SMOOTHING HOMOTOPY EQUIVALENCES

Dennis Sullivan

INTRODUCTION:

We consider the problem of deforming a homotopy equivalence $f:(L, \partial L) \to (M, \partial M)$ between smooth manifolds into a diffeomorphism. There is a theory for this problem analogous to that in (6).

We describe this theory-concentrating on points of difference between the two theories and on points omitted in (6).

THE OBSTRUCTION THEORY:

Definition 1: If n > 5, let \mathcal{H}_n denote the category whose objects are smooth compact n-manifolds \mathbb{M} such that $\pi_1\mathbb{M} = \pi_1\partial\mathbb{M} = 0$ and whose morphisms are embeddings $\mathbb{M}_1^n \subset \text{interior } \mathbb{M}_2^n$ such that $\pi_1(\mathbb{M}_2 - \mathbb{M}_1) = 0$. If $n \leq 5$ let $\mathcal{H}_n = \emptyset$.

Definition 2: If $M \in \mathcal{H}_n$, a k-skeleton of M is an embedding $M_k \subset M$ in \mathcal{H}_n such that $\pi_i(M, M_k) = 0$ for $i \leq k$. A homotopy equivalence $f:(L, \partial L) \to (M, \partial M)$ is homotopic to a diffeomorphism over the k-skeleton of L if there is a k-skeleton $L_k \subset L$ and a map $g:(L, \partial L) \to (M, \partial M)$ such that

- 1) f is homotopic to g as maps of pairs
- 2) $g/L_k:L_k \to M$ is an embedding
- 3) $g(L L_k) \subset M g(L_k)$.

Definition 3: Let A_i denote the Abelian group of (almost) framed cobordism classes of almost parallelizable manifolds $M_i \subset R^{i+k}$, k>>i.

Theorem 1: Let $f:(L, \partial L) \to (M, \partial M)$ be a homotopy equivalence between manifolds in \mathcal{M}_n . Let $L_{k-1} \subset L_k \subset L_{k+1} \subset L$ be skeletons of L. Suppose that f/L_k is an embedding, $f(L-L_k) \subset M-f(L_k)$, and k+1 < n. Then there is a homomorphism

$$H_{k+1}(L_{k+1}, L_k) \xrightarrow{C_{k+1}} A_{k+1}$$

with the following properties:

- 1) $C_{k+1} = 0$ iff f is homotopic to a diffeomorphism over the (k+1)-skeleton of M by a homotopy which is fixed on L_k and keeps $L L_k$ in $M f(L_k)$.
 - 2) Under the identification of $H_{k+1}(L_{k+1}, L_k)$ with the (k+1)-chain group for $H_*(L)$, C_{k+1} becomes a cocycle. Let θ_{k+1} denote the cohomology class of C_{k+1} .
 - 3) $\theta_{k+1} = 0$ in $H^{k+1}(L; A_{k+1})$ iff f is homotopic

to a diffeomorphism over the (k+1)-skeleton of L by a homotopy which is fixed on L_{k-1} and keeps L - L_{k-1} in M - $f(L_{k-1})$.

Corollary: If $f:(L, \partial L) \to (M, \partial M)$ is a homotopy equivalence with L and M in \mathcal{M}_n and $\partial L \neq 0$, then f is homotopic to a diffeomorphism iff a sequence of obstructions in

$$H^{i}(L; A_{i})$$
 0 < i < dim M

vanish.

Remark: If a (k+1)-skeleton of M is obtained by attaching (k+1)-handles to $\partial g(L_k)$,

$$\mathbf{M}_{k+1} = \mathbf{g}(\mathbf{L}_k) \cup_{\mathbf{i}} \mathbf{D}_{\mathbf{i}}^{k+1} \times \mathbf{D}_{\mathbf{i}}^{n-k-1} \quad ,$$

then $C_{k+1}:H_{k+1}(L_{k+1}, L_k) \to A_{k+1}$ may be defined by the framed submanifolds

$$\overline{g}^{-1}(D_i^{k+1})$$

where \overline{g} is a suitable (t-regular to $\cup_i D_i^{k+1} \times 0$) approximation to g such that $\overline{g}/L_k = g$.

