

TRIANGULATING HOMOTOPY EQUIVALENCES Dennis Sullivan

INTRODUCTION

Let $f:(M,\partial M) \longrightarrow (L,\partial L)$ be a homotopy equivalence of compact piecewise linear (PL) manifold pairs. When is f homotopic to a PL-homeomorphism?

In general, homotopically equivalent M and L need not be PL-homeomorphic. For example, there is a fibre homotopically trivial s^{l_l} bundle over s^{l_l} with a non-zero first Pontryagin class; and there is a fibre homotopically trivial (PL) s^{10} bundle over s^{10} whose total space is not smoothable. Thus we obtain homotopy equivalences

$$f:E^{8} \longrightarrow s^{4} \times s^{4}$$

$$g:M^{20} \longrightarrow s^{10} \times s^{10}$$

which are not homotopic to PL-homeomorphisms.

These examples (and two others) are in some sense generic in the simply connected, high dimensional case. Suppose dim M>6 and $\pi_1\text{M}=\pi_1\partial\text{M}=0$. Let

$$f:(M,\partial M) \longrightarrow (L,\partial L)$$

be a homotopy equivalence. Let Pi be the sequence of

Abelian groups,

$$P_{i} = \begin{cases} 0 & \text{if } i \text{ is odd} \\ Z_{2} & \text{if } i \equiv 2 \pmod{4} \end{cases}$$

$$Z & \text{if } i \equiv 0 \pmod{4} .$$

THE MAIN THLOREM

THEOREM 1: There is an obstruction theory for the problem of deforming a homotopy equivalence $f:(L,\partial L)\to (M,\partial M)$ to a PL-homeomorphism over the skeletons of M. f is homotopic to a PL-homeomorphism iff a sequence of obstructions in

$$H^{i}(M,P_{i})$$
 , O

vanish .

Remark: The precise skeletal nature of the obstruction theory is described in (10).

THE OBSTRUCTIONS

The obstructions in dimensions $H^{1,1}(M,Z)$ can be computed modulo torsion and we obtain

THEOREM 2: Let $f:(M,\partial M) \to (L,\partial L)$ be as above and suppose that

- 1) $H^{l+1+2}(M, Z_2) = 0$ 4i+2 < dim M
- 2) H⁴¹(M,Z) is free
- 3) f corresponds rational Pontryagin classes, $f^*p_i(L) = p_i(M)$.

Then f is homotopic to a PL-homeomorphism.

Corollary: Suppose M satisfies 1) and 2) of Theorem 2). Then the Hauptvermutung is true for M.

Proof: If f is a homeomorphism, 3) is satisfied by Movikov (6).

The obstructions in $H^{1+2}(M;\mathbb{Z}_2)$ are uniquely determined and can be computed in terms of geometric properties of the homtopy equivalence $f:(M,\partial M) \longrightarrow (L,\partial L)$ (Theorem 27;3). These properties can be analyzed when f is a homeomorphism. This leads to stronger theorems about the <u>Hauptverutung</u>: Condition 1) may be dropped and Condition 2) may be weakened. Compare (11).

The Corollary implies the <u>Hurewicz Conjecture</u> (that homotopically equivalent closed manifolds are homeomorphic) is true if $\operatorname{H}^{l,i+2}(\mathbb{N},\mathbb{Z}_2)=\operatorname{H}^{l,i}(\mathbb{N},\mathbb{Z})=0$ for 0<4i+2, 4i< dim \mathbb{N} . Examples such as those above show that from the point of view of cohomology hypotheses, the corollary is essentially a best possible result.

THE PROOF:

Theorem 1 may be developed from two points of view, one geometric and one homotopy theoretical.

These discussions are given in (9) and will be published elsewhere.

The geometric proof arises from a procedure for supplying the hypothesis of the uniqueness Theorem in the Browder-Novikov Theory. (1) and (7).

The homotopy theoretic proof combines a general construction with PL-surgery on maps (1).

In the geometric situation the coefficient groups P_i appear as the cobordism groups of framed i-manifolds (with boundary PL-homeomorphic to the (i-1)-sphere) in Euclidean space. See (3).

