MAT 211: Linear Algebra Practice problems

Stony Brook University Dzmitry Dudko Fall 2021

It is also recommended to review Practice Problems for both midterms.

Problem 1.

Consider a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ satisfying

$$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$$
 and $T\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$

Find the standard matrix of T**Problem 2.** Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & k \end{bmatrix},$$

where k is a real parameter.

- 1. Find the determinant of A and say for which values of k the matrix A is invertible.
- 2. Find the dimensions of null(A) and col(A) as k varies.
- 3. For k = 4,
 - find the eigenvalues of A;
 - find an eigenvector corresponding to the eigenvalue $\lambda = 5$.

Problem 3. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- 1. Find the eigenvalues and corresponding eigenspaces of A. Conclude that A is diagonalizable.
- 2. Write down a basis $\mathcal{B} = \{v_1, v_2, v_3\}$ of \mathbb{R}^3 consisting of eigenvectors of A. Using this, find an invertible matrix S such that $S^{-1}AS$ is a diagonal matrix.

3. Find the coordinates of
$$\begin{bmatrix} 6\\-1\\-2 \end{bmatrix}$$
 with respect to the basis \mathcal{B} ; i.e. write $\begin{bmatrix} 6\\-1\\-2 \end{bmatrix}$ as a linear combination of v_1, v_2 , and v_3 .

4. Compute
$$A^{456} \begin{bmatrix} 6\\ -1\\ -2 \end{bmatrix}$$
.

Problem 4.

Write the matrix representing the linear transformation T on \mathbb{R}^2 that reflects vectors about the line y = x. Is it invertible? What about diagonalizability?

Problem 5.

Consider the vector subspace
$$W = \operatorname{span} \left(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right)$$
. Find the projection of $\begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$ onto W

and onto W^{\perp} .

Problem 6.

Find all a, b, c such that the following matrices are simultaneously non-invertible

$$\begin{bmatrix} a-4 & -2 \\ b & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 4-a-c & a+b \end{bmatrix}, \begin{bmatrix} 1 & \frac{1}{2}-c \\ 2 & a+b \end{bmatrix}.$$

Problem 7.

Suppose v_1, v_2, v_3 are linearly independent vectors.

1. Find all scalars a and b such that

$$2av_1 - v_2 = v_1 + bv_2.$$

2. Find all scalars k such that the vectors

$$v_1 + 3v_3$$
, $2v_1 + kv_3$, $2v_2$

are linearly dependent.

Problem 8. Find an orthogonal basis of span $\begin{pmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$.