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Abstract. In this paper, we will prove that Sierpinski carpet hyper-
bolic components of disjoint type are bounded. Furthermore, we show
that for each map f on the closure of the hyperbolic component, there
exists a quadratic-like restriction around every non-repelling periodic
point. Our methods are applicable for any hyperbolic component of dis-
joint type. In particular, we describe the post-critical set of any map on
the boundary of the hyperbolic component of z2.
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1. Introduction

A rational map f : Ĉ −→ Ĉ is called hyperbolic if every critical point of f
converges to an attracting periodic cycle under iteration. For our purposes,
it is convenient to mark all the fixed points, and consider the fixed point
marked rational maps Ratd,fm and the corresponding moduli space Md,fm =
Ratd,fm /PSL2(C) (see §2.1). The set of conjugacy classes of hyperbolic
maps form an open and conjecturally dense subset of Md,fm, and a connected
component is called a (marked) hyperbolic component.

Let H ⊆ Md,fm be a hyperbolic component. As [f ] varies in H, the
topological dynamics on the Julia set Jf remains constant, but the geometry
of Jf varies. We say H is a Sierpinski carpet hyperbolic component if the
Julia set of any map [f ] ∈ H is a Sierpinski carpet, and it is of disjoint type if
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for any map [f ] ∈ H, all critical points of [f ] are in pairwise different periodic
cycles of Fatou components. Equivalently, H is of disjoint type if any map
[f ] ∈ H has exactly 2d − 2 attracting periodic cycles. For disjoint-type
hyperbolic components, the multipliers of attracting cycles provide natural
identification:

ρ : H ≃−→ D2d−2 (1.1)
Motivated by Thurston’s compactness theorem for acylindrical hyperbolic

3-manifold, McMullen conjectured in the early 1990s (see [McM95]) that

Conjecture 1.1. A Sierpinski carpet hyperbolic component H is bounded
in Md,fm.

Despite many attempts throughout the decades, the conjecture remains
wide open. In this paper, we will prove it in the disjoint type case:

Theorem A. A Sierpinski carpet hyperbolic component H ⊆ Md,fm of dis-
joint type is bounded in Md. Moreover, (1.1) naturally extends to

ρ : H ≃−→ D2d−2. (1.2)
In particular, ∂H is locally connected.

Our methods are applicable to any hyperbolic components of disjoint-
type. In Theorem C, we will describe the postcritical sets of maps on ∂Hz2 ,
where Hz2 ⊂ M2,fm is the hyperbolic component of z 7→ z2. Theorem C
is the prototype example of Conjecture 1.9 that will be discussed in the
follow-up paper.

Our approach also gives uniform bound of the dynamics of maps on H:

Theorem B. Let H be a Sierpinski hyperbolic component of disjoint type.
There exists a constant ε > 0 such that for any map [f ] ∈ H and any
non-repelling periodic point x of periodic p, there exists a quadratic-like re-
striction fp : U −→ V , with x ∈ U ⊆ V and mod(V − U) ≥ ε.

Applying the Douady-Hubbard straightening theorem to all quadratic-like
restrictions around non-repelling cycles, we obtain the refinement of (1.2):

Rql : H ≃−→ ∆2d−2 ⊂ Mand2d−2, (1.3)
where ∆ is the main hyperbolic component of the Mandelbrot set.

1.1. Historical background. Thurston’s hyperbolization theorem is one
of the most important development in the study of 3-manifolds. The tools
developed along the theorem has revolutionized the theory of Kleinian groups.
In the proof of the hyperbolization theorem, two boundedness theorems, the
double limit theorem and the Thurston’s compactness theorem for acylindri-
cal manifolds, are the key ingredients (see [Kap10, Thu86]). Based on the
Sullivan’s dictionary, these two boundedness theorems have natural ana-
logues for rational maps. Since convex cocompact acylindrical Kleinian
groups have Sierpinski carpet limit sets, Conjecture 1.1 is the analogue of
the Thurston’s compactness theorem.
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Figure 1.1. The Julia set of a Sierpinski carpet hyperbolic
rational map.

For Kleinian groups, the proof for both boundedness theorems is by con-
tradiction and can be break down into two steps:

(A) (Geometric part): constructing limiting isometric group actions on
R-trees with no global fixed point for any degenerating sequences of
Kleinian groups (see [MS84, Bes88, Pau88]);

(B) (Combinatorial/topological part): analyzing possible limiting group ac-
tions to get topological decompositions of the underlying 3-manifold
(see Rips’ theory [Kap10] and Skora’s duality theorem [Sko96]).

The contradiction for Thurston’s compactness theorem is that acylindrical
3-manifolds do not admit such decomposition constructed in Step (B). The
story is similar for the double limit theorem, except the contradiction comes
from geometric constraints of the laminations.

It is already suggested in [McM95] that a similar strategy might work for
rational maps. There have been many constructions of limiting dynamics
on trees for degenerations of rational maps (see [McM09, Kiw15, Luo21b,
Luo22a]). These constructions complete Step (A) for rational maps. In this
analogy, Step (B) becomes essential for the boundedness results of rational
maps.
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The boundary of a hyperbolic component H consists of two types of
points: geometrically finite maps and geometrically infinite maps. To carry
out Step (B), we consider these two cases separately.

Geometrically finite maps are the first to be understood and are essen-
tially determined by a finite set of data (somewhat similar to PCF maps).
In [Luo22b], the second author showed that in a Sierpinski hyperbolic com-
ponent H (of any type) a ‘geometrically finite degenerations’ [fn] always
land at geometrically finite parameter [f∞] ∈ ∂H; in particular, [fn] does
not diverge in Md. The main step is the following finiteness statement for
the dynamics in the limiting tree.

(b) There is a finite ‘core’ in the limiting tree if [fn] diverges. This finiteness
induces a decomposition of the rational maps in H by some limiting
Thurston obstruction.

Similar to Kleinian groups, the contradiction is that Sierpinski carpet Julia
set would prevent the existence of such limiting obstructions.

Geometrically infinite maps are more mysterious. Conjecturally, they
all arise as limits of geometrically finite maps. To study such maps, some
uniform bound is usually needed. In this paper, we use bounds from renor-
malization theory developed in [DL22] to prove such a uniform bound for
a special class of geometrically infinite maps, called eventually-golden-mean
maps (see §2.3). The uniform bound allows us to obtain a limiting map
on a finite tree of Riemann spheres. Similar as in the geometrically finite
case, the finiteness allows us construct a decomposition of the rational map
in terms of limiting Thurston obstructions, and we obtain a contradiction
here.

Our results are related to the Thurston’s realization problem. Given a
topological branched covering of the sphere S2, Thurston’s realization prob-
lem asks when it is equivalent to a rational map. Thurston gives a negative
criterion to answer the question for post-critically finite branched coverings
[DH93]. Recently, Dylan Thurston gives a positive criterion for the realiza-
tion problem for post-critically finite maps [Thu20] (with non-vacuous Fa-
tou dynamics). For geometrically finite maps, Thurston’s realization prob-
lem has been studied extensively (see [DH93, CJS04, CJ11, CT11, CT18]).
Usually, the realization problems for geometrically finite maps are studied
by deformation of hyperbolic maps. Various elementary deformations such
as pinching and spinning were constructed and studied (see [Mak00, Tan02,
HT04, PT04, CT18]). These operations are generalized in [Luo21a, Luo22b].
From this perspective, Theorem A and Theorem B can be interpreted as a
Thurston’s realization theorem for geometrically infinite maps. Our method,
perhaps for the first time, combines two theories in complex dynamics:
bounds from the Thurston theory and the bounds from the renormaliza-
tion theory.
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There have been many previous studies to understand deformations of
rational maps and related boundedness problems. Results on unbounded-
ness of hyperbolic components were obtained in [Mak00, Tan02]. In [Eps00],
Epstein used algebraic and analytic methods to give the first general bound-
edness result of hyperbolic component of disjoint type in the quadratic case.
This was later generalized in the bi-critical setting by Nie and Pilgrim in
[NP19]. Related boundedness results in the degree 4 Newton family was
also proved in [NP20]. To the best of our knowledge, Theorem A is the first
time a boundedness theorem of an entire hyperbolic component in Md is
proved in degree d ≥ 3.

Remark 1.2. In Spring 2022, J. Kahn simultaneously presented an inde-
pendent approach to the boundedness of Sierpinski hyperbolic components
of all types (not necessarily disjoint); see his MSRI-talks at [Kah22].

