+l X M21 - K x L and the normal field is obtained 
by using the ia-form on K to immerse S2k+l and then crossing this with any 
normal field on M21. Now the same argument as is used to derive equations 
6.3 and 6.4 shows that q(x ( a) = p(x) l(a, a). This completes the calculation 
of the kernel of the new surgery problem. Proposition 6.8 below then shows 
that for this problem 

e= 4a(K >L)*d(T(7,DfD)) = 4d(T(LDOD)). 

We need only show that e of this problem equals e of the original problem, 
i.e., that the bordism 

C 

~~~y~~<\x 3L 

has 0 index. 
Since the homology of K x L, K x 3L, and W' all admit involutions 

given by interchanging the generators of H2k+l(K), and the inclusions are 
equivariant with respect to these involutions, we see that the homology of 
C admits such an involution (though C does not). This involution changes 
the sign of the intersection pairing. Thus the index of C is 0. This com- 
pletes the proof of Case (1') for Z/2-manifolds. 

To prove (1') for Z/2r-manifolds we observe that a(f (0 1L: M 0 L 
N(L) is an element of order 2 in Q/Zand equal to o(f0(D1L: M(L -1VX0L) 
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where in this case - means open up to a Z/2-manifold. Thus a(f (lL)= 
o(f | a3M) *i(L)- 

a(f I 3M) = a(f ?3M) and i(L) = d(T(LD . AB)) 

2r 

This proves Case (1') in general. 
f 

General product formula. Let M" 
- 

N and LI 
- 

Q be two surgery 
problems of Z/2k-manifolds whose product 

M (g L flgg N (gQ 
is of total dimension 4i, i.e., n + I 0(4). 

We can use the above work to show 

THEOREM 6.5. 

a(f 0 g) - i(Q)a(f) + i(N)a(g) + 8a(f)a(g). 

First we note a few geometric facts about surgery obstructions. 
f (i) Any surgery problem M - N is cobordant to a disjoint sum 

f h + s 

where h is a homotopy equivalence and s is a standard problem. 
If n -0(4) and n > 4, we may take s to be the multiple of the problem 

m corresponding to the Milnor manifold mapping to the sphere. 
If n 1(4) s is trivial. 
If n _ 2(4) s is the problem k corresponding to the Kervaire manifold 

Kn mapping to the sphere, Sn, or trivial. 
If n =,3(4), in the Z/2-manifold case, s is fi: X Y as above. In the 

Z/2r case we replicate this problem 2r-1 times and identify along Bocksteins to 
obtain k". These descriptions follow from simply connected surgery theory. 

Given f: My - N we may assume r1(aN) = r1(N) = 0. Once we have 
this, we can do surgery on 3f 1: 3M-P 3N to make it [(n - 1)/2] - 1-connected. 
If n +'a 3 (4), we may complete this to make 3f a homotopy equivalence. Once 
we have this, we perform surgery on ML )N rel boundary to make it [n/2] -1- 
connected. If n is odd we may complete this surgery to a homotopy equiva- 
lence. If n is even we may do surgery until the kernel is that of the standard 
problem. But these kernel elements may be represented by embedded spheres, 
and this enables us to write M = N' #K or N' #W where N' E N is a 
homotopy equivalence. This proves all cases except (3). Case (3) is proved by 
forming a connected sum with the correct standard problem f, and then doing 
surgery to a homotopy equivalence. 

(ii) The surgery obstruction for M f- N is equal to that of the compo- 
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sition surgery problem M f N-+ Q where h is an arbitrary homotopy equiva- 
lence. This is clear from any definition of the surgery obstruction. 

These two facts allow us to decompose the general product into sums of 
products of homotopy equivalences and standard problems. 

_ _ _ _ f -_ __x_ _ . Lb 

ffg 

Thus 

f ? g (h + m) 0 (h' + m') 

= h (D h' + m x h' + h x m' + m x m' if dim f O(mod 4), or 
- h ? (h' + s&f) 
- h h' + h ?&f, if dim f 1(mod 4), or 
- (h + sk) ? (h' + &'k) 
=h gh'+skx h'+hxs'k+skcxs'k if dimf 2(mod4), 

where h and h' are homotopy equivalences m and m' are multiples of the 
Milnor surgery problem, and s and a' are 0 or 1. 

(a) a(h (0 h') = 0 since h ? h' is a homotopy equivalence. 
(b) a(m x h') = a(m) * i(range h'). 
(c) a(h x m') = a(m') * i(range h). 
(d) a(h x &'k) = i(a(range h))&s'. 
(e) a(&k x h') = i(a(range h')) s. 
(f) a(h ? ki") = i(range h) * a(k"). 

The range of h is N and the range of h' is Q. Thus establishing (a) 
through (f) will prove the theorem. These are all proved in the same manner 
by factoring the map through a homotopy equivalence and then using remark 
(ii). For example h x k' = (h x Idraf9ge1k)o(Iddomajhin x k'); and hx Idrange V is 
a homotopy equivalence, so a(h x k') = 6(Iddomainh x k') = i(a(domain h)) * (k'). 
In each case we get a formula just as we want, except that in place of 
i(range h or h') we have i(domain h or h'). However, since h is a homotopy 
equivalence i(domain h) = i(range h). The reason for using i(range h or h') 
in the formula is that range h or h' = N or Q but the domains are usually 
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more accessible in the terms of the original problem. 
We now consider terms of the form i(Mm (D N"). 

PROPOSITION 6.6. 

i(Mm 0S) Nn) = fi(Mm) * i(N") m _ 0(4) or n X 0(4) 
lo otherwise. 

We divide the proof into 4 cases according to the value of m + n(mod 4). 

Proof. m + n 0(4): Let W8 S8 be the standard surgery problem of 
dimension 8 and obstruction 1. Then 

i(M N) =a(Wx (M?N)-*S x (MO N)) 

= a((W x M) O N) (fx)01 ((S x M) ON) 
= 0 unless m 0(4) when it is I(M). I(N) . 

m + n 1(4): Let f: (K x I)/l -(S x I)/- be as above. Then I I(M) i(N) m 0 

i(M (D N) = v~ X (M N)) i(M) I(N) 1 
0 2 
0 3(4). 

m + n 2: Let k: K S. Then 
I(M) i(N) m _ 0 

a (k x (MO N)) = 1 
Ii(M) I(N) 23 
0O 3 . 

