Topelegy, Yol 9, pp. 141—147, Pergamon Press; 1970, Printed in Great Britain

. ON THE REGULAR NEIGHBORHOOD OF A
TWO-SIDED. SUBMANIFOLD

M. CoueEN and D. SULLIVAN*
(Received 4 April 1969)

§6. INTRODUCTION

THE PURPOSE of this paper is to prove the

THEOREM. Suppose thai M = M""* is a closed two-sided p.1. submanifold' of the p.l.
manifold V = V7", where M < Int Vand n # 5. Let A" be the regular neighborhood of M in V.
Then there is a p.l. homeomorphism h: /" - M x [—1,1].

From this theorem and its proof we get the

CoroLLarY. If M and V are as above and if € > O then there is an ambient. e-isotopy
H:V xI» VxI(in the topological category) such that Hy=1 and H (M) is a p.l-
bicollared subpolyvhedron of V which is p.l. homeomorphic to M.

Remarks. (1} Two-sided means that every component of M has a connected neighbor-
hood in ¥ which it separates into exactly two components. Clearly we may assume (by
considering each component separately) that M and ¥V are connected and that M-V has
exactly two components. We shall do this, letting ¥, and ¥, be the closures of these com-
ponents and letting .4”; denote the regular neighborhood of M in V.

(2) Unfortunately the theorem does not assert that M is p.l-bicollared; i.e. that
M) =M x 0. (In the topological category this can be asseried, as we prove in Corol-
lary 2.2.) It is well known that this stronger assertion would imply the combinatorial Schoen-
flies conjecture’in all dimensions less than n. Conversely, since the combinatorial Schoenflies
conjecture is known in dimensions <3, our theorem is true, even with this added assertion,
as long as n < 4. Hence we shall assume, when we prove the theorem in §3, that n > 5.

(3) The theorem answers a question raised by Husch in [6). Partial solutions have
been given by Husch [6} and Duvail [4]. '

(4) If, instead of assuming that M = &, we assume that M n 6V = éM and that
n # 5, 6 then the same result holds. One simply uses the s-cobordism theorem for manifolds
with boundary where we use it for closed manifolds. -

(5) In Lemma 3.2 we construct an s-cobordism between M and a p.l. manifold M,.

*The main work on this paper was done while the authors weré supported by NSF grants at the
Institute for Advanced Study and Princeton University.
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Seen from a more general point of view we are ““resolving the singularities” of .47, to get
an s-cobordism. There are general obstruction theories to resolving the singularities of a
homotopy or homology manifold (for star manifolds such as .47, the obstructions vanish)
which will be presented in [12]. However the proof of the present theoremis not much short-
ened in the general sctting, and we feel that the direct proof given here (1n particular the
material in §1) has independent interest.

We shall use standard notation and terminology unless otherwise indicated. In
particular, terminology in the piecewise linear category is that of [13] with the following
exceptions: A mapping is not assumed tc be p.1. unless we say so explicitly. All polyhedra
are locally compact and finite dimensional.

§1: MANIFOLD COMPLEXES

By a manifold complex we mean a pair (X, F) where X is a polyhedron and F = {F_}

is a locally finite family of compact subpolyhedra of X satisfying:’ -
" (1) Each F, is a topological manifold

{2) X = u F, (union over all elements of F)

(3) fa#pthenF, nFy= @ and (F, " FpleF

(4) OF, is the union of elements of F.
(X, F) will be called a fopological-ball complex or a PL-manifold complex, respectively, if
each F, is a topological ball or a p.l. manifold. Finally a C-complex is a manifold complex
in which each F, is a contractible manifold with homotopy sphere boundary, and a PLC-
complex is a C-complex in which each F, is a p.1. manifold.