1.2. Estimate on degenerations. In this subsection, let H be a hyper-
bolic component of disjoint type, which may or may not be Sierpinski. Our
strategy is to uniformly control the geometry of the Julia set for some special
maps on ∂H, called eventually-golden-mean maps.

An irrational number θ ∈ (0, 1) is said to be eventually-golden-mean if it
has a continuous fraction expansion θ = [0; a1, ..., am, ...] with am = 1 for
all large m. A map [f ] ∈ ∂H is called eventually-golden-mean map if the
multiplier for any of its indifferent periodic cycle is of the form e2πiθ, where θ
is eventually-golden-mean. In particular, every critical point of [f ] is either
in an attracting basin or on the boundary of a Siegel disk.

Degenerations of compact Riemann surfaces. To discuss our bound
on the geometry, let X be a compact Riemann surface with boundaries. Let
γ be a non-peripheral arc connecting ∂X, and let Γγ be the family of arcs
isotopic to γ. We define the degeneration W(γ) for γ of X as the extremal
width of the family Γγ . The arc degeneration for X is

Warc(X) =
∑

γ:W(γ)≥2
W(γ).

Similarly, let α be a homotopically non-trivial simple closed curve, and
let Γα be the family of simple closed curves isotopic to α. We define the
degeneration W(α) for α of X as the extremal width of Γα. We define the
loop degeneration for X as

Wloop(X) =
∑

α:W(α)≥2
W(α).

By losing ≤ 2 extremal width of the family, we may assume Γγ and Γα are
laminations. We remark that since wide families do not cross, both Warc(X)
and Wloop(X) are in fact finite sums.
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Degenerations of eventually-golden-mean maps. Let [f ] ∈ ∂H be an
eventually-golden-mean map. Denote the list of Siegel disks and attracting
Fatou components of f by
Z1,0, ...Z1,p1−1, Z2,0, ..., Zk1,pk1 −1 and D1,0, ...D1,q1−1, D2,0, ..., Dk2,qk2 −1.

In §2.4 and §3.2, we will define the corresponding pseudo-Siegel disks Ẑi,j

and valuable-attracting domain D̂i,j . Some important properties are
• Ẑi,j and D̂i,j are closed disks, with Zi,j ⊆ Ẑi,j and D̂i,j ⊆ Di,j ;
• f is injective on Ẑi,j and D̂i,j is forward invariant under f ;
• Ẑi,j and D̂i,j contain the critical, post-critical points and the non-

repelling periodic point in Zi,j and Di,j respectively.
To quantify the degeneration of the map [f ], we give the following definition.

Definition 1.3. We say [f ] has degeneration bounded by K if there exist
• K-quasiconformal pseudo-Siegel disks Ẑi,j ,
• K-quasiconformal valuable-attracting domains D̂i,j ,

so that the pseudo-core surface of [f ] (see §3 for more discussions)
X̂f := Ĉ −

⋃
Int(D̂i,j) −

⋃
Int(Ẑi,j) satisfies

• Warc(X̂f ) ≤ K; and
• Wloop(X̂f ) ≤ K.

We will prove the following boundedness theorems for eventually-golden-
mean maps with uniformly bounded degenerations.

Theorem 1.4. Let [fn] ∈ ∂H be a sequence of eventually-golden-mean
maps. Suppose that [fn] has degeneration bounded by K. Then after pos-
sibly passing to a subsequence, [fn] → [f ] ∈ Md,fm, and [f ] has 2d − 2
non-repelling cycles.

The pulled-off constant. We now introduce an important combinatorial
constant that controls the degenerations of eventually-golden-mean maps.

Two arcs γ1 and γ2 are said to
• intersect essentially if for any arcs (γ̃i)i∈{1,2} homotopic to (γi)i∈{1,2},
γ̃1 intersects γ̃2; and

• intersect laminally if for any arcs (γ̃i)i∈{1,2} homotopic and disjoint
to (γi)i∈{1,2}, γ̃1 intersects γ̃2.

To justify the notations, let L1,L2 be two laminations consisting of ho-
motopic curves. If γ1 ∈ L1 intersects laminally γ2 ∈ L2, then every curve in
L1 intersects every curve in L2.

A family of arcs γi are said to be essentially disjoint (or laminally disjoint)
if no pairs in the family intersect essentially (or laminally). An essentially
(or laminally) disjoint pull back of a map f is an essentially (or laminally)
sequence of arcs γ0, ..., γn so that f : γi+1 −→ γi is a homeomorphism for
each i = 0, ..., n− 1.
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Let [f ] ∈ ∂H be an eventually-golden-mean map. Let γ ⊆ Ĉ−
⋃

Int(D̂i,j)−⋃
Zi,j be a non-peripheral arc connecting boundaries of Siegel disks. The

pulled-off constant N(γ) for γ is the smallest number n so that for any lam-
inally disjoint pull back sequence γ0 = γ, γ1, ..., γn, at least one end point of
∂γn is not on the boundary of a periodic Siegel disk.

Similarly, let [fpcf ] ∈ H be the post-critically finite center of H, and
let P (fpcf ) be its post-critical set. Let γ be a non-peripheral arc in Ĉ −
P (fpcf ) that connects points in P (fpcf ). Its pulled-back constant N(γ) is
the smallest number n so that for any essentially disjoint pull back sequence
γ0 = γ, γ1, ..., γn, at least one end point of ∂γn is not in P (fpcf ).
Definition 1.5 (Pulled-off constant). Let [f ] ∈ ∂H be an eventually-golden-
mean map. The (Siegel) pulled-off constant for [f ] is

NSiegel([f ]) := sup
γ
N(γ)

where the supreme is over all non-peripheral arcs connecting boundaries of
Siegel disks.

Let [fpcf ] ∈ H be the post-critically finite center of H. The pulled-off
constant for [fpcf ] is

N([fpcf ]) := sup
γ
N(γ)

where the supreme is over all non-peripheral arcs connecting the points in
the post-critical set.

In §4, we will prove that
• N([fpcf ]) < ∞ if and only if H is Sierpinski.
• NSiegel([f ]) ≤ N([fpcf ]) for any eventually-golden-mean map [f ] ∈
∂H, where H is a Sierpinski hyperbolic component.

By combining the above two statements, we see that NSiegel([f ]) is uniformly
bounded if H is a Sierpinski.

The following technical theorem gives the uniform bound for eventually-
golden-mean maps, and is the key in our argument.
Theorem 1.6. Let H be a hyperbolic component of disjoint type, and let
[f ] ∈ ∂H be an eventually-golden-mean map. Then [f ] has degeneration
bounded by K, where K depends on

(1) the hyperbolic component H,
(2) the pulled-off constant NSiegel([f ]), and
(3) the multipliers of the attracting cycles of f .

For applications, Assumption (2) is the main one in Theorem 1.6. Therefore,
the condition “[fn] has degeneration bounded by K” in Theorem 1.4 can be
replaced (for practical purposes) with “NSiegel([fn]) ≤ M” for some M .
Remark. We remark that if H is Sierpinski, then NSiegel([f ]) ≤ N([fpcf ]) <
∞. Thus, in this case, the constant K is independent of the pulled-off con-
stant. We also remark that the constant K is independent of the indifferent
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multipliers of the map [f ]. This crucial fact allows us to take the limit of
those eventually-golden-mean maps.

Sketch of the proof of Theorems A and B. To discuss how Theo-
rem 1.6 allows us to prove Theorems A and B, we start with the following
decomposition of the boundary ∂H.

Definition 1.7. Let H be a hyperbolic component of disjoint type. The
boundary

∂H = ∂regH ⊔ ∂excH ⊆ Md,fm

splits into the regular and exceptional parts, where [f ] ∈ ∂regH if [f ] has
exactly 2d − 2 non-repelling periodic cycles, and [f ] ∈ ∂excH otherwise: at
least two non-repelling periodic cycles of [f ] collide.

We remark that by transversality, we have that (see Proposition 2.2)
• the natural extension of the multiplier map (1.1) is an embedding

on the regular boundary ρ : ∂regH ↪−→ ∂D2d−2;
• ρ(∂regH) ∩ ρ(∂excH) = ∅.

Thus, to prove Theorem A, it suffices to show that if H is Sierpinski, then
ρ(∂regH) = ∂D2d−2.

Denote the boundary of eventually-golden-mean maps and geometrically
finite maps by ∂egmH and ∂QH respectively. If H is Sierpinski, then ρ(∂QH)
is dense in ∂D2d−2 (see [CT18] or [Luo22b]). This allows us to show that
ρ(∂egmH) is dense in ∂D2d−2 (see Proposition 2.6).