HOMOTOPY INTERPRETATION

In the second point of view the P_i appear as the homotopy groups of a universal H-space F/PL. F/PL is the fibre of the homomorphism

$$B_{PT} \longrightarrow B_{F}$$

which maps equivalence classes of PL-bundles into fibre homotopy equivalence classes of spherical fibre spaces (3).

To state Theorem 1 in this framework we make two definitions.

Definition 1: A PL-structure on M is a pair $(L,g) \ \ \, \text{where} \ \ g:(L,\partial L) \to (M,\partial M) \ \ \, \text{is a homotopy equivalence.}$

Definition 2: Two PL-structures on M, (L,g) and (L,g), are equivalent (or concordant) if there

is a PL-homeomorphism c:L \rightarrow L' so that g'c is homotopic to g (as maps of pairs). Let PL(N) denote the set of equivalence classes.

Remark: The set PL(M) depends only on the homotopy type of the pair $(M,\partial M)$. It may be viewed as the set of homotopy equivalence classes of manifold structures on an underlying CW complex pair for $(M,\partial M)$.

Remark: Note that (L,g) is equivalent to (M, identity) iff g is homotopic to a PL-homeomorphism.

Let $\text{M}_0=\text{M}$ if $\partial \text{M} \neq 0$ and $\text{M}_0=\text{M}-\text{pt}$ if $\partial \text{M}=\emptyset$. Assume $\pi_1\text{M}=\pi_1\partial \text{M}=0$ and dim $\text{M}\!>\!6$.

THEOREM 3: There is a bijective correspondence $PL(M) \longrightarrow [M_0,F/PL]$

between PL(M) and the set of homotopy classes of maps, $M_0 \rightarrow F/PL$. ζ corresponds the equivalence class of (M, id) to the class of the point map in $[M_0, F/PL]$.

Remark: If $g;(L,\partial L) \to (M,\partial M)$ is a homotopy equivalence, denote $\zeta(L,g)$ by $\zeta g; N_0 \to F/PL$. Since ζ is injective $\zeta g \simeq pt$. map iff g is homotopic to a PL-homeomorphism.

Corollary: Every homotopy equivalence $g:(L,\partial L)\to (M,\partial H) \quad \text{is homotopic to PL-homeomorphism iff} \\ [Mo,F/PL] \quad \text{contains only one element} \ .$

PROPERTIES OF Z.

I. We give further properties of the correspondence Z. It is possible to define a group operation in PL(M) geometrically and to "restrict" PL-structures on M to PL-structures on M', where dim M= dim M' and M is embedded in the interior of M with simply connected complement. Thus the assignment

$$M \longrightarrow PL(M)$$

extends to a contravariant functor on a category of simply connected n-manifolds and "nice" embeddings to the category of Abelian groups. The correspondence

$$PL(M) \longrightarrow [M_0, F/PL]$$

is a natural equivalence of functors on this category.

The group structure on $\operatorname{PL}(\mathbb{N})$ and the restriction homomorphism

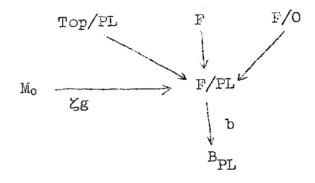
$$PL(M) \longrightarrow PL(M')$$

are described in (10).

The obstruction theory of Theorem 1 follows from the naturality of ζ and the computation

$$\pi_{i}(F/PE) = P_{i}$$
.

II. Consider the diagram



 $\zeta(L,g)=\zeta g$ has the following properties:

- 1) If g/L_0 is a PL-tangential equivalence, then ζg lifts to F. (In general b· ζg measures the precise deviation of g from a tangential equivalence.)
- 2) If M and L are smooth, then ζg lifts to F/O. A certain (cananically defined) lifting is homotopic to zero iff g is homotopic to a diffeomorphism between L#0 and M where 0 is in $\theta_n(\partial \pi)$. Compare (10).
- 3) If g is a homeomorphism, then ζg lifts to Top/PL. (In fact, this is true if g is topologically h-cobordant to a homeomorphism.)