m + n _ 3: i(MO N) = 0 since i of a 4k + 3-manifold is 0. 

This proves 6.6. As a corollary we have the product formula for the 
signature I(M & N) = I(M) * I(N). This fact is surprisingly hard to prove. 
In fact we know no direct proof of it. 

We now develop the algebra necessary to prove the results quoted above. 
We begin with a few definitions. A finite linking space (K, 1) is a finite abelian 
group K together with 1: K?0 K - Q/Z a non-singular map. In addition I is 
required to be either symmetric or skew symmetric. The de Rham invariant, 
d(K, 1) e Z/2 is defined in the skew symmetric case. It is the rank mod 2 of 
K ? Z/2. Thus if L"1+' is a closed orientable manifold, then d(L) = d(Torsion 
H2,(L), natural linking). 

A quadratic space, (K, q), is a finite abelian group and q: K-+ Q/Z so that 
q(x + x') - q(x) - q(x') defines a linking pairing on the space. We say that (K, q) 
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refines (K, 1) if l(x, x') q(x +- x') - q(x) - q(x'). The e invariant of (K, q) 
is 1/2w(Arg(E~ e2riq'(z)) Z/8. Thus E(M'm+3 f1 N) = E(Torsion(Ker f)2m+l, 
associated form). An inner product space (L, *) is a free abelian group L, 
and a non-singular pairing L ? L Z. The pairing is required to be sym- 
metric or skew symmetric. If it is symmetric and satisfies the additional 
property that ye y is even we say the pairing is even. 

Note. A pairing is even if and only if there is a quadratic function 
q: L - Z so that ye y' = q(y + y') - q(y) - q(y'). In the case of skew sym- 
metric pairings, P: L Z/2 is an associated quadratic form if q-(y + y') - 
9(y) - 9(y')= y y' mod 2. Such a triple (L, *, 9) has an Arf invariant in 
Z/2, see [RS]. 

PROPOSITION 6.7. Let (L, *) be an even symmetric inner product space 
and (K, 1) a symmetric linking space. Then K ( L has a natural product 
linking defined by 

l (x ? y, x' ? y') = I(x, x')(y * y') e Q/Z (extended by bilinearity) . 

Associated to this linking there is a quadratic function determined by 
q(x 0 y) = I(x, x) .(1/2)(y, y) e Q/Z. (K ( L, q) is a quadratic space and 
E)(K 0 L, q) = 0. 

PROPOSITION 6.8. Let (L, *, 9) be a skew symmetric inner product space 
together with an associated quadratic form. Let (K, 1) be a skew symmetric 
linking space. K ? L has a natural product linking given by 

1 (x ? y, x' X y') = I(x, x')(y. y') e Q/Z (extended by bilinearity) . 

There is an associated quadratic form determined by q(x ? y) = I(x, x) *99(y) C 

Z/2 - Q/Z. (K?L,q) is aquadratic space and O(K?L,q) 4d(K, I) . a(L, ., 9) 
where a(L, *, 9) is its Arf invariant. 

Proof of 6.7. It is clear that the linking pairing, 1, given in the state- 
ment of 6.7 is non-singular and symmetric since both I and the inner product 
are. Given the linking, 1, and the values of q on a generating set, there is 
at most one quadratic form associated to I with the given values. We show 
such a q exists by the following equational definition: 

q(5, xi ? ye) = 7, I(xi, xi) .1yi.y + Li<j l(xY, xj)(Yiyj) - 2 

This proves (K ? L, q) is a quadratic space. 

One way to define linking spaces is as follows. Let (V, *) be a rational 
symmetric inner product space, and R - V an integral lattice (i.e., re r' C Z 
if r, r'GR) of maximal rank. Let R* be its dual, R* = {xe VIx ReZ}. 
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Define 1: R*IR X R*/R > QIZ by l(x + R, x' + R) = x x'e Q/Z. R*/R is 
finite since R is of maximal rank and * is nonsingular. 1 is checked to be 
well-defined, symmetric, and non-singular. 

Wall has shown all linking spaces arise this way, up to isomorphism [W2]. 
Thus let (V, *, R) be such that (R*IR, 1) is isomorphic to (K, 1). Furthermore 
(V? L,.) is a non-singular rational inner product space. In this space 
(R (? L,*) is an even lattice of maximal rank with dual R* (D L. We have a 
short exact sequence 

0 R (DL ,R* (gL > KOL > . 

Since R (? L is an even lattice the inner product in V ( L determines a 
quadratic function on K?L, as in 5.3. q'(x y) = 1/21(x, x)y*y e Q/Z. So that 
q' = q. Thus by 5.9 E(K?0 L, q) = I(V?S L) mod 8. Since L is an even sym- 
metric form I(L) 0(8). Thus I(V? L) = I(V) * I(L)-0(8). This proves 6.7. 

Proof of 6.8. To prove 6.8 we classify skew linking spaces and skew 
inner product spaces with quadratic forms. 

Classification of skew inner product spaces. Let H = (Z ( Z. (_ 
Then if (L, *) is a skew inner product space (L, ED) H. To see this take a 
basis vector, y. By nonsingularity there exists y' so that y.y' = 1. Since 
y. y = 0 = y'. y', y and y' span a direct summand isomorphic to H. Extend 
y, y' to a basis y, y', zl, .., Zk. Let z' = zt + (y'. z)y - (y zt)y'. Clearly 
y, y', z *, .* * Z' is a basis and y * z' = y'. z= 0. This splits (L, *) H(e) (L', .), 
and induction completes the classification. If there is an associated quadratic 
function 9 it automatically splits, also. On H itself there are two possibilities 
for 'p, up to isomorphism. Let y and y' be generators then 9(y) = P(y') = I 
or 9(y) = 9(y') = 0 are the two forms. (If ?(y) = 1 and 9(y') = 0 replace y 
by y + y' and 9(y + y') = 0.) Call the first space H' and the second H'. 

Classification of skew symmetric inner product spaces with associated 
quadratic forms. (L, *, q) -D H' (D HO. The number of H' terms mod 2 is 
invariant and in fact is the Arf invariant (see [RS]). 

Skew symmetric linking spaces are classified in an analogous manner. 
The results, due to de Rham are (K, 1) D OkTk7 Tk@ D where Tk = 

Z/k &D Zlk generated by x and x' with l(x, x) = l(x', x') = 0, and l(x, x') = 1/k. 