Given any multiplier profile ρ = (ρ1, ..., ρ2d−2) ∈ ∂D2d−2, by Theorem
1.4 and Theorem 1.6, we can construct a convergent sequence of eventually-
golden-mean maps [fn] → [f ] with ρ([f ]) = ρ. Since [f ] has 2d − 2 non-
repelling cycles, [f ] ∈ ∂regH. Thus, ρ(∂regH) = ∂D2d−2, and Theorem A
follows.

To prove Theorem B, we first construct a semiconjugacy between a map
[f ] ∈ H, and a topological model f̄ : S2 −→ S2 which is the quotient map of
the post-critical finite map [fpcf ] ∈ H by collapsing Fatou components. This
allows us to show there exists a quadratic-like restriction near every non-
repelling periodic point. The uniform bound of the modulus in Theorem B
then follows from the conclusion of Theorem A that H is compact.

1.3. Boundaries of hyperbolic components of disjoint type. A gen-
eral hyperbolic components of disjoint type H may not be bounded in Md,fm.
We give the following definition to parameterize the boundary at infinity.

Definition 1.8. Let H be a hyperbolic component of disjoint type. We
define the obstructed boundary

∂∞H = {ρ ∈ ∂D2d−2 :
∃[fn] ∈ H with [fn] → ∞ in Md,fm and ρ([fn]) → ρ}.
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The rational obstructed boundary
∂∞
Q H = ∂∞H ∩ ∂QD2d−2

where ∂QD2d−2 consists of tuples (ρ1, ..., ρ2d−2) so that all indifferent multi-
pliers are rational, i.e. of the form e2πip/q.

We remark that the rational obstructed boundary ∂∞
Q H can be identified

as obstructed geometrically finite maps on the boundary of H, and can be
effectively computed. We formulate the following conjecture.
Conjecture 1.9. Let H be a hyperbolic component of disjoint type. Then

∂∞H = ∂∞
Q H.

In particular, the natural extension of the multiplier map (1.1) gives an
identification for the regular boundary:

∂regH ∼= ∂D2d−2 − ∂∞
Q H − ρ(∂excH)

Combinatorial bound of NSiegel([f ]). An important ingredient for The-
orem A is that if H is Sierpinski, the pulled-off constant NSiegel([f ]) is uni-
formly bounded for eventually-golden-mean map [f ] ∈ ∂H. It is in general
not bounded if H is not Sierpinski. In the sequel, we plan to bound the
pulled-off constant NSiegel([f ]) in terms of the combinatorial distance be-
tween ρ([f ]) and ∂∞

Q H, and prove Conjecture 1.9.

1.4. The example of Hz2. To illustrate Conjecture 1.9 and the subtlety
about the exceptional boundary, consider the hyperbolic component Hz2 in
the moduli space quadratic rational maps that contains z2. The (marked)
moduli space M2,fm of quadratic rational maps can be parameterized by the
multipliers of the three marked fixed points (ρ1, ρ2, ρ3), with the restriction
(from the holomorphic index formula) ρ1ρ2ρ3 − (ρ1 + ρ2 + ρ3) + 2 = 0. In
this coordinate,

Hz2 = {(ρ1, ρ2, ρ3) : |ρ1|, |ρ2| < 1, ρ3 = 2 − ρ1 − ρ2
1 − ρ1ρ2

} ∼= D2.

A simple computation shows that
∂∞Hz2 = {(e2πit, e−2πit)} = ∂∞

Q Hz2 = {(e2πip/q, e−2πip/q)}.
Note that that when ρ1 = ρ2 = 1, ρ3 can be an arbitrary number. Thus, it
is easy to see that the exceptional boundary contains infinitely many maps
and fibers over (1, 1), i.e., ρ(∂excHz2) = {(1, 1)}. Hence, rigidity fails on the
exceptional boundary. Depending on how the multipliers converge to (1, 1),
the corresponding sequence [fn] can be either bounded or divergent.

In the case of ∂regHz2 , the pulled-off constant NSiegel([f ]) can be explicitly
bounded. Therefore, applying Theorem 1.6, we obtain:
Theorem C. Consider f ∈ ∂regHz2 with two neutral fixed points. Let c1, c2
be its critical points. Consider the associated postcritical sets P1, P2. Then

• f | P1 and f | P2 have degree 1;
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• P1, P2 are separated by some annulus whose modulus depends on the
distance of ρ1, ρ2 ∈ S1.

Proof. For any eventually-golden-mean map f on the boundary ∂Hz2 with
two neutral fixed points, by definition, NSiegel([f ]) = O

( 1
dist(ρ1, ρ2)

)
. By

taking the limit and applying Theorem 1.6, the corollary follows. □

1.5. Outline of the proof of Theorem 1.6. The proof of Theorem 1.6
breaks up into 2 steps. In the first step, we construct K-quasiconformal
disks, and show there are no arc degenerations. In the second step, we show
there are no loop degenerations. The proof for both steps are summarized
as follows.

Step 1: no arc degeneration. For an attracting Fatou component
Di,j , we define its valuable domain D̂i,j ⊆ Di,j to be the subdisk of Di,j

bounded by the equipotential through the unique critical value of the first
return map, see §2.4. We fix the multipliers of all attracting cycles; then,
the modulus of the annulus Di,j −D̂i,j is bounded from below by Lemma 2.7.

Denote the pseudo-core surface (see §3) of [f ] by

Xf := Ĉ −
⋃

Int(D̂i,j) −
⋃
Zi,j and Kf := Warc(Xf ).

We will argue by contradiction and suppose that Kf can be arbitrarily large.
For a Siegel disk Zi,j , the dynamics of its first return map fi,j : ∂Zi,j ý is

conjugate to some rigid irrational rotation on the circle. The conjugacy gives
a combinatorial coordinate on fi,j : ∂Zi,j ý. The renormalization of the
irrational rotation gives a level structure on ∂Zi,j : a level m combinatorial
interval is of the form J =

[
x, f

qm+1
i,j (x)

]
⊂ ∂Zi,j , where f

qm+1
i,j (x) is the

closest (level m) return of x, see §3.1. We denote the combinatorial length
of a level m combinatorial interval by lm := |J |. Note that lm satisfies

0.5
qm+1

< lm <
1

qm+1
.

1.5.1. Non-uniform Construction of pseudo-Siegel disks. In Theorem 3.4,
using renormalization theory for ψ•-ql maps, we will construct a collection
of pseudo-Siegel disks Ẑi,j ⊃ Zi,j whose degenerations are bounded in terms
of Kf . Roughly, we will show that each Siegel disk Zi,j is contained in a
pseudo-Siegel disk Ẑi,j ⊃ Zi,j such that

(1) Ẑi,j is a M = M(Kf )-quasiconformal disk;
(2) for every interval J ⊆ ∂Ẑi,j (“grounded” rel Ẑi,j) with lm+1 < |J | ≤

lm, we have
(a) W+,np(J) = O(Klm + 1); and
(b) W+,per

λ (J) = O(
√
Klm + 1).

Here W+,np(J) is the extremal width of the family of non-peripheral arcs
starting at J , and W+,per

λ (J) is the extremal width of the family of peripheral
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arcs connecting the interval J ⊆ ∂Ẑi,j to ∂X̂f −λJ in X̂f := Ĉ−
⋃

Int(D̂i,j)−⋃
Int(Ẑi,j).
Important Properties of pseudo-Siegel disks are discussed in §3.2 and §3.3

(see, in particular, §3.2.4).

1.5.2. Pulled-off Argument and Localization. Let Nf := NSiegel([f ]) be the
pulled-off constant. We show that any wide families of non-peripheral arcs in
X̂f must intersect some strictly periodic psuedo-Siegel disks of pre-period ≤
Nf (see Lemma 5.3). It allows us to localize the degeneration (see Theorem
5.1). More precisely, we show that for every ϵ > 0, if the arc degeneration
satisfies Kf ≫ϵ,Nf ,χ(Xf ) 1, where χ(Xf ) is the Euler characteristic (i.e.,
complexity), then there exists some interval I on some periodic pseudo-
Siegel disk Ẑ ′ so that

W+,np(I) + W+,per
λ (I) ≥ Kf/A and |I| < ϵ,

for some constant A ≡ A
(
Nf , χ(Xf )

)
> 1 independent of ϵ. We may assume

lm+1 < |I| ≤ lm.

1.5.3. Calibration Lemma. Finally, in Theorem 6.1, we show that we can
find an interval J ⊆ ∂Ẑ ′ (grounded rel Ẑ ′) such that

W+,np(J) ≥ Kf/C and |J | ≤ lm+1 ≤ |I| < ϵ (1.4)

for some constant C ≡ C
(
Nf , χ(Xf )

)
> A > 1 independent of ϵ.