Two manifold complexes (X, F) and (Y, G) are isomorphic if there exists @ bijection
i - F = G such that both l,(l and l,b are incidence preservmg (Tt follows that yr is dimension
preserving and that W(0A) = 6¢(A) whete Z is the complex underlying Z.) In general we
do not require that y(4) be homeomorphic to A for every 4 in F or that X be homeomorphm
to ¥. However we do have:

© Lemma L1, If (X, F) dand (¥, &) are topologzca! -ball complexes and Fip: F-Gis
an isomorphisin then there exists a homeomorph:sm k: X > Y.such that h(4) = t[f(A) for any
AinF.

The proof is an easy argument by induction up the skeletons. Having constructed
A1X' one defines i over each (F + 1)-ball B as the cone on h |éB.

A more surprising result 18

L‘EMMA 1.2 If(X, F) and (Y G) are PL-manifold complexes where X is a p.l. n-manifold,
and if fr 1 F— G is an isomorphism then Y is a p.L n-marnifold. Moreover if OF is the sub-
complex of F underlying 6X then @Y = [ (8F)].

(The lemma tacitly assumes that 0X is the underlying set of some subcomplex of F.
This is an easy consequence of invariance of domam)
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Proof. Let us for the moment drop the assumption that X is a p.I. manifold. Suppose
that y : (X, F)— (Y, G) is an isomorphism of arbitrary PL-manifold complexes and let
x& X and y e Y be interior poinis of corresponding elements of F and G- Triangulate X
and Y (by simplicial complexes of the same name) so that x and y become vertices and so
that the elements of F and G underly subcomplexes of X and Y respectively. Take second
deriveds X” and ¥”.

‘CLAM, In this general setting there exist a p.l. homeomorphism kb : N(x, X") > N, Y7
such that k(x) = y and h(N(x, A")) = N(y, y{(A)") for all A€ F. (Of course N(z, Z) =" if
V4 ¢ Z)

It is obvious that the claim implies Lemma 1.2,

We prove the claim by induction on n-dimension X. It is trivial when n = 0, so assume
7 > (¢ and the claim is known for integers <n. Then |X*"!: X1 .4 ¥** is an isomor-
phism (here X* denotes the i-skeleton of F, not of the simplicial complex which subdivides
X), so there is a p.l. homeomorphism A @ N(x, (X"~ 1) ") = N(p, (Y*™1)"} as in the claim.
Suppose that x € 4" € F and B" = y(4™).

If x € A" then y e B" and &, is vacuous. Since 4" and B" are both p.l. manifolds there
exists a p.l. homeomorphism % : N(x, 4") = N(», B") such that A(x) = y.
If xedd" then N(x, (4™)") n (DA™Y = N(x, 8(A")"), which is an (n — 1)-face of A"
Moreéover, since ¥ is an isomorphism and these are manifold-complexes we have:
ho N(x, (8A4")") = ho N(x, 0{(4" 1) | A* 71 £ 4™})
= OB N(x, (AT A7 £ A
= U{N(y, (B"1))| B £ B}
= N@y, (0B")"). |
Thus h, takes a face of N(x, A™') to a face of N(y, B™') and so it may be extended to a p.1.
homeomorphism h: N(x, A") > N(y, B"). Since the interiors of distinct »- mamfolds of
F (or of G) are disjoint, this gives a well-defined p.1. homeomorphism

i N(x, X") = UN(x, A") > N(y, Y") = UN(y, B")
where the unions are taken over all elements of F and @ respectively. Q.E.D.

Definition. Let (X, F) be a C-complex. Let 4" be a principal element of F and let B*~1
be a free face of B" (i.e. 4" is incident with no larger manifold and B*~* is incident only
with 4”). Let Y = X — A" — B* ' and let G = F — {4", B" !}, Then we say that there is an
elementary pseudo-collapse from (X, F) to (¥, G). More generally, if (¥, G) < (X, F) we say
that (X, F) pseudo-collapses to (Y, G) if there is a finite sequence of elementary pseudo-
collapses from (X, F)to (Y, G).