T= Z/2k & Z/2k generated by x and x' with l(x, x) = 1/2, l(x', x') = 0, and 
l(x, x') = 1/2 . s denotes 0 or 1 copies of Z/2 with l(x,x) = 1/2. The de Rham 
invariant of such a form is, of course, s. This completes the classification, 
and we return to the proof of 6.8 proper. 

Again I given in the statement of 6.8 is easily seen to be a symmetric 
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nonsingular linking pairing. q is proved to extend (it has at most 1 extension 
as in 6.7) by the formula 

q(E, xi ? y*) = ; l(x*, xi) 99(y*) + Et<i l(x*, xj)(yi, yj) 

where the first term is in Z/2 > Q/Z. Thus (K ? L, 1) is a quadratic 
space. 

To calculate O(K 0 L, q) we will assume (K, 1) and (L, *, P) are inde- 
composable elements in the classification schemes given above. 

(1) K = Tk and L = H?. Then K ? L = E4 Z/lk generated by x g y, 
xoyp, XP&y, x'?y'. 

T(x ? y, x ? y') = T(x ? y, x'(?y) 
= l(x' y', x y') = l(x' ? y', x' y) = 0 . 

Thus the subspace generated by {x ? y, x' ? y'} is orthogonal to that 
generated by {x (g y', x'? y}. Since t(x & y, x'? y') = 1/k = - l(x'? y, x & y') 
and q(z) = 0 for all four given generators, we have split (K? L, q) into 
(A, q) & (A, - q). Since E is additive, this implies O(K 0 L, q) = 0. 

(2) K = Tk and L = H'. The quadratic function takes on exactly the 
same values as above so that O(K 0 L, q) = 0. 

(3) K = T7k and L = H?. K ? L =D Z/20 generated by x & y, x y', 
x' y, and x' ? y'. Using the basis a, = x' ? y, a2 = x 0 y' + 2k-IxP3 y', 
a3 = x ? y, and a4 = x' ? y', we decompose (K?L, q) into (A, q) & (A, -q). 
This proves 0 = 0. 

(4a) K= T2'k, L = Hi, and k > 1. 
Using the basis given in 3 we write (K ? L, q) = (A, q) E (A, - q) to 

show that 0 = 0. 

(4b) K = T,' and L = H'. T2- (Z/2, 1/2) D (Z/2, 1/2). 
Thus O(T2 0 H') = 20((Z/2, 1/2) 0 H'). (4b) then follows from Case 6 

where we show e((Z/2, 1/2) 0 H') = 4 e Z/8. 

(5) K = (Z/2, 1/2) and L = H?. 
Then K0L = Z/2E&)Z/2 generated by x y and x y'. I(x y,x y') = 1/2. 
q(x 0 y) = q(x 0 y') = q(O) = O. q(x 0 y + x ( y') = 1/2. Thus our Gaussian 
sumis e?+e'+e'+e'?i=1+?+1-1=2. Thus(1/2w)Arg=OandO=O. 

(6) K= (Z/2, 1/2) and L=H'. Then KOL = Z/2&DZ/2 with q(x (y) = 

q(x 0 y') = q(x y + x (0 y') = 1/2 and q(O) = O. The Gaussian sum is 
-1-1-1 + 1 = -2, and E = 4. 

This content downloaded from 146.96.147.130 on Mon, 07 Dec 2015 17:06:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


530 J. W. MORGAN AND D. P. SULLIVAN 

This proves 6.8 since in all cases except 6 either d(K, 1) = 0 or o(K, , 9) = 0. 
In Case (6) d(K, 1) = 1 = a(L, *, 9), and E = 4d(K, l).a(L, *, 9). 

7. Extension of SE to pl and topological Rn-bundles 

We may now apply Theorem 4.1 and the product formula 6.6 to produce 
a characteristic class for oriented pl Rn-bundles, w: E d B. This class 
2E e H"*(B; Z(2)) will be an extension of the class defined for smooth bundles 
in Section 3. The general characteristic class also satisfies the following 
properties. 

(1) 2E is a natural, stable characteristic class for piecewise linear R"- 
bundles. 

(2) (SE ? 1Q). L(E) = 1 where L(E) is the Hirzebruch L class. 
(3) (SE)2 = V2(E) where V is the Wu class. 

(4) SEEXF = SE (? S2 (multiplicativity). 
(5) If f: M y E+ is a map of an oriented, closed, smooth manifold into 

the one point compactification of E, which is pl transverse regular to B with 
pre-image V, then an orientation of E, UE e HdimE(E+; Z), induces an orienta- 
tion of V, and the signature of V is 

<L(zM).f*(S2E *UE), [MW> = <KMf*(5(E UE), [MW>. 
(6) If the manifold in (5) is a Z/2k-manifold, then V is also and signature 

(V)2k = <KMPf (SE* UE), [M2k]> G Z2-. 
(7) Properties (5) and (6) hold for all pl manifolds mapping into E+. 

First we construct a class SE for all pl Rn-bundles using properties (5) 
and (6) to find the homomorphisms required by Theorem 4.1. By the natu- 
rality of this construction and Corollary 3.4 (which says SE for smooth bundles 
satisfies (5) and (6)) we see that this class is indeed an extension of the 
class in Section 3. We then proceed to show that it satisfies properties (1) 
through (4). We then prove a pl-index theorem at 2, namely that <2, [ V]> = 
signature V for V a pl Z or Z/2k-manifold, where as usual 2, is 2(>v). Using 
this and the multiplicative property, (7) follows. Finally, once we have 
property (7) we prove an extension of Theorem 4.1 to pl-bordism. 

We begin the construction of 2E. Let En >B be a pl Rn-bundle. 
According to Corollary 4.8, homomorphisms I: f24*+?(E+; Z(2)) Z(2) and 
12k: fi4 +n(E+; Z/2 k) Z2k satisfying: 

(1) {12k} are compatible with i: Z/2k > Z/2k~l. 

(2) I and h2k are compatible with r: Z(2) - Z/2k 
(3) I and hk are multiplicative with respect to the signature 

given cohomology classes S G H4*+4(E+; Z(2)) H4*(B; Z(2)). 
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We construct such homomorphisms. I and 72k are defined the same way. 
Assign to f: M e E+, the signature of V = f'(B), after f has been moved 
to be transverse regular to B. 

1(V)=4 

Since the bordism class of V is an invariant of that of (M, f), so is its 
signature. Thus I(0M, f]) = 1(V) and 12k([M, f]) = I(V2k) e Z/2k > Z2. are 
functions on the bordism groups. 

