MAT 132: Calculus 2
Practice Problems for the Final

Stony Brook University Fall 2021
It is also recommended to review Practice Problems for Midterms 1 and 2.

Problem 1. Compute the following integrals:
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Problem 2. Let R denote the region in the plane bounded by the 4 curves x = 0,
r=m,y=0,and y =sinz + 1.

(a) Compute the area of R.

(b) Compute the volume when R is rotated around the z-axis.

Problem 3. A particle is moving along the x-axis; its speed at any time ¢ > 0 is given
in terms of ¢ by the formula t2e’.
Compute the total distance traveled by the particle during the time interval 0 <t < 2.

Problem 4. For each of the following improper integrals, determine whether it con-
verges or not. If the integral converges, then determine its value.
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Problem 5. A spring has a natural length of 10 cm. It takes 1 J to stretch the spring
from 10 cm to 15 cm. How much work would it take to stretch the spring from 5 cm to 20
cm?

Problem 6. Find the limits of the following sequences:
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Problem 7. Determine if the following series converge absolutely, converge condition-
ally, or diverge. No explanation is required in this problem.
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Problem 8. Consider the following Maclaurin series
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(a) Write the Maclaurin series for f(x) = In(1 + 2x) and for g(x) = f'(z).
(b) What is the radius of convergence for the series in (a)?

Problem 9. Consider the following Maclaurin series
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(a) Write the Maclaurin series for f(z) = zsin(z/5) and for g(z) = /f(a:)d:n.

(b) What is the radius and interval of convergence for the series in (a)?

Problem 10. Find the general solutions to the following differential equations

% =2cos(2t+ 1)y

2%y = (z+ 1)y
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y = x°e?

Problem 10. Solve the following initial-value problems with the initial condition y(0) =
y=y+1
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Problem 11. Match the differential equations with corresponding direction vector
fields. No explanation is required in this problem.

y =y, y =y(B8—vy), y =" —y?
y' =2z —y, Y =-2, y =1
y = sinzcosz, y = siny, y = |z

(One equation is without a direction vector field.)
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Problem 12. Find the general solutions to the following second order differential

equations

y' =4y +4y=0

y" — 13y +42y =0

y' +9y =0