From these properties of Z we obtain

THEOREM 4: Let $\pi_1 \, M = \pi_1 \, \partial M = 0$ and suppose dim M>6. Recall M0=M if $\partial M \neq$ O and M0=M-pt if $\partial M = 0$. Then

a) Every tangential equivalence $f:(L,\partial L) \longrightarrow (M, \partial M)$ is homotopic to a PL-homeomorphism iff

$$[M_0,F] \longrightarrow [M_0,F/PL]$$
 is zero.

b) Every homotopy equivalence $f:(L,\partial L) \to (M,\partial M)$ with M and L smooth is homotopic to a PL-homeomorphism if

$$[M_0,F/0] \rightarrow [M_0,F/PL]$$
 is zero.

The converse holds if $\partial M \neq 0$ and M is smoothable.

c) Every homeomorphism $f:(L,\partial L) \longrightarrow (M,\partial M)$ is homotopic to a PL-homeomorphism if

$$[M_0, Top/PL] \longrightarrow [M_0, F/PL]$$
 is zero.

Theorem 3 can be used to construct examples of various kinds by constructing appropriate maps into F/PL.

Example: 1) Using the composition

$$CP_0^{l_4} = CP^{l_4}$$
-pt $\cong CP^3 \xrightarrow{\text{deg 1}} S^6 \xrightarrow{\text{gen } \pi_6} F/PL$

we construct a smooth δ -manifold which is tangentially equivalent to \mathbb{CP}^{l_4} but which is not (topologically) homeomorphic to \mathbb{CP}^{l_4} . Compare (4).

2) Using

$$CP^2 \times S^8 \longrightarrow S^8 \longrightarrow F/PL$$
 $p_2 \longrightarrow gen \pi_8$

we construct a PL 12-manifold M^{12} which is homotopically equivalent to $\mathbb{CP}^2 \times \mathbb{S}^8$ but which is not cobordant (mod 2) to $\mathbb{CP}^2 \times \mathbb{S}^3$.

Remark: Theorem 3 may be stated in a relative form that is useful for studying weak-isotopy classes of PL-homeomorphisms $c: M \longrightarrow M$. The problem of deforming a homotopy between two PL-homeomorphisms into a weak-isotopy between them is classified by a map of the suspension of M_0 into F/PL. Compare (9).

There is an analogous theory for constructing diffeomorphisms from homotopy equivalences. Compare (10). The classifying space is F/O. These two theories and the smoothing theory of (5) and (2) are compatibly related by the fibration

$$PL/O \longrightarrow F/O \longrightarrow F/PL$$

BIBLIOGRAPHY

- 1) Browder W. and Hirsch M. <u>Surgery on Piecewise Linear</u>
 Manifolds and Applications, (to appear)
- 2) Hirsch M. and Mazur B. Smoothings of Piecewise Linear Manifolds, (to appear)
- 3) Kervaire M. and Milnor J. Groups of Homotopy Spheres I Annals of Math. 77 (1963), 504-537.
- 4) Lashof R. and Rothenburg M. On the Hauptvermutung, Triangulation of Manifolds, and h-Cobordism (to appear)
- 5) Lashof R. and Rothenburg M. <u>Microbundles and Smoothing</u>
 Topology (1965).
- 6) Novikov S.P. <u>Topological Invariance of Rational</u>

 <u>Pontryagin Classes</u> Doplady (1965) Vol. 163, 298-300.
- 7) Novikov S.P. <u>Homotopically Equivalent Smooth Manifolds I</u> Translations AMS (1966).
- 8) Stasheff, J. A Classification Theorem for Fibre Spaces
 Topology (2) 1963 239-246.
- 9) Sullivan D. Thesis, Princeton University (1966)
 Mimeographed Rice University.
- 10) Sullivan, D. Smoothing Homotopy Equivalences (to appear)
- 11) Sullivan, D. The k-invariants of F/PL and the Hauptvermutung. (to appear).