FIGURE

Remark: If θ_i denotes the group of differentiable structures on S^i and P_i , $i=1, 2, 3, \ldots$ denotes the sequence of Abelian groups, 0, Z_2 , 0, Z_2 , 0, Z_2 , 0, Z_3 , ..., there is an exact sequence

$$\cdots \rightarrow P_{i+1} \stackrel{\partial}{\rightarrow} \theta_{i} \stackrel{i}{\rightarrow} A_{i} \stackrel{j}{\rightarrow} P_{i} \stackrel{\partial}{\rightarrow} \theta_{i-1} \cdots$$
See (10).

Using this sequence, (3), and (9) we compute A_i for $i \leq 19$ as follows:

HOMOTOPY INTERPRETATION:

Definition 1: A smooth structure on M in \mathcal{M}_n is a pair (L, g) where L is in \mathcal{M}_n and g:(L, ∂ L) \rightarrow (M, ∂ M) is a homotopy equivalence.

Definition 2: A smooth structure $g:(L, \partial L) \to (M, \partial M)$ restricts to a smooth structure on $M' \subseteq M$ if $M' \subseteq M$ and $L' = g^{-1}(M') \subseteq L$ are morphisms of \mathcal{H}_n and (L', g/L') is a smooth structure on M'.

Definition 3: $(\mathcal{L}(M))$ Two smooth structures, (L, g) and (L', g') on M, are equivalent (or concordant)

if there is a diffeomorphism $d:L \to L'$ so that $g' \cdot d$ is homotopic to g. Denote the set of equivalence classes by $\mathcal{N}(M)$.

Remark: The preferred element in $\mathcal{L}(M)$ is the concordance class of (M, identity). (L, g) is concordant to (M, identity) iff g is homotopic to a diffeomorphism.

 $\mathcal{J}(M)$ may be regarded as the set of homotopy equivalence classes of smooth manifold structures on an underlying CW pair for $(M, \partial M)$.

Sis a functor:

Theorem (Browder) Let M' \subset M be a morphism in \mathcal{M}_n and let (L, g) be a smooth structure on M. Then g is homotopic to $\overline{g}:(L, \partial L) \to (M, \partial M)$ so that (L, \overline{g}) restricts to a smooth structure (L', g') on M'. The concordance class of (L', g') depends only on the concordance class of (L, g).

<u>Proof:</u> This is the codimension one embedding theorem of Browder (1) without the π_2 hypotheses. This form follows from properties of θ_M in Theorem 2.

Corollary: The assignment $M \to \mathcal{S}(M)$ extends to a contravariant functor from \mathcal{M}_n to the category of based sets.

A PRODUCT OPERATION IN & (M):

We use the restriction homomorphism to define a binary operation in $\mathcal{N}(M)$. Let $\tau \xrightarrow{\tau} M$ denote the tangent n-disk bundle of M. Then there is an embedding i: $\tau \xrightarrow{\tau} M \times M$ representing τ as a tubular neighbourhood of the diagonal in $M \times M$.

<u>Definition</u>: Suppose either $\partial M \neq 0$ or dim $M \neq 4i$. Define a product

$$f(M) \times f(M)^{\mu} \rightarrow f(M)$$

by the composition

$$\mathcal{S}(M) \times \mathcal{S}(M) \xrightarrow{e} (M \times M) \xrightarrow{i^*} \mathcal{S}(\tau) \leftarrow \mathcal{T}^*$$

e is defined on representatives by (L, g) \times (L', g') $\stackrel{e}{\to}$ (L \times L', g \times g'). i^* is the map corresponding to the inclusion i: $\tau \subset M \times M$. π^* is defined on representatives by (L, g) $\stackrel{\pi^*}{\to}$ ($\pi^*\tau$, π^*g).

 π^* is an injection which contains the image of i*e if $\partial M \neq 0$ or dim $M \neq 4i$. (These facts are proved in (8) where $\mathcal{N}(M)$ and $\mathcal{N}(M)$ bundle over M) are compared.)

THE CLASSIFYING SPACE FOR (M).

Let F/O $\stackrel{f}{\to}$ B_O be the fibre of the homomorphism ${}^{B_{\stackrel{}{O}} \xrightarrow{J^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}}} {}^{B_{\stackrel{}{F}}} ,$

which maps equivalence classes of stable vector bundles to equivalence classes of stable spherical fibre spaces.

Theorem 2: a) For each M in \mathcal{M}_n there is a homomorphism

 $S(M) \xrightarrow{\theta_{M}} [M, F/0].$

b) The collection $\{\theta_M\}$ comprise a natural transformation of functors on \mathcal{U}_n ,

$$\int \frac{\theta}{-\theta} [, F/0].$$

c) θ_{M} is an isomorphism if $\partial M \neq 0$.