By choosing ϵ sufficiently small, we obtain from Property (2) and Esti-
mate (1.4) that

Kf/C ≤ W+,np(J) = O(lm+1Kf + 1) = O(ϵKf + 1),

which is a contradiction.

Remark 1.10. We can summarize the argument in Step 1 as follows. The-
orem 3.4 stated in § 1.5.1 says that the arc degeneration Warc(Xf ) of Xf

near Siegel disks Zi,j are uniformly distributed along ∂Zi,j . On the other
hand, Theorem 5.1 stated in § 1.5.2 says that a substantial part of Warc(Xf )
can be localized on a small interval of some ∂Zi,j .

The incompatibility of these two facts almost leads to a contradiction.
We note, however, that the estimate in (2a) is not sufficient to rule out
degeneration on the “special transition scale” (compare with Remark B.3).

A potential degeneration on the special transition scale is handled in
Theorem 6.1 stated in § 1.5.3. Combinatorially, such degeneration obeys
certain invariance constraints of f | Xf (see Figure 6.1). This leads to a
contradiction by producing a bigger than Kf degeneration.

Step 2: no loop degeneration.
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1.5.4. Limiting map on a finite tree. We will argue by contradiction. Sup-
pose there exists a sequence of eventually golden-mean maps fn ∈ H with
Wloop(X̂f ) → ∞. We prove that, after passing to subsequence if necessary,
fn converges to a non-trivial map on a finite tree of Riemann spheres (see
Theorem 8.4).

1.5.5. Duality to multi-curves. We show that this limiting finite tree is “dual”
to some multi-curves in the complement of periodic Fatou components of fn

for all sufficiently large n (see Proposition 8.16). This step crucially uses
the fact that the arc degeneration is uniformly bounded.

1.5.6. Limiting Thurston obstruction. The dynamics on the tree is recorded
by a Markov matrix M and a degree matrix D. We show that there exists
a non-negative vector v⃗ ̸= 0⃗ with Mv⃗ = Dv⃗. Since the limiting tree is
dual to multi-curves, for all sufficiently large n, we show that D−1M is no
bigger than the Thurston matrix for the corresponding multi-curves of fn.
So the spectral radius of the Thurston’s matrix is greater or equal to 1 (see
Proposition 8.19). This is a contradiction, and Theorem 1.6 follows.

Structure of the paper. In §2, we give preparations and introduce some
notations. Four main ingredients in proving uniformly bounded arc degen-
eration are introduced in §3.7, §4, §5 and §6, and these ingredients are
assembled in §7. The uniformly bounded loop degeneration and Theorem A
is proved in §8. Theorem 1.6 is proved combining Theorem 7.1 and Theorem
8.1. Finally, Theorem B is proved in §4.

Notations. In this paper, we will usually fix a hyperbolic component. By
a universal constant, we mean a constant that depends, potentially, only on
the hyperbolic component.

We use A = O(1) to mean there exists a universal constant K so that
A ≤ K. More generally, A = Ox(1) means that there exists a constant Kx

depending on x so that A ≤ Kx. Similarly, we use A ⪰ B and A ⪰x B to
mean B/A = O(1) and B/A = Ox(1) respectively.

1.6. Acknowledgement. The first author was partially supported by the
NSF grant DMS 2055532.

We thank Jeremy Kahn, Jan Kiwi, Curt McMullen, Mikhail Lyubich for
many insightful discussions over the years.

The results of the paper were first announced in Spring 2022 during the
MSRI semester program “Complex Dynamics: from special families to nat-
ural generalizations in one and several variables”.

2. Background on hyperbolic components

In this section, we summarize some background facts on hyperbolic com-
ponents, and introduce the notion of eventually-golden-mean maps on the
boundary of a hyperbolic component in §2.3.
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2.1. Marked hyperbolic component. Following the terminology in [Mil12],
a fixed point marked rational map (f ; z0, z1, ...., zd) is a rational map f :
Ĉ −→ Ĉ of degree d ≥ 2, together with an ordered list of its d + 1 (not
necessarily distinct) fixed points zj . Let Ratd,fm be the space of all fixed
point marked rational maps of degree d. The group of Möbius transforma-
tion PSL2(C) acts naturally on Ratd,fm and we define the marked moduli
space

Md,fm = Ratd,fm /PSL2(C).
The space of marked hyperbolic maps are open in Md,fm, and a component
is called a (marked) hyperbolic component. To avoid complicated notations,
we shall use [f ] to denote an element in Md,fm, and simply refer to it as a
(marked) map. We remark that as maps vary in a hyperbolic component
H, the topology of the Julia sets remains constant.

Definition 2.1. Let H ⊆ Md,fm be a hyperbolic component.
• It is of disjoint type if for any map [f ] ∈ H, each grand orbit of a

Fatou component of [f ] contains a unique critical orbit.
• It is a Sierpinski carpet hyperbolic component if the Julia set of any

map [f ] ∈ H is homeomorphic to a Sierpinski carpet.

We remark that H is a finite branched covering of H. We choose to work
with H as the markings allows us to have a nice parameterization as follows.

Let H be a hyperbolic component of disjoint type. There are exactly
2d − 2 attracting periodic cycles for a map [f ] ∈ H. Let C1, ..., C2d−2 be a
list of attracting periodic cycles and let ρ1, ..., ρ2d−2 be the corresponding
multipliers. The marking of the fixed points allows us to consistently label
these attracting periodic cycles throughout H (see [Mil12, Theorem 9.3]),
and H is parameterized by the multiplier profile, i.e. the multipliers of these
2d− 2 attracting periodic cycles

ρ : H ≃−→ D2d−2 = D1 × ...× D2d−2.

2.2. Transversality for multipliers. Recall that the boundary

∂H = ∂regH ⊔ ∂excH ⊆ Md,fm

splits into the regular and exceptional parts, where [f ] ∈ ∂regH if [f ] has
exactly 2d− 2 non-repelling periodic cycles, and [f ] ∈ ∂excH otherwise.

Let [f ] ∈ ∂regH. Let x be a non-repelling periodic point of f with period
p. Suppose [fn] ∈ H with fn → f , and xn → x be a sequence of non-
repelling periodic points of fn. We classify the non-repelling periodic point
x into three categories:

• Type (1): The multiplier of [f ] at x is not 1 and xn has period p;
• Type (2): The multiplier of [f ] at x is not 1 and xn has period νp,

with ν ≥ 2;
• Type (3): The multiplier of [f ] at x is 1.
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Proposition 2.2. The multiplier map extends to an embedding on the reg-
ular boundary ρ : ∂regH ↪−→ ∂D2d−2 and ρ(∂regH) ∩ ρ(∂excH) = ∅.
Here ρ(∂regH) or ρ(∂excH) are understood as the accumulation set of ρ([fn])
as [fn] → ∂regH or [fn] → ∂excH respectively.

Proof. Let [f ] ∈ ∂regH. Let us first suppose that every non-repelling periodic
point of f is Type (1). Let Ci be a list of non-repelling periodic cycles of [f ].
Then by implicit function theorem, the cycles Ci move holomorphically on a
neighborhood of f . Thus, we can define a holomorphic map (ρ1, ..., ρ2d−2) :
U −→ C2d−2 on a neighborhood U of [f ], where ρi is the multiplier of the
cycle Ci. By transversality of the multipliers (see [Lev10, Theorem 6] or
[Eps00]), (ρ1, ..., ρ2d−2) gives a local parameterization of the moduli space
Md,fm. Therefore, ρ extends to an embedding near [f ], and ρ−1(ρ([f ])) =
{[f ]}.

If there are Type (2) or Type (3) non-repelling periodic points, the argu-
ment is similar, but we need to pass to a branched cover. Indeed, we can
consider the space of n-periodic marked rational maps consisting of

(f ;x0, ..., xdn) ∈ Ratd ×Ĉdn−1,

where f is a rational map of degree d together with an ordered list of its
dn+1 (not necessarily distinct) periodic points dividing n. Since the iteration
map Ratd −→ Ratdn is a local immersion (see [Ye15, Proposition 4.1]), by
pulling back the local charts for Ratdn,fm, we have local holomorphic charts
near any n-periodic marked rational map. Note that the forgetful map from
n-periodic marked rational maps to fixed point marked rational maps is a
branched covering.

If x is a Type (2) point, then two or more periodic points in the same
periodic cycle of fn collide in the limit, as we assume [f ] ∈ ∂regH. Denote
the period νp and p cycle by C and C̃ respectively. By marking these periodic
points, we may assume the C̃ and C move holomorphically on this branched
covering, and their multipliers ρ and ρ̃ are holomorphic functions.

