
Similarity and diagonalization
(Section 4.4 in the book)

A few examples of matrix transformations

Recall that if A is an m× n matrix, then TA(v) = Av is a matrix linear transformation
from Rn to Rm.

If AB is a product of matrices, then

TAB(v) = ABv = TA(TB(v)).

If A is an invertible matrix, then

T−1
A (v) = A−1v = TA−1(v).

Example. Find a matrix P such that

TP

[
1
0

]
=

[
2
2

]

TP

[
0
1

]
=

[
3
4

]
.

We will often write it as [
1
0

]
TP

[
2
2

]
[
0
1

]
TP

[
3
4

]
.

Solution. Suppose P =

[
a b
c d

]
. Then

[
2
2

]
=

[
a b
c d

] [
1
0

]
=

[
a
c

]
,

[
3
4

]
=

[
a b
c d

] [
0
1

]
=

[
b
d

]
.

Therefore, P =

[
2 3
2 4

]
.

Example. Find a matrix Q such that[
1
0

]
TQ

[
0
1

]
[
0
1

]
TQ

[
1
2

]
.
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Answer: Q =

[
0 1
1 2

]
.

Example. Find a matrix S such that[
2
1

]
TS

[
1
0

]
[
1
1

]
TS

[
0
1

]
.

Solution. Since T−1
S = TS−1 , we may reformulate the problem as[

2
1

]
TS−1

[
1
0

]
[
1
1

]
TS−1

[
0
1

]
.

Therefore, S−1 =

[
2 1
1 1

]
and S =

[
2 1
1 1

]−1

=

[
1 −1
−1 2

]
.

Example. Find a matrix R such that[
0
3

]
TR

[
1
0

]
[
1
1

]
TR

[
0
1

]
.

Solution. As in the previous example:[
0
3

]
TR−1

[
1
0

]
[
1
1

]
TR−1

[
0
1

]
.

Therefore, R−1 =

[
0 1
3 1

]
and R =

[
0 1
3 1

]−1

=

[
−1/3 1/3
1 0

]
.

Example. Find a matrix L such that[
1
0

]
TL 3

[
1
0

]
[
0
1

]
TL − 6

[
0
1

]
.

Answer: L =

[
3 0
0 −6

]
.
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Example. Find a matrix N such that

2

[
1
0

]
TN

[
1
0

]

4

[
0
1

]
TN

[
0
1

]
.

Answer: N−1 =

[
2 0
0 4

]
and N =

[
1/2 0
0 1/4

]
.

In the last two examples the matrices L and N are diagonal.

Similarity and diagonalization

Let A,B be n×n matrices. We say that A is similar to B if there is an invertible n×n
matrix P such that P−1AP = B. If A is similar to B, we write A ∼ B.

An n × n matrix A is diagonalizable if there is a diagonal matrix D such that A is
similar to B – that is, if there is an invertible n× n matrix P such that P−1AP = D.

Theorem (4.23 in the book). Let A be an n× n matrix. Then A is diagonal if and
only if A has n linearly independent eigenvectors.

More precisely, there exists an invertible matrix P and a diagonal matrix D such that
P−1AP = D if and only if the columns of P are n linearly independent eigenvectors of A
and the diagonal entrices of D are eigenvalues of A corresponding to the eigenvectors in P
in the same order.

Let us illustrate the above theorem in the following example. Consider a matrix

A =

[
5 −1
2 2

]
. Using the previous lectures, we can find eigenvalues of A and bases for

the corresponding eigenspaces. The matrix A has eigenvectors
[
1
1

]
,

[
1
2

]
corresponding to

eigenvalues 4, 3 respectively:

TA

[
1
1

]
=

[
5 −1
2 2

] [
1
1

]
=

[
5− 1
2 + 2

]
= 4

[
1
1

]
TA

[
1
2

]
=

[
5 −1
2 2

] [
1
2

]
=

[
5− 2
2 + 4

]
= 3

[
1
2

]
,

where TA(v) = Av. We may write:

TA

(
x

[
1
1

]
+ y

[
1
2

])
= 4x

[
1
1

]
+ 3y

[
1
2

]
(1)

for every x, y.

Set D =

[
4 0
0 3

]
. We have:

TD

[
1
0

]
=

[
4 0
0 3

] [
1
0

]
=

[
4
0

]
= 4

[
1
0

]
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TD

[
0
1

]
=

[
4 0
0 3

] [
0
1

]
=

[
0
3

]
= 3

[
0
1

]
,

and we may also write

TD

(
x

[
1
0

]
+ y

[
0
1

])
= 4x

[
1
0

]
+ 3y

[
0
1

]
(2)

for every x, y.
Observe the “similarity” between Equations (1) and (2). The theorem states that A and

D are indeed similar: [
1 1
1 2

]−1 [
5 −1
2 2

] [
1 1
1 2

]
=

[
4 0
0 3

]
,

or P−1AP = D, where P =

[
1 1
1 2

]
is a matrix whose columns are linearly independent

eigenvectors.

Explanation why P−1AP is diagonal. Observe first that P =

[
1 1
1 2

]
is constructed so

that [
1
0

]
TP

[
1
1

]
[
0
1

]
TP

[
1
2

]
;

in other words, TP maps
[
1
0

]
,

[
0
1

]
to eigenvectors of A.

Let us calculate P−1AP

[
1
0

]
and P−1AP

[
0
1

]
:

TP−1AP

[
1
0

]
= P−1AP

[
1
0

]
= P−1A

[
1
1

]
= P−1

(
4

[
1
1

])
= 4

[
1
0

]

TP−1AP

[
0
1

]
= P−1AP

[
0
1

]
= P−1A

[
1
2

]
= P−1

(
3

[
1
2

])
= 3

[
0
1

]
.

We may illustrate the above calculations by the following picture

[
1
1

] [
1
2

]
4

[
1
1

]
3

[
1
2

]

[
1
0

] [
0
1

]
4

[
1
0

]
3

[
0
1

]
TP TP TP−1 TP−1

TA TA
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Since TP−1AP

[
1
0

]
= 4

[
1
0

]
and TP−1AP

[
0
1

]
= 3

[
0
1

]
, the matrix P−1AP must be D =[

4 0
0 3

]
. This explains P−1AP = D.

Look at more examples in the book.
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