One sees easily that I and 72k are homomorphisms and compatible with 
r: Z(2) Z/2k. To see that the 12k are compatible with i: Z/2k > Z/2k l, 
recall that the map from Q*(X; Z/2k) Q*(X; Z/2k+l), is replication along the 
Bockstein. If we replicate a transversal map then its preimage is replicated 
and thus has twice the signature. We check that I and ]2k are multiplicative 
with respect to the signature. If [M, f ] is a bordism element then [M, f ] [NJ 
is represented by M x NZ ML E+. If f is transverse regular with pre-image 
V, then fowrM is transverse regular with pre-image V x N. Thus 

I([M, f ] * [N]) = I(V x N) = I(V) * I(N) = I(M, f) * I(N). 
If [M2k, f ] is a Z/2k-bordism element, then [MAk, f] I? [NJ is represented by 
M(3N P M x N2 M E+. Iff is transverse regular with pre-image V2k, 
then fowmop is transverse regular with pre-image V? N. Thus 

12k([M2k, f] (? [N2k]) = I( V ? N) = I( V) * I(N) = !2k([M2k, fJ) * I(N) 
by Theorem 6.6. This shows I and 12k are multiplicative with respect to the 
signature. Thus they define a cohomology class S~ e H4*+n(E+; Z(2)). Let 
2S e H4 (B; Z(2)) satisfy 2S * UE = S E. Thus if f: M E+ is a smooth Z or 
Z/2k-bordism element which is transverse regular to B with pre-image V then 
1(V) = I([M, fJ) =K'IMP f*(&? . UE), [M]>. If E is a smooth bundle, SE satis- 
fies the same formula. Thus by uniqueness SE = SE for smooth bundles. We 
rename the class SE. We now show it satisfies properties (1) through (4). 

Proof of (1). Naturality and stability. Naturality follows immediately 
from the naturality of transversality and Theorem 4.1. To prove stability 
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note that 
(1) (En El)+ _- E+ A S1, and under that identification; 
(2) UE,,1 = a* UE where v* is suspension isomorphism. 
(3) Suspension in bordism is given by crossing with S1. 

From these facts it is clear that both the homomorphism and the formula 
commute with suspension. 

Proof of (2). (SWE(D 1Q) L(E) = 1. This follows immediately from the 
corresponding property for SE restricted to smooth bundles. In fact this is 
the original definition of Thom of the rational characteristic classes for pl- 
theory. 

Proof of (3). (SE)2 = VE. If M2 L E+ is a transversal map of a Z/2- 
manifold into E+ with pre-image V2, then = vM I VeDVvM = vm I Vet (f I V)*E. 

E 

(ifl V)*E f- B 

Since V2 is a multiplicative class and < V2, [VI> = I( V)2 we have 

<VMf *(VM * UE), [M]> = <i*(VM* Vf *E), [ VI>< VV, [VI> = 1(V)2. 
Thus VE and SE give the same homomorphism on Z/2-bordism. By uniqueness 
of the Z/2 theorem (SE)2 = VE2 

Note. We could give a completely analogous argument for the rational 
case. 

Proof of (4). ?EXF = SE D S2F in H *(B x B'; Z(2)). Let Ef-' B and F1) B' 
be p1 Rn-bundles with orientations UE and UF. Then E x F - B x B' is a 
pl R2"-bundle with orientation UE (D UF. (E x F)+ = E+ A F+. We will 
check first that 2EXF and SE (0 SF evaluate the same on products in 
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&2.(E+ A F+; Q) and &2*(E+ A F+; Z/2k). We consider the rational case first. 
Let f: M-e E+ and g: N - F+ be transverse regular with preimages V and 

W. Then a representative for [M, f ] x [N, g] is M x N> E+ A F+. It 
is transverse regular with preimage V x W. Thus I([M, f] ? [N, g]) = 
I([M, f]) I([N, gi). This implies that 

<2MXN* (f A g)*(SEXF * UEXF), [M x N]> 
= K2M'f (SE UE), [M]>K<SN - f *(SF UF), [N]> 

The first term is equal to (using property 4 for the smooth SM class) 

<EM 0 2N (f A 9) ( EXF* UE ? UF), [M] ? [N]> 
= <KM ?SN (f X g)2EXFf * fUE X g UFY [M] [N]> 

whereas the second term is equal to 

<EM D 2N ( f X g) (E X SF)f * UE X g* UF, [Ml (D [NJ> . 

Thus SE ? SF and SEXF evaluate the same on rational products. We now 
check that they are the same on Z/2k-products. ([M12k, f] ?0 [N2k, gi) is re- 

presented by MO(D Nef M x N f) E+ A F+. This is transverse regular 
with pre-image V ? W provided f and g are transverse regular with pre-image 
V and W respectively. Thus 

12k([M2k, f] ?( [N2k, g]) = 12k([M2k, f]) * I2k([N2k, g]) . 

The argument above then shows that SE 0 SF and 2EXF evaluate the sums 
of this product. Multiplicativity then is completed with the following lemma. 

LEMMA 7.1. (1) i* (X A Y; Q)- 2* (X; Q) (3a4(pt;Q) a&*(Y; Q). 
(2) &?* (XA Y; Z2?) is generated by the images of &2*(X; Z/2k)?D2*( Y; Z/2k) 

in &i*(X A Y, Z/2k). 

Proof. (1) Since Q is a field, the result follows easily from the isomor- 
phism Q*(X, Q) _- H*(X, Q*(pt, Q)). 

(2) Using the Conner-Floyd spectral sequence [CF], we see that 

&2*(X; Z20) -H*(X; Q*(pt; Z2?)). Since Q*(pt; Z2?) Z2$ @ Z/2, it suffices 

to prove 
(a) HI*(X; Z/2) 0 H*( Y; Z/2) l I(X A Y; Z/2) is an isomorphism, and 
(b) ek H*(X; Z/2k) 0 H,*( Y; Z/2k) H*(X A Y; Z2?) is onto. 

(a) follows immediately since Z/2 is a field. To show (b) we show that 

H*(X; Z/2k) (0 H*( Y; Z/2k) HF(X A Y; Z2?) is onto {elements of order 2k}/ 

{elements of order 2k-1}. To prove this we break the chain complexes of X 
and Y up into elementary complexes and show that this is true in case by 
case analysis. (The crucial case is 
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X= {Z-Z} Y=I{Z-Z} k<r<s.) 