Similarly, if x is a Type (3) point, then there is a period p repelling point
x̃n of fn with x̃n → x. Denote these two cycles by C and C̃. By marking
these periodic points, we may assume that C and C̃ move holomorphically,
and their multipliers ρ and ρ̃ are holomorphic functions.

In this way, there exists a neighborhood U of [f ] and a branched cover
Ũ of U so that the multipliers map (ρ1, ..., ρk, ρk+1, ρ̃k+1, ..., ρ2d−2, ρ̃2d−2)
is a holomorphic map on Ũ , where k is the number of Type (1) cycles.
By transversality of the multipliers (see [Lev10, Theorem 6] or [Eps00])
and restrict the domain if necessary, the map is a finite branched covering
onto its image, and the image of Ũ under the restricted multiplier map
(ρ1, ..., ρk, ρk+1, ρk+2, ..., ρ2d−2) is open.

It is easy to see that f has at least 3 distinct fixed point. Thus, Aut(f) =
{id}, where Aut(f) is the automorphism group of the fixed point marked
rational map f . Therefore, the fiber of the branched cover Ũ −→ U consists
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only of the same map with (potentially) a different marking on the periodic
points. By fixing a marking of the attracting periodic points in H, we obtain
a homeomorphic lift Ṽ ⊆ Ũ of V = H ∩ U . The branched cover Ũ −→ U is
injective on Ṽ , and hence a homeomorphism between Ṽ and V . By lifting
the map ρ from V to Ṽ , it is now easy to see that ρ extends to an embedding
of ∂H near [f ], and ρ−1(ρ([f ])) = {[f ]}. The proposition now follows. □

2.3. Eventually-golden-mean maps. In this subsection, we will fix a hy-
perbolic component H of disjoint type.

Let θ ∈ (0, 1) be an irrational number, with continued fraction expansion

θ = [0; a1, ..., am, ...] =
1

a1 +
1

a2 +
1

a3 + · · ·

.

We say θ is of bounded type if
sup{am} < ∞.

More generally, we say θ is Brjuno if∑ log qm+1
qn

< ∞.

Note that if θ is of bounded type, then θ is Brjuno.
These arithmetic properties of irrational numbers are relevant to holo-

morphic dynamics. It is well-known that if f is a holomorphic map defined
on 0 ∈ U , with f(0) = 0 and f ′(0) = e2πiθ with θ being Brjuno, then f is
conjugate to the rigid rotation z 7→ e2πiθz in a neighborhood of 0. If f is a
globally defined, then this neighborhood is part of a Siegel disk for f .

If f is a rational map with a fixed point of multiplier e2πiθ with θ of
bounded type, then the corresponding Siegel disk has quasi-circle boundary
which passes through at least one critical point [Zha11].

Let θ = [0; a1, ..., am, ...]. We say it is eventually-golden-mean if there
exists mθ so that an = 1 for all n ≥ mθ. Note that in this case, θ is
automatically of bounded type.

Let H be a hyperbolic component of disjoint type, and [f ] ∈ ∂H. Then
some attracting periodic cycles must become indifferent. By following the
deformations for the corresponding periodic cycles, its multiplier profile
(ρ1, ..., ρ2d−2) = (ρ1([f ]), ..., ρ2d−2([f ])) lies on the boundary

(ρ1, ..., ρ2d−2) ∈ ∂D2d−2.

Definition 2.3. We say a boundary parameter (ρ1, ..., ρ2d−2) ∈ ∂D2d−2 is
• rational if each ρj is either in D or ρj ∈ S1 and is rational;
• irrational if each ρj is either in D or ρj ∈ S1 and is irrational;
• eventually-golden-mean if each ρj is either in D or ρj ∈ S1 and is

eventually-golden-mean.
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We also say (ρ1, ..., ρ2d−2) is realizable if there exists [f ] ∈ ∂H ⊆ Md,fm with
multiplier profile (ρ1, ..., ρ2d−2).

Let S ⊆ ∂D2d−2 be the set of realizable eventually-golden-mean boundary
parameter. In this paper, we will focus on the following maps:

Definition 2.4. A map [f ] ∈ ∂H ⊆ Md,fm is called an eventually-golden-
mean map if its multiplier profile (ρ1, ..., ρ2d−2) ∈ S. We denote by ∂egmH ≃
S the set of all such maps in ∂H.

We remark that since eventually-golden-mean irrational numbers are of
bounded type, any non-repelling cycles of a eventually-golden-mean map [f ]
are contained either in (super-)attracting Fatou components or Siegel disks.
Moreover, since its multiplier profile is on the boundary ∂D2d−2, there is at
least one cycle of Siegel disk for [f ].

Definition 2.5. Let (ρ1, ..., ρ2d−2) ∈ ∂D2d−2. A sequence (ρ1,n, ..., ρ2d−2,n) ∈
∂D2d−2 is said to converge to (ρ1, ..., ρ2d−2) strongly, denoted by

(ρ1,n, ..., ρ2d−2,n) →s (ρ1, ..., ρ2d−2),

if ρj,n → ρj for all j, and ρj,n = ρj when |ρj | < 1.

If we further assume that the Julia set is a Sierpinski carpet, then we have
the following density result for eventually-golden-mean maps.

Proposition 2.6. Let H be a Sierpinski carpet hyperbolic component of
disjoint type. The set S is dense in ∂D2d−2.

Moreover, for any (ρ1, ..., ρ2d−2) ∈ ∂D2d−2, there exists a sequence

(ρ1,n, ..., ρ2d−2,n) ∈ S

converging to (ρ1, ..., ρ2d−2) strongly.

Proof. It follows from the pinching deformation in [CT18] (see also [Luo22b])
that all rational boundary points are realizable. Let [f ] ∈ ∂H with rational
multiplier profile (ρ1, ..., ρ2d−2). Since H is Sierpinski, no non-repelling pe-
riodic points collide. We may assume ρi ̸= 1 for all i, as other wise, we can
pass to a branched cover as in Proposition 2.2. Hence, we can locally param-
eterized the periodic cycles analytically. Thus, there exists a neighborhood
U ⊆ Md,fm of [f ] so that the multipliers

ρ(t) := (ρ1(t), ..., ρ2d−2(t))

is an analytic function on t ∈ U . By transversality of the multipliers (see
[Lev10, Theorem 6] or [Eps00]), ρ−1((ρ1, ..., ρ2d−2)) = {[f ]}. Thus by shrink-
ing U if necessary, the image ρ(U) ⊆ C2d−2 is open (see [GR84, p. 107]).
Since eventually-golden-mean irrational numbers are dense, we can find an
eventually-golden-mean map [f ] ∈ U . Since the rational parameters are
dense, S is dense. The moreover part can be proved in the same way. □
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2.4. Valuable-attracting domains. Let D be an attracting Fatou compo-
nent for f of period p. Assume that the multiplier of the attracting periodic
point is ρ. Then the first return map fp : D −→ D is conjugate to the
Blaschke product

F : D −→ D

z 7→ z
z + ρ

1 + ρ̄z
.

Let Ψ : D −→ D be the conjugacy map, and let r := max{1
2 , |ρ|}. We call

the closed Jordan disk
D̂ = Ψ−1(B(0, r)) ⊆ D

the valuable-attracting domain for D. One can easily verify by our construc-
tion that

Lemma 2.7. Let D̂ be the valuable-attracting domain for D. Then
• D̂ is forward invariant under fp;
• D̂ contains the unique critical point of fp in D;
• The annulus D − D̂ has modulus − 1

2π log(max{1
2 , |ρ|}).

3. Core and pseudo-Core Surfaces of maps in ∂egmH

In this section, we will introduce pseudo-Siegel disks and pseudo-core
surfaces. The main construction is in Theorem 3.4; see also §1.5.1.

Let us fix a hyperbolic component H of disjoint type. Recall from Defini-
tion 2.4 that ∂egmH denotes the set of eventually-golden-mean maps in ∂H:
every neutral periodic cycle of a map in ∂egmH is Siegel of the eventually-
golden-mean type.

We discuss some combinatorial facts of irrational rotations on a circle in
§3.1. In §3.2, we review the notion of almost-invariant pseudo-Siegel disks.
They are obtained from regular forward-invariant Siegel disks by filling-in
parabolic fjords as illustrated on Figure 3.2; see Definition 3.1.