 Lemma 1.3. Suppose thar (X, F) and (Y, G) are C-complexes isomorphic under the
isomorphism . Suppose that (X, F) pseudo-collapses to (X,, Fo) and that y(X,, Fo) =
(Yy, Go). Then

(V) (Y, G) pseudo-collapses to (Y, GO)

(2) Y deformation retracts to Y,

(3) The Whitehead torsion 1(Y, Y,) =0e Whn, Y.
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Proof. (1) is -obvious. (2) and (3) will follow from induction and Lemma 7.4 of [§]
once known for the case of an elementary pseudo-collapse. Thus assume that ¥ = Y, u 4"
and 4" n Yy = C1(24" — B*"!). Then A" n Y, is contractible, since 84" and §B" "1 are
homotopy spheres and B"~! is contractible, (Van Kampens theorem applies because
everything is polyhedral.) Hence the inclusion i: A" n Y, - 4" is a homotopy equivalence,
and Y deformation retracts to Y,. Finally (¥ — ¥,) = (4" — ¥,) is homeomorphic to
A" U (B % [0, 1]) with the identifications b = (b, 0) if bhe Bt Therefore ¥ — Y, is
contractible: So 7(Y, ¥,) == 0, by Lemma 7.2 of {9]. Q.E.D.

Levua 1.4, Suppose that (M, FY and (Y, &) are PLC-complexes where M is a closed p.1.
manifold. Let (M x I, F x I be the natural product PLC-complex and assume that there is an
isomorphism § : F x I - G. Let F, be the subcomplex underlying M x {i} and let ¥, = W(F )|
(i=0,1). Then Yis a p.l s-cobordism from Y, to Y.

Proof. By (1.2), Y is a p.l. manifold with boundary Y, v ¥,. Because (M x I)™
{M x {i%), it follows from (1.3} that ¥ deformation retracts to ¥, and that «(Y, ¥) =0
(=10, 1). Hence Y is an s~cobordism.

§2. THE CELL STRUCTURE ON THE REGULAR NEIGHBORHOOD OF M

In this section we assume that M™ ! is a two-sided p.l. submanifold of Int V", where
oM = (7. We make no compactness assumptions and put no restrictions on #. Remark 1 of
the Introduction appiies and we let V;,, ¥, be as in that remark. Triangulate V' so that M
is a full subcomplex of V. Set A", =N(M’, V) and M, = N(M", V), (i=0,1).

We introduce some notation. If 4 is a simplex of the simplicial complex K then

DA, K)={4,...3, |45 4} <K '
D(A, K) = A D(A, K) (the dual cell to 4 in K).
1t is well krown that D{A, K) is simplicially isomorphic to Lk(4, K)'. Also, if L is a sub-
compiex of K, let us denote
CLKy={d<KiAnL=J}
Now suppose that 4 denotes a variable simplex of M. We set
CA = C(D (A: M)s D(A: VO))
F={D4, M) 4 < M}
G={C,|4 <M}
Fo=FuGu{D(4,¥V)id< M}

F xIand F x [—1, 1] denote the natural product complexes gotten by viewing [ as a
1-simplex and [ 1, 1] as a t-complex with vertices —1, 0, 1. Define if : F x I > F; by

D(4, M) x 0> D(4, M)
D(4, M) x 1 C,
D(A4, M) x I— D(4, V)
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The point of this section is to prove

TueoreM 2.1. Under the above conditions we have

(a) (A, Fo) is a topological-ball complex with subcomplexes (M, F) and (M, , G)

(b) (M, F) and (M, G} are PL-manifold complexes

{€) \r is an isomorphism from (M x I F x I} to (A4, Fy).