THEOREM 7.2. (pl signature theorem at the prime 2). If V is a pl Z- or 
Z/2k-manifold 

<2>(V), [ V]> = 1(V) 

Proof. The case of a closed manifold is classical. Suppose V is a Z/2k_ 

manifold. Let SNk = (DN -(2k -1)BN, SeNi) where BN are disjoint balls in 
DN. 

Then v(SI) = sN and if N is sufficiently large V2k 2-> Sk with normal bundle, 
the stable normal bundle of V2k. Let wr: SN k T(v( V)) be the Thom-Pontrjagin 
collapsing map. Then 

1(V) = I(SN2k, wC) = <2SNk(7 * (2 (v) U>(v)) [SN]> 

= <1 2>(v) U(V), [ T((V))]> = <2>(v), [ V]> 

Note. At odd primes there is a signature formula using the canonical 
K-homology class constructed in [S1], [S2]. 

Property (7). If f: M-+ E+, Ma pl Z- or Z/2k-manifold, with f transverse 
regular to B and f'(B) = V, then I(V) = <M. f *(DE. UE), [M[>. 

Proof. (V) = <2,vy [V]>. v(V) = I M~Ve (f IV)*E. Thus ,v = 
i*SM.f*S2E, and 

<KM f (S2E UE), [M]> = <i SM * f SE, [ V]> = 1(V) 

THEOREM 7.3. H4*(X; Z(2)) is naturally isomorphic to the group, Ce( (X) 
of commutative diagrams 

CQ4P*(X; Q) 'Q )QI 

t Q4pl(X; Z2?) Z2 ) 
such that aQ and 2 are multiplicative with respect to the index. The isomor- 
phism is given by AF-* A where UA(M, f) = <f *A A 2m, [Ml>. 
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Proof. Once we have the class S2M for p1 manifolds, this theorem is proved 
exactly as Theorem 4.1 is proved. We define homomorphisms Qs1 (X; G) 
H4*(X; G), by [M, f] -f* (2S, n [M]). These are onto and the calculation 
of the kernels is completely analogous, that is to say, the same obstruction 
theory in Section 4 is valid for pl-bordism. Thus the kernels of the maps 
XI,: QPI (X; Q) H4*(X; Q) and XI': QPI (X; Z2,) H4*(X; Z2,) are generated 
by the same relations. 

COROLLARY 7.4. Given homomorphisms as above and a cohomology class, 
a, giving these homomorphisms on smooth bordism then a also gives them on 
pl-bordism. 

Note. Everything in this section is valid for topological bundles and 
manifolds. The proofs are exactly the same except for one additional tech- 
nicality, the lack of 4 dimensional transversality theorem. This is overcome 
by forming the product with CP2. 

8. The cohomology of Gipl and GiTop 
The other natural situation in which we have homomorphisms from the 

bordism occurs in the classifying space for surgery problems, Gipl. The 
homomorphism assigns to f: M4" -+ Gipl the surgery obstruction of the cor- 
responding normal map (f, f): (N, 2"N) - (M, d) obtained by transversality. 
As we noted in Section 5 the value of this homomorphism lies in Z or Z/2k if 
M is a Z or Z/2k-manifold. We collect this information into a cohomology 
class 2. 

THEOREM 8.7. Associated to any surgery problem (f, f): (N, pN) (M, i) 
there is a natural cohomology class Sf e H4*(M, Z(2)) such that 

(1) 8Sf + 1 = Ad . 2-1 
(2) 2fxg = 2f (g 1 + 1 Xg2 + 82f (adz. 

This class 2f figures in a cohomological formula for surgery obstruction on 
any pl sub-manifold of M. 

This natural class Sf associated to any surgery problem is equivalent to a 
universal class S in the cohomology of the classifying space G/pl. In this case 
this class implies very strong statements about the homotopy type of G/pl. 
In fact it, together with the Kervaire classes, k4*+2, gives G/pl a canonical 
splitting into a product of Eilenberg-MacLane spaces at the prime 2 (except 
for the k-invariant of order 2, 3Sq2, connecting w2 and w4). For GiTop these 
classes give a complete splitting at 2 [S2J. 

We begin our construction of the class Sf. The first step is to compute 
the de Rham invariant in terms of the Wu classes. Then we combine this 
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computation with the k-classes introduced by the second author in [S1], [S2], 
[RS] for studying the Kervaire obstruction. We obtain a cohomological 
surgery formula for (No - M") (D LI when n + 1 =0(4) and n # 0(4). We 
subtract this cohomological expression from the surgery obstruction homo- 
morphism to obtain a homomorphism which gives the cohomology class Sf 
by the method of Section 4. 

Let M be a Z/2k-manifold. Define WM to be the characteristic class 

V.Sq'V= (1 + V2 + V4 + +S).Sq'(l +V2 + V4 + ***) 

where v2* is the 2ith Wu class of the oriented normal bundle of M. 
Recall the invariant i(M) defined in Theorem 6.1. 

THEOREM 8.1. If M is a Z/2k-manifold then i(M) satisfies 
(a) i(M) = <WM, M> if dim M _ 1 (mod 4) 
(b) 2k-li(M) = <3*WM, M> in Z/2k if dim M -2 (mod 4) where 3* is the 

Z/2 - Z/2k Bockstein. 

Proof. (a) Open M up to a Z/2-manifold M'. From our definition it is 
clear that i(M) = i(M') in Z/2. It is also clear that <WM, M> = <WM,, M'>. 
So we are reduced to the case of Z/2-manifolds which is proved in Lemma 8.2 
below. 

(b) Note first the calculation: if x is a Z/2-cohomology class and y is a 
Z/2k-homology class, then <x, 3y> in Z/2 and <3*x, y> in Z/2k are related by 
the formula 

2kl<x, by> = <K3*x, y> in Z/2k 

Thus 

<a*WM, M> = 2 kl<WM, 3M> 
= 2k-1<W6M, 3M> 

= 2k-ld(3M) 

again by Lemma 8.2 below. This proves (b). 
LEMMA 8.2. d(M4k+l) = <V2k(M) * Sq'v2k(M)MM]>, for Ma Z- orZ/2-manifold. 

Proof. We will work first with oriented 4k + 1-manifolds with boundary 
and then specialize to Z- or Z/2-manifolds. Let A - H2k(aM)/Torsion be a 
maximal self-annihilating subspace of dimension equal to one half the di- 
mension of H2k(aM; Z)/Torsion. Denote by A + TV H2k(aM; Z) all classes 
with image contained in A. We have defined a skew symmetric form I on 
K = Torsion (H2k(M; Z)/i*(A + T)) (see Section 6), and we will calculate 
here the de Rham invariant of (K, 1). To do this we first calculate l(x, x) for 
x e K. 