The core surface Xf of f ∈ ∂egmH is the complement to the union of
all periodic valuable-attracting domains and Siegel disks; see (3.6). The
pseudo-core surface X̂f ⊂ Xf is obtained by removing pseudo-Siegel disks
instead of Siegel disks; see (3.7). Properties of Xf and X̂f are discussed
in §3.5. We remark that some terminologies for degeneration of Riemann
surfaces are summarised in §A.

3.1. Combinatorial intervals for Siegel disks. In this subsection, we
introduce the terminologies for dynamics on Siegel disks. We remark that
most of the discussions in this section work for any rational map with a
Siegel disk with a single critical point on its boundary.

Let H be a hyperbolic component of disjoint type. Let [f ] ∈ ∂H be
an eventually-golden-mean map. Let Z be a Siegel disk for f of period p
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with rotation number θ. Let h : Z −→ D be a Riemann mapping with
h(α) = 0, where α is the fixed point in Z. Since Z is a quasi-disk, h extends
continuously to

h : Z −→ D, h(α) = 0
which conjugate fp|∂Z with the rigid rotation on S1.

We define the combinatorial length of an interval I ⊆ ∂Z as
|I| := |h(I)|R/Z ∈ (0, 1).

Similarly, we define the combinatorial distance between x, y ∈ ∂Z as
dist(x, y) := distR/Z(h(x), h(y)) ∈ [0, 1/2].

Let x ∈ ∂Z and t ∈ R/Z, we set
x⊞ t = h−1(h(x) + t),

i.e., x⊞ t is x rotated by angle t. Note that fp(x) = x⊞ θ for all x ∈ ∂Z.
Let [0; a1, ..., am, ...] be the continued fraction expansion for θ. Let

pm/qm :=
{

[0; a1, ..., am], if a1 > 1
[0; a1, ..., am+1], if a1 = 1

be the sequence of approximations for θ given by the continued fraction. We
use the convention and set q0 = 1. Then f q0p = fp, f q1p, ... is the sequence
of first returns of fp|∂Z , i.e.,

dist(f ip(x), x) > dist(f qmp(x), x) =: lm, x ∈ ∂Z for all i < qm.

We define θm ∈ (−1/2, 1/2) so that
f qmp(x) = x⊞ θm.

Note that lm = |θm|.
Given two points x, y ∈ ∂Z with dist(x, y) < 1/2, we let [x, y] be the

shortest closed interval of ∂Z between x, y. Let I ⊆ ∂Z be an interval. We
define the λ-scaling of I as

λI := {x ∈ ∂Z : dist(x, I) ≤ (λ− 1)|I|/2}.
An interval I ⊆ ∂Z is called a combinatorial interval of level m, or simply

a level m interval if |I| = lm. Note that a level m interval is of the form
I = [x, f qmp(x)].

Let I be a level m interval. We say the intervals
{f ip(I) : i ∈ {0, 1, ..., qm+1 − 1}

are obtained by spreading around I. We enumerate these intervals counter-
clockwise starting with I = I0

I0 = I, I1 = f i1p(I), ..., Iqm+1−1 = f (iqm+1−1)p(I), ij ∈ {1, 2, ..., qm+1 − 1}.
Note that the interval Ii is either attached to Ii+1 or there is a level m+ 1
combinatorial interval between Ii and Ii+1.
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x f qmp(x)f qm+1p(x)

lmlm+1

Figure 3.1. The first return and combinatorial intervals.

3.1.1. Diffeo-tiling Dm. There is a unique critical point c of fp on ∂Z. We
denote by CPm = CPm(Z) the set of critical points of f qm+1p on ∂Z. We
define the diffeo-tiling Dm of level m as the partition of ∂Z induced by CPm.
Note that there are qm+1 intervals in Dm, and each interval has length either
lm or lm + lm+1.

3.2. Pseudo-Siegel disks. A pseudo-Siegel disk Ẑm is obtained from a
Siegel disk Z by filling-in all parabolic fjords of levels ≥ m. The formal
definition of Ẑm for maps in ∂egmH (see §3.2.2) is the same as for quadratic
polynomials with the additional requirement that the “territory” X (Ẑm)
containing all auxiliary objects of Ẑm is peripheral rel Z; see §3.2.1 and
Property (P) in §3.2.2.

3.2.1. Parabolic fjords and their protections. As in §3.1, let Z be a periodic
Siegel disk of [f ] ∈ ∂egmH with period p and rotation number θ.

We say that a disk D ⊃ Z is peripheral rel Z if D\Z does not intersect the
post-critical set of f . More generally, we say that a set S ⊂ Ĉ is peripheral
rel Z if S is within a peripheral disk D. In other words, S is peripheral rel
Z if S can be “contracted” rel the postcritical set into Z.

Consider a diffeo-tiling Dm (see §3.1.1) and an interval I ∈ Dm. Given a
peripheral curve β ⊂ Ĉ \ Z with endpoints in I, set Fβ to be the closure of
the connected component of Ĉ\(Z∪β) enclosed by β∪I. If Fβ is peripheral
rel Z, then we call Fβ the parabolic fjord bounded by β; see Figure 3.2. We
will refer to β as the dam of Fβ.

Let X ⊂ Ĉ \ Z be a rectangle with

∂hX ⊂
◦
I := I \ {ends of I}.

We denote by
⋆
X the union of X and the closure of the connected component

of Ĉ \ (X ∪ I) enclosed by ∂vX ∪
◦
I. We say that X protects a fjord Fβ if

• Fβ ⊂
⋆
X \ X ;

•
⋆
X is peripheral rel Z.
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3.2.2. Pseudo Siegel disks for rational maps in ∂egmH.

Definition 3.1. Following notations from §3.2.1, a pseudo-Siegel disk Ẑm

of m ≥ −1 and its territory X (Ẑm) ⊃ Ẑm are disks inductively constructed
as follows (from bigger m to smaller ones):

(1) Ẑm = Z and X (Ẑm) = Z for all sufficiently large m ≫ 0,
(2) either

Ẑm := Ẑm+1 and X (Ẑm) := X (Ẑm+1),
or for every interval I ∈ Dm there is

• a parabolic peripheral fjord FI ≡ FβI
bounded by its dam βI

with endpoints in I; and
• a peripheral rectangle XI protecting FI

such that
Ẑm := Ẑm+1 ⋃

I∈Dm

FI

X
(
Ẑm)

:= X (Ẑm+1) ∪
⋃

I∈Dm

⋆
X I

(3.1)

and such that Ẑm and X
(
Ẑm)

satisfy 7 compatibility condition
stated in [DL22, § 5.1] and briefly summarized in §3.2.4.

We remark that in addition to 7 compatibility conditions from [DL22,
§ 5.1], a pseudo-Siegel disk satisfies the following additional property:

(P) X (Ẑm) is peripheral rel Z.

If Ẑm ̸= Ẑm+1, then we say Ẑm is a regularization of Ẑm+1 at level m.
We denote Ẑ = Ẑ−1, and call it the pseudo-Siegel disk. We remark that
Definition 3.1 allows us to potentially take Ẑn = Z and X (Ẑn) = Z for
all n, which will satisfy all the compatible conditions. Thus, Z is trivially a
pseudo-Siegel disk (of any level). Similarly, any level m pseudo-Siegel disk
Ẑm can be extended to lower levels by setting Ẑn = Ẑm for all n ≤ m. With
this in mind, when we introduce definitions or state theorems for pseudo-
Siegel disks, they apply to regular Siegel disks as well.

3.2.3. Regular intervals. A point x ∈ ∂Ẑm is regular if x ∈ ∂Ẑm ∩ ∂Z. By
construction, if a point x ∈ ∂Ẑm is regular, then x is regular on ∂Ẑk for all
k ≥ m. A regular interval I ⊆ ∂Ẑm is an interval with regular endpoints.

The projection of a regular interval I ⊆ ∂Ẑm onto ∂Z is the interval
I• ⊆ ∂Z with the same endpoints and the same orientation as I. We define
the combinatorial length of I by |I| := |I•|. Similarly, we can define the
projection Ik of a regular interval I ⊆ ∂Ẑm onto ∂Ẑk for k > m.

For an interval I ⊆ ∂Z, the projection Im onto ∂Zm is the smallest regular
interval whose projection onto ∂Z contains I. Similarly, we can define the
projection of an interval I ⊆ ∂Ẑm onto ∂Ẑn for n < m.
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βI

XI

Ẑm+1

b′

b′′

a′

a

a′′

peninsula

parabolic
fjord

parabolic
fjord

b

AI

Sinn(I)

Figure 3.2. An illustration of psuedo-Siegel disk. The in-
tersection patterns of the protecting annulus AI , the inner
buffer Sinn(I), extra outer protection XI are indicated on
the graph.