Since Lemma 1.1 allows us to trade isomorphisms of topological-ball complexes for
homeomorphisms, we may use the symmetry of A"y and A7 to get

COROLLARY 2.2. If M*~* is a p.I. manifold without boundary, piecewise-linearly embedded
as a two-sided submanifold of V* and if N is the regular neighborhood of M in V then there
is @ homeomorphism b (A, M) > (M x [—1, 11, M x 0). _

Remark. This corollary is a sharpening of [2, Theorem 6] and [10, Lemmas 10, 11].
Actually we are not so much interested in Theorem (2.1) for the Corollary as for the op-
portunity it will afford us to recognize s-cobordisms. However, since this work was done the
Hauptvermutung has been proved by Kirby and Siebenmann and one might wish to combine
(2.2) with the Hauptvermutung to prove our theorem. To do this one would have to show
that their obstruction vanishes. Essentially this is what Lemma 3.2 accomplishes.

Proof of Theorem 2.1. We proceed by induction on », the proof being trivial when
n = 1. Assume that » > 1 and that both (2.1) and (2.2) are known for integers less than ».
We shall show that each element of Fy is a topological ball and that each element of F U G
is also a p.l. manifold. We then leave it fo the reader to check that the incidence relations
are such that these are manifold-complexes and ¥ is an isomorphism. (Compare the proof
of Lemma 4 of [3].)

Suppose that 4 < M. Since D{A, M) = Lk(A4, M)’ (where =" denotes simplicial
isomorphism), D(A4, M) is a p.L. ball. Hence each element of F is a p.l. ball. Under the iso-
morphism @ : D(4, Vy) = Lk(4, V)" we have

o(Co) = C(Li(A, MY, Lk(4, V)')
= C{Lk(A, V1Y, Lk(A, V)").
Since M is full in V and separates V, V; is full in V. Thus ¢(C ) is the closure of the comple-
ment of a regular neighborhood in the p.l. sphere Lk(4, V). Thus ¢(C ) is a p.I. manifold.
Hence so is C 4. So each element of (7 is a p.l. manifold.

Now Lk(A, M) is a codimension-one p.l. sphere in Lk(4, V), so by induction hypothesis
N(Lk(A, M), Lk(A, V,Y) is homeomorphic to S'x I, where dimAd=n—i—2
O=<i<n-—2).[Ifdim4=n—1,itis obvious that C,, D{4, V;) and D(A, M) are topo-
logical balls, so we don’t comsider i = —1.] Pulling back by ¢~ ' this shows that
N(D(4, M), D(4, V,)) is a spherc. As the boundary of the regular neighborhood
N(D(A, M), D(A, V,)), this sphere is bicollared in D(4, V), so by the topological Schoenflies
theorem [1] C, is a topological ball. Finally

D(4, Vo) = &+ [C, 0 N(D(A, M), D(4, Vo))]
= A * [ball L collar]
= topological ball.

ey
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Thus every element of F, is a topological ball. Q.E.D.

§3. PROOF OF THE MAIN THEOREM

We assume that M, V and .4 are as in the theorem announced in the Introduction.
By Remark 1 of the Introduction we assume that M and V are connected and that ¥, and
V; are the closures of the components of ¥~M. By Remark 2 we assume that n > 5. We
triangulate the situation so that M is a full subcomplex of V. Let Ny = N{M', V) and let
M, = N(M', V). Thus the results of §2 apply.

LemMa 3.1 The regular neighborhood A" is p.l. hbmeomorpkic to My x[—=1,1].

Proof. Since, by (2.2), 4" is homeomorphic to M, x [ 1, 11, A" is an h-cobordism
between M, and M,. Further 4" A" (since A& M and M separates .#) and A,
pseudo-collapses to M, by (1.3) and (2.1). Henee A4 pseudo-collapses to M, so by (1.3)
again, ©(A", M) = 0. Similarly (4", M) = 0. Hence 4" is an s-cobordism; so by the s-
c‘ob__ordjsm theorem [11], .4 is p.l. homeomorphic to My x [—1, 1]. QED. 7

let F, G, Fy and y be as in §2. By (2.1) each element of F-u G is a p.l. manifold and
a topological ball. Thus (M U M,, F U G) is a PLC-complex. Let oy =W/ |F x {0,1}: F
x {0, 1} - FudG

Lemma 3.2, There is a PLC complex (W, H) which has (M.u My, F U G) as a sub-
complex such that the isomorphism o, :F x {0,1} = F U G extends to an isomorphism
e Fx I H, .