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Claim. (i) <V2k(M), a> = 0 for all a e A + T. 
(ii) l(x, x) = (112)<v2k(M), x> for x e K. 

Proof of claim. (i) <V2k(aM), a> = a2 mod 2 since we are in an oriented 
4k-manifold, AM. But since A is self-annihilating and T is torsion, a2 = 0 for 
all aeA+ T. 

(ii) By (i) <V2k(M), i*(a)> = <v2k(QM), a> = 0. Thus <v2k(M), x> e Z/2 is 
well-defined for x e K. Since l(x, x) is of order 1 or 2, we are free to multiply 
by an odd integer to make the calculation. In view of this we may assume 
that all chains involved are actually manifolds. Let VX2k c2Z M4k+1 represent 
x (V oriented closed), and C be a 2k + 1, Z/X-manifold with AC - AM a 
closed manifold representing some a e A + T, and &C = V=. Such a manifold 
C exists since Xx is homologous in M to i* (a) for some a e A + T. l(x, x) = 
V. C/X. By 6.4 V. C/X + X(e)/2 = 0 where e is the complement in pVcM to a 
section. Thus we have l(x, x) _ (1/2)X(e) modulo Z. But 

X(e) Kw2k(VVCM), [ VxJ> mod 2 
= <V2k(VV - VVcM)i [ Vx]> 

= <V2k(M), x> . 

Thus l(x, x) (1/2)<v2k(M), x> modulo Z. This proves (ii). 

Now we will produce an element y e K such that l(y, x) = l(x, x) for all 
x e K. Once we have such a class the algebraic sublemma below implies that 
d(K, 1) = l(y, y). 

Claim. v2k(M) is the reduction of an integral cohomology class a* e 
H2k(M; Z) where a* has the property that <a*, A + T> = 0. 

Proof. The following diagram is commutative: 

H*(X; Z) - Hom(H*(X), Z) r* Hom(H*(X), Z/2) 
{red {red* 

H*(X; Z/2) - Hom(H*(X;Z/2), Z/2) 

v2k(M): H2k(M) - Z/2 annihilates A + T. Thus there is a homomorphism 
H2k(M) A Z annihilating A + T and projecting to V2k(M) under r,. This 
proves the claim. 

Let C e H2k(M; Z/2) be the Poincare dual of V2k(M). The claim above im- 
plies that there is a class a e A + T c H2k(M; Z) whose mod 2 reduction is 
C. (A homology class is in A + T if and only if its intersection with every 
class in A is 0.) This implies that we may find a chain W2k+l such that 

(1) W2k+l n AM is an integral cycle representing a. 
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(2) W2k+l is a relative Z/2-cycle, i.e., aW = W n AM + 2 Y2k. 
(3) The relative Z/2-homology class of W is Poincare dual to V2k(M) e 

H2k(M; Z/2). 
It follows that Y is an integral cycle which modulo 2 is Poincare dual to 
Sq'v2k(M). Let y be the integral homology class of Y. Clearly y E K since W 
provides a homology of 2 Y to a. 

Claim. l(y, x) = l(x, x) for all x e K. 

Proof. l(y, x) = (1/2) W* X where Xis a cycle representing x. By Poincare 
duality W X <v2k(M), [X]> mod 2. But (1/2)<V2k(M), [X]> = l(x, x) by the 
first claim. Thus l(y, x) = l(x, x). Thus d(K, 1) = l(y, y) = a W. W mod 2. (In 
essence we have used the subspace A to pull Sq'v2k(M) back to relative coho- 
mology class and then cupped this with V2k(M).) 

Application to Z or Z/2-manifolds. If M4k+l is closed, then we have no 
choice for W. It represents the dual of V2k whereas aW is dual to Sq'v2k. 

Thus W. W = V2k Sq'V2k. If M4k+l is an opened up Z/2-manifold, then the 
subspace A is of the form A' ? A' where A' l H2k(QM)/Torsion. Thus the 
Z/2-manifold with boundary, W, may be chosen so that the two copies of aW 
agree under the change of components in aM. Thus W/I- - M4k+l/1- is a 
Z/2-cycle representing the dual of V2k whereas aW represents the dual of 
Sq'V2k. Thus W. W = <v2kSq1V2k, [MI>. 

ALGEBRAIC SUBLEMMA. If (K, 1) is a skew symmetric, non-singular, 
linking space and y e K is such that l(y, x) = l(x, x) then d(K, 1) = l(y, y). 

Proof. First notice that 2y = 0 since 1(2y, x) = 21(x, x) = 0, for every x. 

Case 1. l(y, x) = 0. Then l(x, x) = 0 for all x e K. This clearly implies 
d(K, 1) = 0 =l (y, y). 

Case 2. l(y, y) = 1/2. In this case y generates a direct summand in (K, 1) 
isomorphic to (Z/2, 1/2). In the perpendicular space l(x, x) = l(y, x) = 0. Thus 
Case 1 implies d(K, 1) = 0 + d(Z/2, 1/2) = 1. 

Case 3. l(y, y) = 0. Suppose y = 2kyl with y' not divisible by 2. By non- 
singularity there is an x with o(x) = order(x) = order(y') and l(y', x) = 1/o(x). 
Then (x, y') generates a direct summand of (K, 1) isomorphic to Z/o(x) 0 Z/o(x). 
In the perpendicular space l(y, x) = 0 so that d(K, 1) = d(Z/o(x) ? Z/o(x)) + 
0 = 0. 

PROPOSITION 8.3. If M and L are two Z/2k-manifolds, then 

WLOM = P*(WL 0 %M ? 2L ? WM) 

where ,: L 0 M L x M is the natural map. 
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Proof. For the normal bundle we have 

LOM - SP*(AL X AM) 0 w * 
where w: L ?OMP W2/D is the projection discussed in Section 1. 

Since Sqlw* V(C) = 0 and w* V2(() = 1 for dimension reasons 
Ht(W2/D, Z/2) vanishes for i > 2 - we have 

WL?M W(i)L?M) = p*(VL VM) * V(4) * Sq'(P (VL ? VM) .*W VQ()) 
= p*(VL ? VM) * Sq(p* (VL ? VM)) *W V2(C) 
= p*(VL.* Sq VL VM? + VL2 

? VM * Sq'VM) 
= P*(WL M + 2L ( WM). 