Let I ⊆ ∂Ẑm be a regular interval. Abusing the notations, we denote
λI ⊆ ∂Ẑm as the projection of λI• on ∂Ẑm where I• ⊆ ∂Z is the projection
of I onto ∂Z.

3.2.4. Compatibility conditions between Ẑm and Z. The 7 compatibility con-
ditions stated in [DL22, § 5.1] are designed to ensure the following key-
properties of Ẑm:

(A) Ẑm is almost invariant under f i for |i| ≤ qm+1;
(B) the “slight” shrinking

Ĉ \ Z ⇝ Ĉ \ Ẑm

has small affect on the width of rectangles in Ĉ\Z that have vertices
in Ĉ \ X (Ẑm); see Lemma 3.2

Below we will recall the main aspects of the axiomatization of Ẑm from [DL22,
§ 5.1]. Various minor technical conditions will be omitted. We remark that
Ẑm can be defined explicitly using explicite hyperbolic geodesics in the com-
plement of Z; see Appendix B.5.

Property (B) follows the requirement that all W(XI) are sufficiently wide
and will be discussed in §3.2.5.

Let us now discuss (A). It follows from (3.1) that
(C) that critical points CPm of f qm+1p ∩ ∂Z are regular points of Ẑn for

any n ≥ m.
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In particular, the projections Im of I ∈ Dm induce a well-defined diffeo-tiling
of ∂Ẑn.

As illustrated on Figure 3.2, for all I ⊂ Dm, we require the existence of
annuli AI around the βI with

mod (AI) ≥ δ > 0, where δ > 0 is small but fixed (3.2)

such that for all |i| ≤ qm+1 the annuli (AI)I∈Dm control the difference be-
tween f i(Ẑm) and Ẑm in the following sense.

(D) Assume f i : Z → Z maps J ∈ Dm into most of the J ∈ Dm; i.e.,
the difference f i(J) \ I is either empty or consists of an interval in
Dm+1. Then we require that AI also surrounds f i(βJ).

We remark that AI was denote by Aout(βI) in [DL22].
Write I = [a, b] ⊂ ∂Z and denote by a′, b′ the endpoints of βI as shown

on Figure 3.2. Denote by a′′, b′′ the intersection of the inner boundary of
A with [a, a′]m+1, [b′, b′′]m+1 ⊂ Im+1, where the superscript indicates the
projections of the intervals onto Ẑm+1. The inner buffer is defined by

Sinn(I) := [a′′, b′′]m = [a′′, a′]m+1 ∪ βI ∪ [β′, β′′]m+1 ⊂ ∂Ẑm.

We also define
Sinn(Ẑm) :=

⋃
n≥m, I

Sinn(I) ⊂ ∂Ẑm,

where the union is taken over all I ∈ Dn and n ≥ m.
It is required that there is an annulus Ainn

I separating {a′′, b′′} from
βI with mod (Ainn) ≥ δ such that (Ainn

I )I∈Dm also control the difference
between f i(Ẑm) and Ẑm as in (D) above. In short:

• the AI ≡ Aout
I guarantee that wide families typically submerge into

Ẑm through “grounded intervals,” see §3.2.6;
• the Ainn

I guarantee that f i | Ẑm is “geometrically close” to the stan-
dard rigid rotation; conseequently, ∂Ẑm has inner geometry similar
to that of a Siegel disk; see [DL22, Theorem 5.12].

3.2.5. Robustness of the outer geometry under Ĉ \Z ⇝ Ĉ \ Ẑm. In [DL22,
Remark 5.11], it is assumed that

W(XI) ≥ ∆, where ∆ > 0 is sufficiently big but fixed

for all I ∈ Dn and all n ≥ m.
Consider a rectangle R ⊂ Ĉ \ Z. Assume that:

• vertices VR of R are outside of int(Ẑm); and
• R \ Ẑm has a connected component R′ such that VR ⊂ ∂R′.

Then R′ is Jordan domain, and we view its closure Rm := R′ as a rectangle
with vertex set VR and the same orientation of sides as R. We call Rm the
restriction of R to Ĉ \ int(Ẑm).
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Lemma 3.2 ([DL22, (5.12) in §5.2.4]). If Rm is the restriction of a rect-
nalge R to Ĉ \ int(Ẑm) as above and if the vertex set VR of R is outside of
int X (Zm), then

1 − ε∆ <
W(Rm)
W(R) ≤ 1 + ε∆,

where ε∆ → 0 as ∆ → ∞.

3.2.6. Grounded intervals. We will be usually working with a special type
of regular intervals called grounded intervals. An interval I ⊆ ∂Ẑm is a
grounded interval if the end points ∂I are in ∂Ẑm − Sinn(Ẑm).

Lemma 3.2 implies the following fact about grounded intervals. For a pair
I, J ⊂ ∂Ẑm of disjoint grounded intervals, consider a rectangle

R ⊂ Ĉ \ Z with ∂h,0R = I, ∂h,1R = J.

Since I, J are grounded, R restrict to a rectangle Rm in Ĉ \ Ẑm with
∂h,0Rm = Im and ∂h,1Rm = Jm.

Then the argument in [DL22, Lemma 5.10] implies that

W(R) −Oδ(1) < W(Rm) < (1 + ε∆)W(R) +Oδ(1). (3.3)

In the paper, we will usually replace “1 + ε” with “2”; see for example
Proposition 3.3.

3.3. Stability of Ẑm and pseudo-bubbles. Recall that Z has period p.
Given a peripheral closed disk D ⊃ Z and an iteration fnp, set D̃ to be
the closure of the connected component of f−np(Int(D)) containing Z. If
D̃

fnp

−→ D has degree 1 (i.e., it is a homeomorphism), then we call

D(−np) := D̃

the pullback of D under fnp (rel Z).
Observe that D(−np) is well defined if and only if ∂(D \ Z) does not

contain any critical value of fnp. Since D is peripheral, every critical value
of fnp in D are necessary on ∂Z.

We say that a pseudo-Siegel disk Ẑm is k-stable if for every n ≤ kqm+1
the pullback of X (Ẑm) under fnp is well defined. It follows then

[Ẑm(−n),X (Ẑm)(−n)] := (fn)∗[Ẑm,X (Ẑm)]

is a well-defined pseudo-Siegel disk together with its territory.
For every I = [a, b] ∈ Dm, set

kI := dist(∂hXI , {a, b})
lm+1

− 2, k+
I := max{kI , 0},

and km := min
n≥m

min
I∈Dn

{k+
I }. Then it follows from the above discussion that

Ẑm is km-stable.
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Observe that if Ẑm is T -stable, then so is any Ẑn for n ≥ m. In particular,
if Ẑ = Ẑ−1 is T -stable, then Ẑm is T -stable for all m. We remark that this
T can be chosen arbitrarily large, (see Remark 3.5 and § B.5.3).

3.3.1. Pseudo-bubbles. A bubble B is a closed strictly preperiodic Siegel disk;
i.e., it is the closure of a connected component of f−k(Z)\Z. The generation
of B is the minimal k such that fk(B) = Z; i.e. fk : B → Z is the first
landing. Given a pseudo-Siegel disk Ẑm, the pseudo-bubble B̂ is the closure of
the connected component of f−k(

int Ẑm)
containing intB. In other words,

B̂ is obtained from B by adding the lifts of all reclaimed fjords (components
of Ẑm \ Z) along fk : B → Z.

Dams βI , collars AI , extra protections XI are defined for B̂ as pullbacks
of the corresponding objects along fk : B̂ → Ẑm. For instance, X (Ẑℓ) is
the pullback of X (Ẑm) under fk. The length of an interval I ⊂ ∂B̂ is the
length of its image fk(I) ⊂ ∂Ẑm. Properties of pseudo-Siegel disks can also
be obtained for pseudo-bubbles by pulling back using the dynamics.

