
1 Basis and Dimension

Recall that S is a subspace of Rn if:

1) S contains 0;

2+3) a linear combination of vectors from S is in S.

Equivalently, S is a subspace if and only if S = span(v1, v2, . . . , vk). If v1, v2, . . . , vk are
linearly independent, then v1, v2, . . . , vk is a basis for S. In this case k is the dimension
of S.

Example: lines and planes through the origin are subspaces.
The dimension of a subspace is independent of the choice of a basis because:
Theorem. Any two bases for a subspace have the same number of vectors.

1.1 row(A)

Consider the following problem: find a basis for

span

[1 0 1
]
,[

1 1 1
]
,[

3 1 3
]


Note that
[
3 1 3

]
= 2

[
1 0 1

]
+
[
1 1 1

]
. By definition, span

[1 0 1
]
,[

1 1 1
]
,[

3 1 3
]
 is

c1
[
1 0 1

]
+ c2

[
1 1 1

]
+ c3

[
3 1 3

]
=

c1
[
1 0 1

]
+ c2

[
1 1 1

]
+ c3(2

[
1 0 1

]
+
[
1 1 1

]
) =

(c1 + 2c3)
[
1 0 1

]
+ (c2 + c3)

[
1 1 1

]
.

Since c1, c2, c3 are any numbers, c1 + 2c3 and c2 + c3 are also any numbers. Therefore,

(c1 + 2c3)
[
1 0 1

]
+ (c2 + c3)

[
1 1 1

]
is

span
([

1 0 1
]
,[

1 1 1
] )

Clearly,
[
1 0 1

]
,
[
1 1 1

]
are linearly independent (they are not parallel). Thus,[

1 0 1
]
,
[
1 1 1

]
is a basis for span

[1 0 1
]
,[

1 1 1
]
,[

3 1 3
]
, and this subspace has dimension

2.

Recall next that span

[1 0 1
]
,[

1 1 1
]
,[

3 1 3
]
 is row

1 0 1
1 1 1
3 1 3

. Hence
[
1 0 1

]
,
[
1 1 1

]
is also a basis for row

1 0 1
1 1 1
3 1 3

.
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Remark. Let A be a matrix. Then elementary row operations do not change row(A).
In particular, we can remake the previous example using the elementary row operations

as follows: 1 0 1
1 1 1
3 1 3

 R3 − 2R1

1 0 1
1 1 1
1 1 1

 R3 −R2

1 0 1
1 1 1
0 0 0

 ,

thus

row

1 0 1
1 1 1
3 1 3

 = row

1 0 1
1 1 1
0 0 0

 ,

and
[
1 0 1

]
,
[
1 1 1

]
is a basis for row

1 0 1
1 1 1
3 1 3

.

We can also continue 1 0 1
1 1 1
0 0 0

 R2 −R1

1 0 1
0 1 0
0 0 0


eliminating the first 1 in the second row. We obtain a matrix in reduced echelon form. The

dimension of row

1 0 1
0 1 0
0 0 0

 is clearly two.

1.2 null(A) and col(A)

Recall that elementary row operations of a matrix do not change solutions of the as-
sociated system of linear equations. Therefore, if A is a matrix, then elementary row
operations of A do not change null(A).

In our example:

null

1 0 1
1 1 1
3 1 3

 = null

1 0 1
0 1 0
0 0 0

 .

For the last matrix, the corresponding system is1 0 1
0 1 0
0 0 0

xy
z

 =

00
0


or

x + z = 0

y = 0.

We conclude that null(A), or the set of solutions, is t

 1
0
−1

 or span

 1
0
−1

.
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We can also double-check that

 1
0
−1

 is a solution for the original system of equations

1 0 1
1 1 1
3 1 3

xy
z

 =

00
0

 , we have:

1 0 1
1 1 1
3 1 3

 1
0
−1

 =

00
0


Remark. Elementary row operations change col(A) but do not change the di-

mension of col(A).

In our example, we see that the first two columns of

1 0 1
0 1 0
0 0 0

 are linearly independent,

therefore the first two columns of

1 0 1
1 1 1
3 1 3

 are also linearly independent. On the other

hand, the last column of

1 0 1
0 1 0
0 0 0

 is equal to its first column. Similarly, the last column

of

1 0 1
1 1 1
3 1 3

 is equal to its first column.

1.3 Rank.

Definition. The rank of a matrix is the dimension of its row space. The rank of a
matrix is also equal to the dimension of its column space. The rank of a matrix is equal to
the number of non-zero rows in its echelon form. The nullity of a matrix is the dimension
of its null space.

The Rank Theorem. If A is an m× n matrix, then

rank(A) + nullity(A) = n.

Explanation. Consider a system of linear equations Ax = 0, where x is a column vector.
Assume that A is in row echelon form. Then rank(A) is equal to the number of non-free
variables, while nullity(A) is equal to the number of free variables. The number of all
variables is n.

In our example,

rank

1 0 1
1 1 1
3 1 3

 = rank

1 0 1
0 1 0
0 0 0

 = 2

and

nullity

1 0 1
1 1 1
3 1 3

 = nullity

1 0 1
0 1 0
0 0 0

 = 1.

The rank theorem takes form:
2 + 1 = 3.
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1.4 Another example

Question: Find bases for row(A), null(A), col(A), and find rank(A), where

A =

1 2 4
2 0 4
1 1 3

 .

Solution. Applying the elimination method, we obtain:

1 2 4
2 0 4
1 1 3

 R2 − 2R1

R3 −R1

1 2 4
0 −4 −4
0 −1 −1

 R2/(−4)
R3/(−1)

1 2 4
0 1 1
0 1 1

 R2 −R2

1 2 4
0 1 1
0 0 0

 .

Therefore, row

1 2 4
2 0 4
1 1 3

 = row

1 2 4
0 1 1
0 0 0

 and
[
1 2 4

]
,
[
0 1 1

]
is a basis for row

1 2 4
2 0 4
1 1 3

.
We can also continue 1 2 4

0 1 1
0 0 0

 R1 − 2R2

1 0 2
0 1 1
0 0 0


(reduced echelon form is more convenient than just echelon form). We see that

[
1 0 2

]
,
[
0 1 1

]
is also a basis for row

1 2 4
2 0 4
1 1 3

.
We have null

1 2 4
2 0 4
1 1 3

 = null

1 0 2
0 1 1
0 0 0

 and we need to solve

1 0 2
0 1 1
0 0 0

xy
z

 =

00
0

 .

We have

null

1 2 4
2 0 4
1 1 3

 = null

1 0 2
0 1 1
0 0 0

 = span

−2
−1
1

 .

Since x and y are leading (non-free) variables, the first two columns of A form a basis
for col(A). In particular,

col(A) = span

12
1

 ,

20
1

 .

Finally, rank

1 2 4
2 0 4
1 1 3

 = rank

1 0 2
0 1 1
0 0 0

 = 2. The Rank Theorem “rank(A)+nullity(A) =

n” takes form 2 + 1 = 3.
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