MAT 132: Calculus 2

Practice Problems for the Final
Stony Brook University
Fall 2021

It is also recommended to review Practice Problems for Midterms 1 and 2.
Problem 1. Compute the following integrals:

$$
\begin{gathered}
\int\left(e^{x}+e^{-x}\right)^{2} d x \\
\int_{0}^{\pi / 2} 3 \cos ^{2} x \sin x d x \\
\int_{0}^{\pi}\left(\cos ^{2} x+\cos ^{2}(2 x)\right) d x \\
\int_{0}^{1} x^{2} e^{x^{3}} d x \\
\int \frac{2-x}{x(x+1)} d x \\
\int \ln \left(x^{2}+x\right) d x
\end{gathered}
$$

Problem 2. Let R denote the region in the plane bounded by the 4 curves $x=0$, $x=\pi, y=0$, and $y=\sin x+1$.
(a) Compute the area of R.
(b) Compute the volume when R is rotated around the x-axis.

Problem 3. A particle is moving along the x-axis; its speed at any time $t \geq 0$ is given in terms of t by the formula $t^{2} e^{t}$.

Compute the total distance traveled by the particle during the time interval $0 \leq t \leq 2$.

Problem 4. For each of the following improper integrals, determine whether it converges or not. If the integral converges, then determine its value.

$$
\begin{gathered}
\int_{-1}^{2} \frac{d x}{x^{3}} \\
\int_{0}^{\infty} \frac{x}{x^{2}+1} d x \\
\int_{0}^{\infty} \frac{x}{\left(x^{2}+1\right)^{2}} d x \\
\int_{0}^{\infty} \sin ^{2} x d x
\end{gathered}
$$

Problem 5. A spring has a natural length of 10 cm . It takes 1 J to stretch the spring from 10 cm to 15 cm . How much work would it take to stretch the spring from 5 cm to 20 cm ?

Problem 6. Find the limits of the following sequences:
a) $\quad \lim _{n \rightarrow \infty} \frac{3-n^{2}}{n^{3}-n\left(n^{2}-1\right)}$,
b) $\quad \lim _{n \rightarrow \infty} \frac{e^{1-n}}{1+n}$
c) $\quad \lim _{n \rightarrow \infty} \frac{(1+n!)^{2}}{(1-n!)^{2}}$,
d) $\quad \lim _{n \rightarrow \infty}\left(\frac{2^{n}}{1+2^{-n}}-2^{n}\right)$
e) $\quad \lim _{n \rightarrow \infty} \sqrt{\frac{n+3^{n}}{3^{n}+5}}$,
e) $\quad \lim _{n \rightarrow \infty} \frac{5 n!}{2^{n}+1}$.

Problem 7. Determine if the following series converge absolutely, converge conditionally, or diverge. No explanation is required in this problem.

1) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{0.5-2^{n}}$

converges absolutely

converges absolutely

converges absolutely

converges absolutely
converges absolutely

converges conditionally
2) $\quad \sum_{n=1}^{\infty} \frac{n^{\pi}+2}{n \ln n+1}$

converges conditionally

3) $\quad \sum_{n=1}^{\infty}(-1)^{n} n\left(\frac{1}{n}-\frac{1}{n+\sqrt{n}}\right)$

converges conditionally
4) $\quad \sum_{n=1}^{\infty} \frac{3^{-n}}{n}$

converges conditionally

diverges

Problem 8. Consider the following Maclaurin series

$$
\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots .
$$

(a) Write the Maclaurin series for $f(x)=\ln (1+2 x)$ and for $g(x)=f^{\prime}(x)$.
(b) What is the radius of convergence for the series in (a)?

Problem 9. Consider the following Maclaurin series

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

(a) Write the Maclaurin series for $f(x)=x \sin (x / 5)$ and for $g(x)=\int f(x) d x$.
(b) What is the radius and interval of convergence for the series in (a)?

Problem 10. Find the general solutions to the following differential equations

$$
\begin{gathered}
\frac{d y}{d t}=2 \cos (2 t+1) y \\
x^{2} y^{\prime}=(x+1) y \\
y^{\prime}=e^{x+y} \\
y^{\prime}=x^{2} e^{y}
\end{gathered}
$$

Problem 10. Solve the following initial-value problems with the initial condition $y(0)=$ 1

$$
\begin{gathered}
y^{\prime}=y+1 \\
y^{\prime}=x y
\end{gathered}
$$

Problem 11. Match the differential equations with corresponding direction vector fields. No explanation is required in this problem.

$$
\begin{array}{ccc}
y^{\prime}=x / y, & y^{\prime}=y(3-y), & y^{\prime}=x^{2}-y^{2} \\
y^{\prime}=2 x-y, & y^{\prime}=-2, & y^{\prime}=1 \\
y^{\prime}=\sin x \cos x, & y^{\prime}=\sin y, & y^{\prime}=|x|
\end{array}
$$

(One equation is without a direction vector field.)

Problem 12. Find the general solutions to the following second order differential equations

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+4 y=0 \\
y^{\prime \prime}-13 y^{\prime}+42 y=0 \\
y^{\prime \prime}+9 y=0
\end{gathered}
$$