We recall the work in [Si], [S2], [RS] on the Kervaire obstruction. Let 
us denote a degree one normal map by the map of base spaces. Thus "f" 
represents 

IN 

1 f [ 
N2k - 2k 

Then there is a natural characteristic class kf E H4*+2(M; Z/2) such that 
a(f) = <kf .(2M)2, [Ml> for any surgery problem over a Z/2-manifold of di- 
mension 4n + 2 and such that kfxg = kf 0 1 + 1 0 kg. Naturality is with 
respect to the following "pull back" construction. If (f, f ): (M', 2VMI)-)(M, $) is 
a surgery problem and g: L-AM, then form (f x IdL, ?x IdL): (M' x L, vM' x VL)-) 

(M x L, d x VL). Transversality then produces a surgery problem over the 
graph of g, La > L x M. 

This formula also holds for surgery problems over Z/2k-manifolds of 
dimension 4n -- 2. This is seen by opening the Z/2k problem up to a Z/2 
problem, which does not change the surgery obstruction, or the value of the 
formula. 

If "If " denotes (f, .7): (M2, E'M') - (M2s, $) and N4 is a Z/2k-manifold, let 
'If "0Nn denote the surgery problem (f O1Np*(?7x 1PN): (M'PNyp*(mM x VN)) 
(MO N, p*($ x VN)). If "'f " is classified by hf: M-u Gipl, then "'f" ?g) N is re- 
presented by hf .wr-p: M0& N- M x N-) M- -G/pl. Thus the bordism class 
of the classifying map for "'f" Oy N is [M, hf] ? [N], i.e., this construction on 
normal maps corresponds to the module structure of Q*(G/pl; Z/2k) over 
Q*(pt; Z/2 k). 

Let "kf ? 1y" denote p*wr*kf in H*(MO N, Z/2). 
We now give a cohomology formula for the cross terms. 
THEOREM 8.4. a"("f" ?g N) = <a*("kf ? 1 .wMM?N), [MO N]> provided 

that m + n 0(4) and m $ 0(4). Here a* is the Z/2 - Z Bockstein. 
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Proof. Case m = 1 and n = 3(4). By Theorem 6.1 a("f" ?( N) = 0. 
Now 

3*("kf ( ? l WM$N) = (3*(p*(kf ( 1 (WM (0 2N + 2M (0 WN))) 

= 6(p*(kf * WM (9 N+ kf * M 
(9 WN)). 

Thus the right hand side of the formula in the theorem is 

<K*(kf WM (3? + kf 02m (9 WN), [M] 0 [N]> 
= 2 k<kf w WM (0 N + kf * M (O WN, [aM] (D [N] + [M] 0 [aN]> . 

But since the dimension of n-3(4), <KN, [N]> = K<N, [aN]> K<WN, N> = 

<WN, aN> = 0. Thus all the above terms vanish and we have equality, 0= 0. 
Case m = 2 and n = 2(4). As above we reduce the formula to 

2kl<kf w WM 0 2N + kf * M (0 WN, [WM] (0 [N] + [M] (0 [aN]>. 
By dimension considerations all terms vanish except 

2 k<kf * M ? WN, [M] 0 [aN]> = 2 k<kf *CM, [M]> K <WN, [aN]> 
- 2k-laf. i(N) e Z/2k 

- ("f" 0) N) 

by Case 2 of Theorem 6.1. 

Case m -3 and n = 1(4). Once again we reduce the formula. In this 
case all terms vanish for dimension reasons except 

2kl<kf *.mM O WN, [(M] 0 [N]> + 2 k<kf WM 0 2NY [M] 0 [aN]> 
= 2k-1a((3f).i(N) + 2k-l<kf.wM, [MI>K*<N, [aN]>> 

Now 
<LN, [aN]> = <L3N, [aN]> = I(aN) = 0 

Thus the formula yields 2k-1. *((3f). i(N) = a("f" 0 N). This completes the 
proof of Theorem 8.4. 

PROPOSITION 8.5. If "f" and N7 are as above with m n n-0(4), then 

<K*( kf 0 1. WM?N), [M x N]> = <K*(kf wM), [M]> * I(N) 

Proof. < (p* * kf WM?N), [MO (& NI> = 2k <kf * WM (0 ?N + kf * M 0 
WN, [(M] (0 [N] + [M] 0x [(N]>. All terms vanish except 2k-l<kf wM, [(M]>. 
<KN, [N]> which is equal to <K *(kf * WM), [M]> * I(N). 

Now we eliminate the cross term contribution by defining a new homo- 
morphism 

(" f "Y) = a(" f") -<a*(kf w wM), [M]> 

provided dim "'f " is 0(4). This new homomorphism has the correct multiplica- 
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tive properties for the application of Section 4. 

THEOREM 8.6. (a) '(" f" (3 N4) = '("f")* I(N) for dim "f" = m and 
m + n- 0(4). 

(b) a'(i*"f2k") = i('("f2k")) where i: Z/2 > Z/2k+l. 
(c) If r: Z Z/2k is reduction, mod 2k, then r(a(f)) = 

Proof. (a) If m + n =0(4) and m $ 0(4), then a'("If" (? N) = 0 by 
Theorem 8.4. If m n 0(4), then both a and <K*(kf wM), [M]> are multi- 
plicative with respect to the index. Thus a' is also. 

(b) Clearly 

i(<K*(kf * wm), [12k]> = 2.2 kl<kf w wM, [aM]> 
= 2 k<kf wM, [a(i*(M))]> = <K*(kj(f) * wi*(M))y [i*(M)]> 

But a(i*"f2k") = ia("f2k"). These two facts together prove (b). 
(c) r(a(" f")) = ("rr*f2k") by definition. 
Since the error term is of order 2 it vanishes on closed manifolds. So for 

a closed manifold a = a'. This proves (c). 

THEOREM 8.7. (The cohomological surgery formula). Associated to any 
surgery problem, "If" over MA, there is a natural class 2f E H4*(M; Z(2)). 
(Naturality means with respect to the transversality-pull-back construction.) 
If m 0(4) and Mis pl a Z or Z/2k manifold, then a(f) = KQf*M, [MI> + 
<a*(kf * w.), [M]>. 