Remark: In a) replace the word "homomorphism". by "function" if $\partial M=0$ and dim. M=4i since μ is not defined in this case. A product operation is always defined in the piecewise linear analogue of $\mathcal{N}(M)$, PL(M), because $PL(M) = PL(M_0)$.

If $\partial M = \emptyset$, θ need not be surjective nor injective. We can describe the situation however.

<u>Definition</u>: Define an action (connected sum) $\theta_{n} \times \mathcal{J}(M) \stackrel{\#}{\to} \mathcal{J}(M)$

on representatives by

$$(\sigma, (L, g)) \rightarrow (\sigma \#L, pt map \#g) \equiv \sigma \# (L, g)$$

<u>Definition</u>: Define functions

$$[M^n, F/o] \stackrel{K}{\rightarrow} P_n$$

on representatives $M^n \stackrel{f}{\rightarrow} F/0$ by

$$K(M^{n}, f) = \begin{cases} 0 & n \text{ odd} \\ (W(M) \cup f^{*}(U)) [M]_{2} & n \equiv 2 \pmod{4} \\ (L(M) \cup f^{*}) [M] & n \equiv 0 \pmod{4} \end{cases}$$

Here $U \in H^{1/4}+2(F/0, Z_2)$ is defined in (8), W(M) is the total Stiefel Whitney class of M, and $[M]_2$ is the generator of $H_n(M, Z_2)$). $\swarrow = 1/8j^*(L-1)$ in $H^{1/4}(F/0; Q)$, where $j:F/0 \to B_0$ and L is the Hirzebruch L-genus in $H^{1/4}(B_0, Z_2)$, L(M) is the total Hirzebruch class, and [M] is a generator of $H_n(M; Q)$.

Remark: If $n \equiv 2 \pmod{4}$, the expression for $K(M^n, f)$ represents a <u>formula for the Kervaire Invariant</u> of an F/O-bundle. See (8). In this case K is a homomorphism.

If $n \equiv 0 \pmod{4}$, then $K(M^n, f)$ is actually an integer (3). K is not a homomorphism in this case (it is mod 2, however).

Theorem 3: Let M^n belong to \mathcal{M}_n and consider $\mathcal{S}(M) \xrightarrow{\theta_M} [M, F/0]$.

- a) $\theta_M(L, g) = \theta_M(L', g')$ iff there is a σ in $\theta_n \partial \pi$ such that $(L, g)\#\sigma = (L', g')$.
 - b) If $\alpha \in [M, F/0]$, then $\alpha = \theta_M(L, g)$ iff $K\alpha = 0$ in P_n .

 Corollary: The sequence $\theta_n(\partial \pi) \xrightarrow{\#(M, id)} \mathcal{J}(M) \xrightarrow{M} [M, F/0] \xrightarrow{K} P_n$

is exact.

PROPERTIES OF θ_{M} :

Let $g:(L, \partial L) \to (M, \partial M)$ be a homotopy equivalence and denote $\theta_M(L, g)$ by $\theta g:M\to F/O$. Note $\theta g \simeq pt$. map iff g is homotopic to a diffeomorphism (mod $\theta_n \partial \pi$)

In (6) we described a map $\zeta g: M_0 \to F/PL$ which is homotopic to zero iff g is homotopic to a PL-homeomorphism. ($M_0 = M$ if $\partial M \neq \emptyset$ and $M_0 = M$ - pt if $\partial M = \emptyset$.)

If g is a PL-homeomorphism, then g:L \rightarrow M defines a smoothing of the underlying PL-manifold of M. This smoothing is classified by a map $\alpha g:M \rightarrow PL/0$. (2) and (4).

Consider the fibration

$$PL/O \xrightarrow{i} F/O \xrightarrow{j} F/PL$$
.

Theorem 4: a) Let k denote the inclusion $M_0 \subseteq M$. Then

$$\begin{array}{ccc}
M & \xrightarrow{\theta g} & F/O \\
\uparrow k & \downarrow j \\
M_O & \xrightarrow{\zeta g} & F/PL
\end{array}$$

is homotopy commutative.

b) If g is a PL-homeomorphism, then ag is defined and

is homotopy commutative.

