1 Basis and Dimension

Recall that S is a **subspace** of \mathbb{R}^n if:

1) S contains 0;

2+3) a linear combination of vectors from S is in S.

Equivalently, S is a subspace if and only if $S = \text{span}(v_1, v_2, \ldots, v_k)$. If v_1, v_2, \ldots, v_k are linearly independent, then v_1, v_2, \ldots, v_k is a **basis** for S. In this case k is the **dimension** of S.

Example: lines and planes through the origin are subspaces.

The dimension of a subspace is independent of the choice of a basis because:

Theorem. Any two bases for a subspace have the same number of vectors.

1.1 row(A)

Consider the following **problem**: find a basis for

span
$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \\ \begin{bmatrix} 3 & 1 & 3 \end{bmatrix}, \end{pmatrix}$$

Note that $\begin{bmatrix} 3 & 1 & 3 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$. By definition, span $\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \\ \begin{bmatrix} 3 & 1 & 3 \end{bmatrix}, \end{pmatrix}$ is

$$c_{1} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + c_{2} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + c_{3} \begin{bmatrix} 3 & 1 & 3 \end{bmatrix} = c_{1} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + c_{2} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + c_{3}(2 \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}) = (c_{1} + 2c_{3}) \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + (c_{2} + c_{3}) \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}.$$

Since c_1, c_2, c_3 are any numbers, $c_1 + 2c_3$ and $c_2 + c_3$ are also any numbers. Therefore,

$$(c_1 + 2c_3) \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} + (c_2 + c_3) \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

is

$$\operatorname{span}\left(\begin{bmatrix}1 & 0 & 1\\ 1 & 1 & 1\end{bmatrix},\right)$$

Clearly, $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ are linearly independent (they are not parallel). Thus, $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ is a basis for span $\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, and this subspace has dimension 2.

Recall next that span
$$\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \\ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \\ \begin{bmatrix} 3 & 1 & 3 \end{bmatrix} \end{pmatrix}$$
 is row $\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \end{pmatrix}$. Hence $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ is also a basis for row $\begin{pmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \end{pmatrix}$.

Remark. Let A be a matrix. Then elementary row operations do not change row(A). In particular, we can remake the previous example using the elementary row operations as follows:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \xrightarrow{R_3 - 2R_1} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$
thus
$$\operatorname{row} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} = \operatorname{row} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$
and
$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \text{ is a basis for row} \left(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \right).$$
We can also continue
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
elimination the first 1 in the second row. We obtain a matrix in reduced of

eliminating the first 1 in the second row. We obtain a matrix in reduced echelon form. The dimension of row $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is clearly two.

1.2 null(A) and col(A)

Recall that elementary row operations of a matrix do not change solutions of the associated system of linear equations. Therefore, if A is a matrix, then elementary row operations of A do not change null(A).

In our example:

null
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$
 = null $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

For the last matrix, the corresponding system is

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

or

We conclude that null(A), or the set of solutions, is $t \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ or span $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$.

We can also double-check that $\begin{vmatrix} 1\\0\\-1\end{vmatrix}$ is a solution for the original system of equations

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ we have: } \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Remark. Elementary row operations change col(A) but do not change the di-

In our example, we see that the first two columns of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ are linearly independent, therefore the first two columns of $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$ are also linearly independent. On the other hand, the last column of $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is equal to its first column. Similarly, the last column of $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$ is equal to its first column.

1.3Rank.

Definition. The **rank** of a matrix is the dimension of its row space. The rank of a matrix is also equal to the dimension of its column space. The rank of a matrix is equal to the number of non-zero rows in its echelon form. The **nullity** of a matrix is the dimension of its null space.

The Rank Theorem. If A is an $m \times n$ matrix, then

$$\operatorname{rank}(A) + \operatorname{nullity}(A) = n.$$

Explanation. Consider a system of linear equations Ax = 0, where x is a column vector. Assume that A is in row echelon form. Then rank(A) is equal to the number of non-free variables, while $\operatorname{nullity}(A)$ is equal to the number of free variables. The number of all variables is n.

In our example,

rank
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$
 = rank $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ = 2

and

nullity
$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 3 & 1 & 3 \end{bmatrix}$$
 = nullity $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ = 1.

The rank theorem takes form:

$$2 + 1 = 3.$$

1.4 Another example

Question: Find bases for row(A), null(A), col(A), and find rank(A), where

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix}.$$

Solution. Applying the elimination method, we obtain:

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 4 \\ 0 & -4 & -4 \\ 0 & -1 & -1 \end{bmatrix} \xrightarrow{R_2/(-4)} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_2} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$
Therefore, row $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix} = \operatorname{row} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ is a basis for row $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix}$.
We can also continue
$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
(reduced echelon form is more convenient than just echelon form). We see that $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$
is also a basis for row $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix}$.
We have null $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix} = \operatorname{null} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ and we need to solve
$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

We have

null
$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 0 & 4 \\ 1 & 1 & 3 \end{bmatrix}$$
 = null $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ = span $\left(\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} \right)$.

Since x and y are leading (non-free) variables, the first two columns of A form a basis for col(A). In particular,

$$\operatorname{col}(A) = \operatorname{span}\left(\begin{bmatrix}1\\2\\1\end{bmatrix}, \begin{bmatrix}2\\0\\1\end{bmatrix}\right).$$

Finally, rank $\begin{bmatrix}1 & 2 & 4\\2 & 0 & 4\\1 & 1 & 3\end{bmatrix} = \operatorname{rank}\begin{bmatrix}1 & 0 & 2\\0 & 1 & 1\\0 & 0 & 0\end{bmatrix} = 2.$ The Rank Theorem "rank(A)+nullity(A) =
n" takes form $2 + 1 = 3.$