Proof. We work in the universal example Gipl. We have constructed 
homomorphisms a: Q*(G/pl; Z(2)) Z(2) and a': Q*(G/pl; Z/2k) Z/2k and 
checked multiplicativity and compatibility. Thus by Theorem 4.1, there is a 
unique class 2 e H4*(G/pl; Z2)) such that a'(M, g) = <g*2 2m, [M]>. Define 
2f for a surgery problem "'f" by classifying " f", to get hf: Me G/pl, then 
set f = hf*2. 

THEOREM 8.8. Properties of Sf 
(1) 2fxg )f? 1 + 1 (3 ? g + 82f ? 2g. 
(2) If "f" is the problem 

f 

1f f 1 

then 82f + 1 = 2 2-1 

Proof. (1) We work in the universal example G/pl. Property (1) then 
reads e*S = 2?1 + 1?2 + 82 & 2. 
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We will use the general product formula Theorem 6.5. 

(6.5) a((M f ) No) ( (L f2 Qq)) = a(f).i(Q) + i(N) .a(g) + 8a(f)a(g) 
provided n + q _ 0(4) (where the cross terms are in Z/2 A Z/2k). We wish 
to derive from this that 

f Ig ) (8-9) u'((M - N") ( (L Qq)) = a'(f). I(Q) + I(N) - '(g) + 8a'(f)or'(g) 
provided that n + q -0(4). 

Since a' - a is of order 2, 8a'(f) '(g) - 8a(f) a v(g) 0 O. The left hand 
side of (8.9) minus the left hand side of (6.5) is 
(*) <a*(kf~gg WNeQ), [NO Q]> 

= 2 k-<(kf 0g 1 + 1 ()kg) * (w. (a 2Q + 2, (3 wQ), [aN] (S [Q] + [N] &S [aQ] > 
We will evaluate this in the three cases 0 + 0, 1 + 3, 2 + 2. 

Case (0). n 0 q(4). Then (*) becomes 

<K*(kf- WN), [NI> I(Q) + I(N). <3*(kge wQ), [QI> 
- (a'(f) - a(f)). I(Q) + I(N). (a'(g) - a(g)). 

Since i(Q) = I(Q) and i(N) = I(N) in this case, we have verified (8.9) for 
n q 0(4). 

Case (1). n _ 1(4), q=- 3(4). In this case (*) becomes 

2 (<wN, [N]>*<kg* Q, [VQ]> + <KSN, [aN]>*<kg*WQ, [QI>) 
But 

<2N, [&N]> = <KN, [&N]> == 0 

So we are left with 2k-1d(N) * a(3g) which is equal to i(N)a(g) in this dimension. 
Since i(Q) = I(Q) = 0 for q _ 3(4) and I(N)= 0 since n 1 (4) our difference 
is i(N). a(g) and this proves Case (1). 

Case (2). n _ 2, q -2. In this case (*) becomes 

2k1 (<wN, [3N]> * <kg * 2Q, [Q]> + <kf * N, [N]> K <wQ, [Q]>) 
= i(N).a(g) + a(f) i(Q) 

which is easily seen to be the difference of the right hand side of (8.9) and 
(6.3). This completes the proof of (8.9). 

Since <2Sifg * 2fNcfQ, [N (? Q]> = a'(f 0 g) and 

<(Kf (Ef 1 + 1 O 2g + 82f D 2g) ? 2NeQy [N ? Q]> 
- <2K-2N, [N]>- I(Q) + I(N)-<S2g- 2Q, [Q]> 

+ 8<Kf .*N, [N]> * <2g. *Q, [Q]> 
= '(f) * I(Q) + I(N) * a(g) + 8a'(f) * .(g) 
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we see that 2fsg and 2f ? 1 + 1 ? 2g + 82f ? 2g evaluate the same on 
products of Z/2k-manifolds in Q*(G/pl x Gipl; Z2c). The usual rational calcu- 
lation of closed manifolds shows that they agree on (N f Gipl) x (M 9 Gipl) 
in Q*(G/pl x Gipl; Q). We now apply Lemma 7.1 which says this is enough 
to imply 2 (D 2 = 2 () 1 + 1 ? 2 + 82 & 2 in H*(G/pl x G/pl; Z(2,)). 

(2) If (M f N, vM f d) is a normal map, we want to show that 82 + 1 = 
N To prove this we show 8a'(f) = I(M) - I(N). This is clear from 

Section 5, and the fact that a - a' is 2 torsion if dimension M_ 0(4). If di- 
mension M : 0(4) then both sides are 0. Thus 

<(82f + 1) * AN [N]> = <82f *AN, [N]> + <KN, [N]> 
= 8a'(f) + I(N) = I(M). 

On the other hand, 

K(an * 1)* N, [N]> = <2e, [N]> = <2e, f [M]> 
K f *A, [MI> K']f*$, MI K'2'My WM> = I(M) 

This shows 82f + 1 and 2, .21 agree in the top dimension for all surgery 
problems. Thus they must be equal. 

If we work in the universal example G/pl, then this formula becomes 
82 + 1 = (*Sp, where 2p, e H4*(Bpl; Z(2)) is the class constructed in this 
section and 7, and (: Gipl - Bp, is the natural map. This follows easily from 
the fact that if hf: No Gipl classifies the above problem then c. hf is the 
virtual bundle (d -N) 

Note. All this works for GITop. We avoid the low dimensional problems 
by crossing with CP2. Thus 2, is a natural class for all topological surgery 
problems. The reason that we state the theorems in terms of pl-theory is 
that it is patently an outgrowth of transversality which hold for pl-theory 
but may fail for topological theory. 

The 2 e H4*(G/Top; Z(2)) provides a canonical map G/Top -li>? K(Z(2), 4i). 
It together with k defines G/Top - lJ>- K(Z/2, 4i-2) x K(Z(2), 4i). This map 
is "localization at 2", see [S4], i.e., on wr* it is tensoring with Z(2). Thus it gives 
a canonical splitting of G/ Top at 2 into a product of Eilenberg-MacLane spaces. 
The composition Gppl G/ Top -+111 K(Z/2, 4i - 2) x K(Z(2), 4i) is (? Z(2) 

on wj for j t 4. On wr4 it is Z-o Z(2). Thus this gives G/pl a canonical splitting 
into K(Z/2, 2) X,*sq2 K(Z(2), 4) x ll>2 K(Z/2, 4i - 2) x K(Z(2), 4i). This is just 
a refinement of the argument in [S2] which proves the existence of such 
structures for Glpl at the prime 2. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
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