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INTRODUCTION

We consider the problem of deforming a homotopy
equivalence f:(L, oL) -» (M, oM) betwecen smooth
manifolds into a diffeomorphism. There is a theory
for this problem analogous to that in (6).

We describe this theory-concentrating on points
of dif ference between the two theories and on points
omitted in (6).

THE OBSTRUCTION THEORY:

Definition 1: If n > 5, 1et7&n denote the
category whose objects are smooth compact n-manifolds
M such that # M = wyoM = 0 and whose morphisms are
embeddings Mi: C interior My such that mg(Mg — My) = O.

1t n <5 let T, = A

Definition 2: I M e‘ﬁé, a k-skeleton of W

is an embedding M, < M in ?7‘/;11 such that xi(m, Mk) =0
for i € k. A homotopy equivalence f£:(L, oL) — (M, o) :

is homotopic to a diffeomorphism over the k-skeleton of L

if there is a k-skeleton Lk c L and a map

gi(L, L) = (M, oM) such that

l




1) f is homotopic to g as maps of pairs
2) g/Lk:Lk -+ M is an embedding

3) et -L) cu - g(@).
Definition 3: Let Ai denote the Abelian group

of (almost) framed cobordism classes of almost

parallelizable manifolds M; © RIE xo>1.

Theorem 41: Let f:(L, oL) - (M, oM) be a
homotopy equivalence between manifolds in?ﬁh. Let

Lk-1 c Lk C Lk+1 C L be skeletons of L. BSuppose that

f/Lk is an embedding, f(L - Lk) cM - f(Lk), and.
k + 1 < n. Then there is a homomorphisnm

C
k+1
(L — Ak+1

k+1° L

Hk+1

)
with the following properties:

1) Ck+1 = 0 iff £ is homotopic to a diffeomorphism

over the (k+1)-skeleton of M by a homotopy
which is fixed on Lk and keeps L - Lk in
M - f(Lk)'

2) Under the identification of Hk+1(Lk+1’ Lk)
with the (k+1)-chain group for Hy(L), Cpi1

becomes a cocycle. Let 6k+1 denote the

cohomology class of Ck

.

+1
3) 6.4 = 0in Hk+1(L; Ak+1) iff T is homotopic
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to a diffeomorphism over the (k+1)-skeleton
of L by a homotopy which is fixed on L, , and

keeps L -~ L in M - f(Lk_1).

K1
Gorollary: If £:(L, oL) — (M, OM) is a
homotopy equivalence with L and M in%W£ and oL £ 0,

then 1 is homotopic to a diffeomorphism iff a sequence

of chstructions in

H'(L; A;) 0 <i<ainM
vanish.
Remark: If a (k+1)-skeleton of M is obtained

by attaching (k+1)-handles to ag(Lk),

B - ¥l | n-k
M4 = 8(Iy) Uy Dy x Dy ’

. . 1 % -
then Ck+1,Hk+1(Lk+ﬁ, LK) A4 mey be defined by the

framed submanifolds
—r—— k+1
_ g (05t
where g is a suitable(taregular to uiD::.:i"kJI X 0}
approximation to g such that E/Lk =

§;1(Dk+1 x 0) homotopy equivalence
e )

Ly _
\\ ‘//,x//// diffeomorphism - _’(,///

\\&\‘~Hﬁﬂ*ﬁg_ﬂaf"’//
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Remark: It Bi denotes the group of differentiable

structures on s* ana Pi’ i=1, 2, 3, ... denotes the
sequence of Abelian groups, 0, 22, 0, Z, 0, Z2, 0, Z, ..,
there is an exact seguence
_ 5P 9 6. L a 4 e 3 o6 ... .
i+1 i S} i i
See (10).
Using this sequence, (3), and (9) we compute A;

for i1 < 19 as follows:

il1 2 3 4 5 6 7 8 9 10 11 42 13 14

Aito Ze 0 Z 0 Zz 0 Z0Zz (Z2)® Zg 0 2 Zy (z2)®

15 16 17 18 19

Ze Z&®7Z2 (Z2)3 Z8®Zz Za

HOMOTOPY INTERPRETATTON:

Definition 1: A smboth structure on M in{ﬂh

is a pair {L, g) where L is inﬁmi and g:(L, oL) - (M, OM)
is a honmotopy egquivalience.

