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The "Hauptvermutung" is the conjecture that homeomorphic 
(finite) simplicial complexes have isomorphic subdivisions, i.e. homeo
morphic implies piecewise linearly homeomorphic. I t was formulated 
in the first decade of this century and seems to have been inspired by 
the question of the topological invariance of the Betti and torsion 
numbers of a finite simplicial complex. 

The Hauptvermutung is known to be true for simplicial complexes 
of dimension <4, x but there are counterexamples in each dimension 
> 4 (Milnor, 1961). 

The Milnor examples, K and L, have two notable properties: 
(i) K and L are not manifolds, 
(ii) K and L are not locally isomorphic. 
Thus it is natural to restrict the Hauptvermutung to the class of 

piecewise linear w-manifolds, simplicial complexes where each point 
has a neighborhood which is piecewise linearly homeomorphic to 
Euclidean space Rn or Euclidean half space R\. 

We assume that Hz(M, Z) has no 2-torsion.2 

T H E M A I N THEOREM. Let h be a homeomorphism between compact 
PL-manifolds L and M. Then for some integer p 

( L , d L) x ^ ^ X identity ) ( M > d M) x Rp 

is properly homotopic to a PL-homeomorphism. If dim M§:6 and 
7TiM=TidM = 0, then h is homotopic to a PL-homeomorphism. 

There are three steps in the proof of the Main Theorem. 
For simplicity we assume now that M and L are closed simply con

nected PL-manifolds of dim > 4 . 
DEFINITION 1. Let g: L-+M be a homotopy equivalence. A tri

angulation of gis a homotopy of g to a PL-homeomorphism. 

1 1-complexes, obvious. 2-manifolds-Rado, 1926. 2-complexes-Papakyriakopoul-
os, 1943. 3-manifolds-Moise, 1953. 3-complexes-E. Brown, 1964. 

2 We state this condition in terms of Hz instead of H* to suggest a connection with 
the three dimensional Poincare conjecture. 
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The obstruction theory. Let g: L-+M be a homotopy equivalence. 
Then there is an obstruction theory for constructing a triangulation 
of g. The obstructions are determined geometrically in terms of par
tial triangulations of g defined on thickened skeletons of L. They may 
also be interpreted as the homotopy obstructions for deforming a 
map of L into a universal space F/PL to a constant. The obstructions 
lie in 

H^(L, Z) or H4i+*(L, Z2), 0 < 4i, U + 2 < dim L. 

The universal space F/PL is defined so that the set of homotopy 
classes of maps of a finite complex X into F/PL are in one to one cor
respondence with the set of stable equivalence classes of F/PL-
bundles over X. An .P/PL-bundle over X is a piecewise linear Rn 

bundle over X, p : E-+X, together with a fibre homotopy equivalence 
t:E—>XXRn, i.e. p\t — p and t is a proper homotopy equivalence on 
each fibre. (E, t)^0 iff t is nomotopic through fibre homotopy equiv
alences to a piecewise linear bundle equivalence. 

If W is an oriented manifold and dW=nL, then we call the space 
M obtained from W by identifying the various copies of L to one 
another a Z«-manifold, and we set ôM = L. A variety is a disjoint 
union of Zn-manifolds of various dimensions for various n's. 

DEFINITION 2. If rj=(E, t) is an F/PL-bundle over a Zn-manifold 
My we say that t] may be split if by changing t through a bundle 
homotopy to s: E—>MXRn we have 

(i) s is transverse regular to MXO, 
(ii) s^iMXO) QE—tpM is a homotopy equivalence.8 

The following theorem is essentially due to Novikov. 

T H E SPLITTING THEOREM. Let rj = (E, t) be an F/PL-bundle over a 
Zn-manifold M. Suppose that dim M^6, iri(M—ôM)=iri8M = 0, and 
that t is a topological homeomorphism. Then t\ may be split. 

The splitting obstruction for an jP/PZ-bundle over a Z»-manifold 
is the main tool in studying the obstruction theory described in 
Theorem 1. 

The following surprising theorem is the central result of this 
analysis. 

T H E CHARACTERISTIC VARIETY THEOREM. Let X be a finite simpli-
cial complex. Then there is a variety V and a map of V into X, ƒ : V—>X, 
with the following property \ If t\ — (E, t) is any F/PL-bundle over X> 
then rj is trivial ifff*rj may be split along each component of V. 

8 If dim 8M= 3, we assume s'^ôM) is PL-homeomorphic to 8M. 
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PROOF OF THE M A I N THEOREM. Let h: L-+M be a topological home
omorphism. Using the obstruction theory we get an F/PL-bundle 
rj = (E, /) over L. Since h is a homeomorphism t can be chosen to be a 
topological trivialization of E. L e t / : V—>L be a characteristic variety 
of L satisfying the hypotheses of the splitting theorem. Then f*rj 
may be split on each component of V. The last theorem implies 
rç^O and thus h has a triangulation. 

The obstruction theory for constructing triangulations of homotopy 
equivalences is based on framed surgery in the PL-category. I t is dis
cussed in detail in [4]. The geometrical construction underlying the 
theory was discovered independently by Wagoner [5]. The Splitting 
Theorem uses codimension one surgery in the nonsimply connected 
case (essentially 7Ti = free abelian). See [ l ] , [2], and [3]. The Charac
teristic Variety Theorem makes extensive use of cobordism theory 
and K-theory. The analysis leads to interesting geometrical interpre
tations of K-homology and the differentiable Riemann-Roch The
orem. (See Geometric Topology Seminar Notes by D. Sullivan, 
Princeton University.) 
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