Corollary: a) g is homotopic to a PL-homeomorphism iff θg lifts to PL/0.

b) If $\partial M \neq 0$, the smoothings of M corresponding (under a) to ker ([M, PL/0] $\xrightarrow{i*}$ [M, F/0]) are determined by manifolds diffeomorphic to M. In fact the smoothing map g:L \rightarrow M is homotopic to a diffeomorphism.

Theorem 5: Consider the diagram

- a) θg lifts to F iff g is a tangential equivalence.
- b) Og lifts to Top/O if g is a homeomorphism.

Remark: a) explains the existence of the obstructions (in $H^i(M, \pi_i F)$) defined by Novikov in (5). The vanishing of these was a sufficient (but not necessary) condition to deform a tangential equivalence to a diffeomorphism (mod $\theta_n \partial \pi$). In effect, Novikov has chosen an arbitrary lifting of θg to F to define his obstructions.

We relate α and θ in a simple example.

$$\begin{array}{c}
\alpha g \\
i \\
M - \theta g - \Rightarrow F/0
\end{array}$$

Example: Let $c:\sigma \to S^n$ be a smoothing of S^n $n \ge 5$. Then $c \times identity = s$

$$s:\sigma \times D^k \to S^n \times D^k$$

defines a smoothing of $S^n \times D^k$. This smoothing is classified by $\alpha s: S^n \times D^k \to PL/0$, where αs is given by the composition

$$s^n \times D^k \xrightarrow{p_1} s^n \xrightarrow{\sigma} PL/0.$$

(We identify θ_n and $\pi_n PL/O$.)

The "smooth structure" is $\mathcal{L}(S^n \times D^k)$ determined by s is classified (k \geqslant 3) (according to Theorem 4 part b) by the composition θs ,

$$s^n \times \underbrace{D^k \xrightarrow{\alpha s} PL/0 \xrightarrow{i} F/0}_{\theta s}$$

Thus we obtain

- 1. s is (PL) weakly isotopic to a diffeomorphism iff as \simeq 0, i.e. iff $\sigma=0$ in θ_n . (2) and (4).
- 2. s is homotopic to a diffeomorphism iff $\theta s \simeq i\alpha s \simeq 0$, i.e. iff σ is in the subgroup $\theta_n \partial \pi \subseteq \theta_n$. (Since ker $(\pi_n PL/0 \xrightarrow{i_*} \pi_n F/0) = \theta_n \partial \pi$.)

3. If k > n, then $\sigma \times D^k$ and $S^n \times D^k$ are diffeomorphic. So if $\theta_n \partial \pi \neq \theta_n$, there is a PL-homeomorphism $s: S^n \times D^k \to S^n \times D^k \text{ which is not homotopic to a}$ diffeomorphism. For example this happens if n = 8.

4. If $\theta_n=\theta_n\partial\pi$, all smoothings of $S^n\times D^k$ are determined by diffeomorphic manifolds $(k\geqslant 3)$. For

example if n=7 or n=11 this holds. If n=15, there are no more than two (diffeomorphism classes of) manifolds PL-homeomorphic to $S^n \times D^k$. (There are respectively 28, 992, and 16, 256 smoothings of $S^n \times D^k$ for n=7, 11, and 15.)

BIBLIOGRAPHY

- 1. Browder, W. Embedding 1-connected Manifolds, (to appear).
- 2. Hirsch, M.W. and B. Mazur, Smoothings of piecewise linear manifolds, mimeographed, Cambridge University Topology Symposium (1964).
- 3. Kervaire, M. and J. Milnor, Groups of homotopy spheres, I. Annals of Math. 77 (1963), 504-537.
- 4. Lashof, R. and M. Rothenberg, Microbundles and smoothing, Topology (1965).
- 5. Novikov, S.P., Homotopically equivalent smooth manifolds I, Translations A.M.S. (1966).
- 6. Sullivan, D., Triangulating homotopy equivalences (to appear)
- 7. Sullivan, D., Ph.D. Thesis Princeton University (1966). (Mimeographed) Rice University.
- 8. Sullivan, D., The k-invariants of F/PL and the Hauptvermutung (to appear).
- 9. Toda, Hirosi, Composition methods in homotopy groups of spheres, Annals Studies (No. 49).
- 10. Wall, C.T.C., Survey article-Topology of smooth manifolds, J. Lon. Math. Soc. (40) (1965), 1-20.