Definition 2: A smooth structure g:(L, oL) — (M, OoM)

restricts to a smooth structure on M' € M if M' € M and

L' = g_1(M‘) C L are morphisms of%@% and (L', g/L') is a
smooth structure on M'.

Definition 3: (ﬁg(m)) Two smooth structures,

(L, g) and (L', g') on M, are equivalent (or concordant)

i




e

if there is a diffeomorphism d:L - L' so that g'-d
is homotopic to g. Denote the set of equivalence
classes byﬁf(m).

Remark: The preferred element iQ/X(M) is the
concordance cliass of (M, identity). (L, g) is concordant
to (M, identity) iff g is homotopic to a diffeomorphism.

;fJ(M) may be regarded as the set of homotopy
equivalence classes of smooth manifold structures on an

underlying CW pair for (M, oM).

gfis a fUncto¥:

Theoremn (Browder) Let M' ¢ M be a morphism in
*?2n and let (L, g) be a smooth structure on M. Then g

is homotopic to g:(L, OL) - (¥, oM) so that (L, g)
restricts to a ‘smooth structure (L', g') on M'. The
concordance class of (L', g') depends only on the
concordance class of (L, g).

ggggﬁ: This is the codimension one embedding
theorenm of Browder (1) without the ®z hypotheses.
This form follows from properties of BM in Theorem 2.

Corollary: The assignment M ﬁ/f(M) extends to
a contravariant functor fromjﬁg to the category of

based sets.
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A PRODUCT OPERATION IN;J?MZ:

We use the restriction homomorphism to define a

binary operation inVJQM). Let © > M denote the tangent
n-disk bundle of M. Then there is an embedding i:7T - MxM
representing T as a tubular neighboufhood of the diagonal
in M x M.

Definition: Suppose either dM £ 0 or dim M #£ Li.

bDefine a product

A x S - A

by the composition

s

7 e 4 i #
;fkm) x (M) ==& (1) 2Av) T A .

¢ is defined on representatives by (L, g) x (L', g")|

S(Lx1', gxg'). 1" is the map corresponding to the

L
inclusion itv Cc M x M, = 1is defined on representatives

ot
b

by (L, g) & (ﬂ¥T, ﬂ*g).

ads
-

® 1is an injection which contains the image of
i"e if oM £ 0 or dim M £ L4i. (These facts are proved in

(8) where /fTM) andsj%bundle over M) are compared.)

THE GLASSIFYING SPACE Foalfkgl.

Let F/0 £ B. be the fibre of the homomnorphisn

0 H
J
BO ' BF ?
which maps egulvalence classes of stable vector bundies

to eguivalence classes of stable spherical fibre spaces.
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Theoren 2: a) For cach M in)ﬁn there is a

homomorphism
BM
f(M) — % ,[m, F/O].
b) The collection IGM} comprise a natural

transformation of functors on%?n,

| /Jymjiy[ , ®/0].

¢) 9, is an isomorphism if oM # 0.

Remark: Tn a) replace the word "homomorphism" -
by "function" if oM = O and dim. M = hi since @ is not
defined in this case. A product operation is always
defined in the piecewise linear analogue of/jQM), PL(M),
because PL{M) = PL(M,).

If oM = #, O need not be surjective nor injective.
We can describe the situation however.

Definition: Define an action (connected sum)

v # 4
e, X/,/(M) = 4 (M)

on representatives by

(o, (L, g)) = (o #L, pt mep# g) =co# (L, g)
Definition: Detine functions

e, ¥/0] % P_

or representatives W £ B/0 by

k(M, £) = (o n odd
l! w(n) v f*(U)) 1]z n =2 {(mod L)
)(L(M) U fﬁ;f) [12] n=0 (mod L)

L
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B
Here U € Hu +2(F/O, 7z) is defined in (8),
W(M) is the total Stiefel Whitney class of M, and
[M]z is the generator of Hﬁ(M, 72 ) ). ;f = 1/83 (L -~ 1)

in HM%(F/O; Q), where j:F/0 = B, and L is the Hirzebruch

0
L-genus in Hué(Bo, Zz), L(M) is the total Hirzebruch
class, and [M] is a generator of Hn(M; Q).

Remark: If n = 2 (mod L), the expression for

K(Mn, f) represents a formula for the Kervaire Invariant

of an F/0-bundle. See (8). In this case K is a homomorphisn.
If n = 0 (mod 4), then K(M™, £) is actually an

integer (3). XK is not a homomorphism in this case

(it is mod 2, however).

