MAT 132: Calculus 2
Practice Problems for Midterm 1
Stony Brook University
Fall 2021

Problem 1. Compute the following integrals:

$$
\begin{gathered}
\int\left(\frac{1}{2 x-3}+e^{-x}\right) d x \\
\int_{0}^{\pi} 2 \cos ^{2} x d x \\
\int_{1}^{2} \frac{x^{2}}{\left(x^{3}+1\right)^{2}} d x \\
\int \frac{d x}{x \sqrt{\ln x}} \\
\int_{0}^{\pi} 2 x \cos (2 x) d x
\end{gathered}
$$

Problem 2. Let R denote the region in the plane bounded by the 4 curves $x=-1$, $x=1, y=0$, and $y=\frac{x+1}{(x+2)(x+4)}$.
(a) Express the area of R as a definite integral.
(b) Evaluate the definite integral of part (a).

Problem 3. A particle is moving along the x-axis; its speed at any time $t \geq 0$ is given in terms of t by the formula $\frac{\ln (t+1)}{(t+1)^{2}}$.
(a) Express the total distance traveled by the particle during the time interval $1 \leq t \leq 3$ as a definite integral.
(b) Evaluate the definite integral of part (a).

Problem 4. Find the arc length of the curve $y=x^{3 / 2}$, where $0 \leq x \leq 1$.

Problem 5. (a) Draw the region bounded by the curves $y=e^{x}+1, x=0, x=1$, and $y=0$.
(b) Compute the volume when the region is rotated around the x-axis.

Problem 6. For each of the following improper integrals, determine whether it converges or not. If the integral converges, then determine its value.

$$
\int_{0}^{\infty} x e^{-x^{2}} d x
$$

$$
\int_{-1}^{1} \frac{x}{(1-x)^{2}} d x
$$

Problem 7. Consider a thin rod oriented on the x-axis over the interval $[1,3]$. If the density of the rod is given by $\rho(x)=2 x^{2}+3$, what is the mass of the rod?

Problem 8. A spring has a natural length of 10 cm . It takes 2 J to stretch the spring to 15 cm . How much work would it take to stretch the spring from 15 cm to 20 cm ?