Proof. As pointed out in the proof of (2.1), each i-dimensional dual cell D(A™ "¢, V)
is thie cone on a topological (7 — 1)-ball. Hence, by the Hauptvermutung in low d1mens;0ns
[10], each D(A™%, V) is a p.l. ball for i < 4. Let us set

ay = Y| (F x {0, 1) U (7 x I)

Wy =M U My u u{D(4"", Vo)iA"'f <M,i<4}

Hy=FuGuU DA V) |A" < M,i<4}.
Then %4 is an isomorphism of PLC complexes which extends ¢, .

Now let 4*c F; ie. A* is one of the dual 4-balls-in M. Let = a,(8(4* x T)) =

A* U o (04* x I) U B* where B* is a contractible p.l. manifold and, by (1.4) a(94* x )
is an s-cobordism from 84 to 8B*. Clearly X is a p.l. homotopy 4-sphere. We claim that E
bounds a compact contractible 5-manifold Q°. For £ can be compatibly smoothed by [5]
and the resulting smooth homotopy 4-sphere bounds a smooth compact contractible

manifold since, according to [7], 8, = 0. Let O be the p.1. manifold underlying this smooth
manifold.

For each 4* e F, we attach the corresponding Q° to W, by a p.l. homeomorphism
Q% — o,(3(4* x I)). This yields W; and we let H; = H, u {Q°|4* e F}. Clearly o,
extends to an isomorphism of PLC complexes,

51 (F % {0, l})u(F”'xI)—»Hs
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Having constructed o; and (W;, H,) for i = 5 then it follows, as before, that a,{6(4° x 1))
bounds a p.i. homotpy i-sphere. But this must be a real p.l. sphere by the Poincaré conjecture
for i = 5. Thus a(0(4* x I)) certainly bounds a compact contractible p.l. manifold and the

process continues. We set o = o, and (W, H) ={(W,, H).
Q.E.D.

Proof of the main theorem. By (3.1.) A4 is p.l. homeomorphic to M, x [-1, 1].
By (3.2) and (1.4) there exists an s-cobordism from M to M, . The s-cobordism theorem [12]
applies because n > 5. Thus M is p.l. equivalent to M. Therefore 4" is p.1. cquivalent to
Mx[—1,1]. QED.

§4. PROOF OF THE CORCLLARY

We use the notation of §2. Assume that Vis triangulated so that M is a full subcomplex
and the star of every simplex of M has diameter less than ¢/3. Thus every dual cell has dia-
meter less than &/3. By (2.1), A4 = N(M’, V,’} has the topological-ball structure of M x I,
where each ball stretching from M to M, (i.e. each D(A4, V) stretching from D(4, M) to
C,) has diameter less than g/3. Since 0.47, is topologically bicollared in ¥, we may choose
collars of M and M, in CI(V —.A4",) so small that we get a neighborhood W of A", covered
by a topological ball-complex isomorphic to M x [—1, 2] in which 4", corresponds to
M x [0, 17 and in which each ball has diameter less than &/3. Then there is an ambient
isotopy of W, fixed on 0 and respecting the blocks D(4, M) x [, 2] which takes each
D(4, M) x 0 onto D(4, M) x I. Clearly this is an e-isotopy which extends to an ambient
g-isotopy H of V. But H,(M) = M,. Since M, is p.l. equivalent to M by the main theorem,
and since My = N(M’, V") is p.1. bicollared, the corollary is proven,
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