Theoren 3: Let ¥° belong tojﬁg and consider
&

S ) —¥Ms [k, w/0].

a) 8L, &) = o

Gnax such that (L, g)¥c = (L', g').

(L', g') iff there is a O in

b) If a € [¥, /0], then o = GM(L, g) iff Ka=0mP .
Corollarg: The seguence
o (om) H119), fiuy M, 5/0] Eop

is exact.

PROPERTIES OF BM

Let g:(L, aL) ~ (H, oM) be a homotopy equivalence
and denote 6,(L, g) by Bg :M+F/0. Note Og = pt. map iff g

is homotopic to a @iffeomorphism (med Gnaﬂ)
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in (6) we described a map £g:Mo - F/PL which is
homotopic to zero iff g is homotopic to a PL-homeomorphism.
(Mo = M if oM # # and Mo = M - pt if M= g.)

If g is a PL-homeomorphism, then g:L - M defines
a smoothing of the underlying PL-manifold of M. This
smoothing is classified by a map ag:M = PL/0. (2) and (L).

Consider the fibration

PL/0 —17 ¥/0 35 F/PL .
Theoren L: a) Let k denote the inclusion

MO E:_ Iﬁa Th{‘BIl
M-8 »/0

=L

Mg - égnwaF/PL

is homotopy commitative.

b) If g is a PL-homeomorphism, then ag is defined

and

=_PL/O

el ;

{1

is homotopy commutative.

Corollary: a) g is nomotopic to a PL-homeomorphisn

iff &g 1ifts to PL/O.
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b) If oM # 0, the smoothings of M corresponding
(under a) to ker ([M, PL/O]—PifQ'[M, F/0}) are
determined by manitolds diffeomorphic to M. In fact
the smoothing map g:L - ¥ is homotopic to a diffeomorphism.

Theorem 5: Consider the diagran

¥ Top/O

M g

a) 0Og lifts to F iff g is a tangential equivalence.
b) 6g 1ifts to Top/0 if g is a homeomorphism.
Remark: a) explains the existence of the
obstructions (in Hi(M, xiF)) defined by Novikov in (5).
The vanishing of these was a sufficient (but not necessary)
condition to deform a itangential equivalence to a
diffeomorphism {mod Snéﬂ). In effect, Novikov hés chosen
an arbitrary lifting of 0g to ¥ to define his obstructions.

We relate ¢ and 6 in a simple example.

., PL/O
ag - !
- ’ i
- - W
B o= g +F/0

Example: Let c:0 = s™ be a smoothing of s”

n 25, Then ¢ x identity = s
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S:GXDkﬁsnka

defines a smoothing of s x Dk. This smoothing is
classified by as:8" x ¥ - PL/O, where as is given by

the composition

s DkT:a s® —=> PL/0.
1

(We identify 6, and 'JtnPL/O.)
The “smooth structure” ishﬁg(sn X Dk) determined

by s is classified (k z 3) (according to Theorem L4 part b)

by the composition Os,

s x Dk-—_—&-é‘*? PL/0 > F/0 .
~— e
bs

Thus we obtain

1. s is (PL) weakly isotopic to a diffeomorphism

iff as = 0, i.e., iff 0 = 0 in B - (2) ana (4).

4

2. s is homotopic to a diffeomorphism

iff 68 ~ ias =~ 0, i.e, iff ¢ is in the subgroup

A
6, 0% ¢ 8 . (Since ker (7 PL/O ~> 'JEHF/O) = 6 O%.) -

k

3. If k > n, then 0 x Dk and S x D© are diffeomorphic.

So if 6 _om £ O , therc is = PI-home onorphism

S:Sn X Dk > g% x Dk which is net homotopic to a

diffeomorphism. For example this happens it n = 8.

L, If 6n = enaﬂ, a1l smocthings of g™ X Dk are

determined by diffeomorphic manifolds (k > 3). TFor

a—




— 42 -

example if n = 7 or n = 11 this holds. If n = 15,
there are no more than two (diffeomorphism classes of)
manifolds PL-homeomorphic to 8% x p~, (There are
respectively 28, 992, and 16, 256 smobthings of

n

s® x DX for n = 7, 41, and 15.)
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