3.4. Convention for valuable-attracting domains and pseudo-Siegel
disks. We assume the following convention throughout the paper. Let C be
a cycle of attracting Fatou components of [f ] with period p, and let D ∈ C
be the unique Fatou component that contains the critical point. Then

f̂ j(D) = f j(D̂) for all j = 1, ..., p− 1. (3.4)
Similar to valuable-attracting domains, we shall use the following convention
for pseudo-Siegel disks throughout the paper. Let C be a cycle of Siegel disks
of [f ] with period p, and let Z ∈ C be the unique Fatou component that
contains the critical point on its boundary. Then

f̂ j(Z)
m

= f j(Ẑm) for all m and for all j = 1, ..., p− 1. (3.5)

3.5. Core and pseudo-Core Surfaces. Let H be a hyperbolic component
of disjoint type. Let [f ] ∈ ∂H be an eventually-golden-mean map. Let
Z1,0, ...Z1,p1−1, Z2,0, ..., Zk1,pk1 −1 and D1,0, ...D1,q1−1, D2,0, ..., Dk2,qk2 −1

be the list of Siegel disks and attracting Fatou components of f . Denote the
corresponding pseudo-Siegel disks and valuable-attracting domains by Ẑm

i,j

and D̂i,j respectively. As usual, we define Ẑi,j := Ẑ−1
i,j =

⋃
m

Ẑm
i,j .

The indices are chosen so that for all
Ẑm

i,j+1 = f(Ẑm
i,j) for all m ∈ N, i = 1, ..., k1, j = 0, 1, ..., pki

− 2;
and

D̂i,j+1 = f(D̂i,j) for all i = 1, ..., k2, j = 0, 1, ..., pki
− 2.

By construction, D̂i,j and Zi,j are all Jordan domains with pairwise dis-
joint closures. Thus, we define the core surface as the Riemann surface with
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boundary by
Xf := Ĉ −

⋃
i,j

Int(D̂i,j) −
⋃
i,j

Zi,j , (3.6)

and the pseudo-core surface as

X̂f := Ĉ −
⋃
i,j

Int(D̂i,j) −
⋃
i,j

Int(Ẑi,j). (3.7)

Since we will construct pseudo-Siegel disks for a single cycle while fixing
other cycles of pseudo-Siegel disks and valuable-attracting domains, it is
useful to introduce the following notations.

Let Zk := Zk,0. We define the level m pseudo-core surface for k-th cylce
of Siegel disks Zk as

X̂m
f (Zk) := Ĉ −

⋃
i,j

Int(D̂i,j) −
⋃

i ̸=k,j

Int(Ẑi,j) −
pk−1⋃
j=0

Int(Ẑm
k,j).

Note that under this notation, X̂f = X̂−1
f (Zk) for any k. We also define

X̂∞
f (Zk) = Ĉ −

⋃
i,j

Int(D̂i,j) −
⋃

i ̸=k,j

Int(Ẑi,j) −
pk−1⋃
j=0

Int(Zk,j),

as Ẑm
k,j = Zk,j for all sufficiently large m.

To avoid too many subindices, we shall simplify the notation as Xm
f :=

Xm
f (Zk) if the underlying cycle of Siegel disks is not ambiguous.

3.5.1. Pullback of pseudo-Siegel disks and pseudo-core surfaces. Note that
pseudo-Siegel disks are not necessarily forward invariant. Thus, it is im-
portant to introduce notations for the pullbacks. Let us assume that all
pseudo-Siegel disks are T -stable.

For each iterate n ≤ T , the preimage f−n(
⋃
i,j

Int(Ẑm
i,j)) is union of disks,

each mapped conformally to some component Int(Ẑm
i,j). We denote by

Ẑm
i,j(−n) the closure of the unique component of f−n(

⋃
i,j

Int(Ẑm
i,j)) that con-

tains Zi,j .
Generalizing such notations for pseudo-core surfaces, we define

X̂f (−n) := Ĉ −
⋃
i,j

Int(D̂i,j) −
⋃
i,j

Int(Ẑi,j(−n)),

and

X̂m
f (−n) := Ĉ −

⋃
i,j

Int(D̂i,j) −
⋃

i ̸=k,j

Int(Ẑi,j(−n)) −
pk−1⋃
j=0

Int(Ẑm
k,j(−n)).

We also define
Ŷf (−n) := f−n(X̂f ),
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and
Ŷ m

f (−n) := f−n(X̂m
f ).

We summarize the relations between these spaces in the following diagram.

Ŷf (−n)

X̂f (−n) X̂f

Xf

fn

Ŷ m
f (−n)

X̂m
f (−n) X̂m

f

Xm
f

fn

Here the hooked arrows represent inclusions and fn : Ŷf (−n) −→ X̂f or
fn : Ŷ m

f (−n) −→ X̂m
f are covering maps.

3.6. Local degeneration on pseudo-core surfaces. In this subsection,
using the dynamics of f on the boundaries of the Siegel disks, we introduce
some special families of curves for the pseudo-core surfaces. The extremal
widths for such families are crucial in our analysis.

Set Z := Z1,0 with period p = p1. Consider the level m pseudo-core
surface for Z

X̂m
f := Ĉ −

⋃
i ̸=1

Int(Ẑi,j) −
⋃

Int(D̂i,j) −
p−1⋃
j=0

Int(Ẑm
1,j).

Let I ⊆ ∂Ẑm be a regular interval. Denote
B = B(I, λ) := ∂X̂m

f − λI.

We use the notations
F+

λ (I) = F+
λ,Ẑm

(I) and Fλ(I) = F
λ,Ẑm(I)

to denote that curves families connecting I with B in X̂m
f and in Ĉ re-

spectively. As we will be working with pseudo-Siegel disks of Z of different
levels simultaneously, the subindex Ẑm is sometimes added to clarify which
pseudo-Siegel disk we are considering. We denote

W+
λ (I) = W+

λ,m(I) = W+
λ,Ẑm

(I) := W
X̂m

f

(I,B(I, λ)) = W(F+
λ (I)) (3.8)

Wλ(I) = Wλ,m(I) = W
λ,Ẑm(I) := WĈ(I,B(I, λ)) = W(Fλ(I)). (3.9)

We shall refer to the quantities W+
λ (I) as local degenerations. We remark

that here local means that we have localized one end of the arcs to be in the
interval I. The arcs are not necessarily restricted in a local part of X̂m

f .
The family F+

λ (I) can be decomposed into the peripheral and non-peripheral
parts, and we denote the corresponding families by

F+,per
λ (I) and F+,np

λ (I).
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Their widths are denoted by
W+,per

λ (I) and W+,np
λ (I)

We remark that λ is chosen to be a large constant. Thus, there is a large
combinatorial distance between the end points of any arc in F+

λ (I).
We also use the notation W+,np

m (I) := W+,np
0,m (I), i.e. the width of non-

peripheral arcs in X̂m
f starting on the interval I.

3.6.1. Comparing local degenerations. One of the most important properties
of grounded intervals is that local degenerations behave nicely as we pass
from Siegel disks to Pseudo-Sigel disks. Moreover, for non-peripheral de-
generations, we can simply replace an interval by a grounded interval with
some uniform control on the correction.
Proposition 3.3. Let I ⊆ ∂Ẑm be a grounded interval, and let I• ⊆ ∂Z be
the projection of I onto ∂Z. Suppose that λ ≥ 10. Then

W+
λ,Z(I•) −O(1) ≤ W+

λ,Ẑm
(I) ≤ 2W+

λ,Z(I•) +O(1).

For any interval I ⊂ ∂Z, let IGRND, Igrnd ⊆ ∂Z be the smallest grounded
interval of level m that contains I and the largest grounded interval of level
m that is contained in I respectively. Then

W+,np
Z (IGRND) −O(1) ≤ W+,np

Z (I) ≤ W+,np
Z (IGRND),

W+,np
Z (Igrnd) ≤ W+,np

Z (I) ≤ W+,np
Z (Igrnd) +O(1).

Proof. The Thin-Thick Decomposition (see [Lyu, Theorem 7.25] allows us,
up to O(1), to replace F+

λ,Z(I•) with a union of finitely many rectangles in
F+

λ,Z(I•). Therefore, (3.3) implies the first statement.
The second statement follows from the observation that IGRND \ I is

within a union of at most two intervals, each being surrounded by an annulus
Aout(.) with modulus ≥ ε. Therefore, the width of curves in F+,np

Z (IGRND)\
F+,np

Z (I) is bounded by 2
ε

. A similar argument holds for I and Igrnd. □

We remark that it is possible to replace 2 by by 1 + δ, where δ = δ(∆)
can be arbitrary small if the protection ∆ for the Pseudo-Siegel disk is
sufficiently big.

3.7. Non-uniform construction of pseudo-Siegel disks. In this sub-
section, we construct pseudo-Siegel disks so that non-peripheral degenera-
tion dominates peripheral degeneration – see (2a) and (2a) below. More
precisely, with the notations introduced in §3.5 and §3.6, we will prove
Theorem 3.4. Let H be a hyperbolic component of disjoint type. Let [f ] ∈
∂H be an eventually-golden-mean map with the pseudo-core surface Xf . Let
K := Warc(Xf ) be the arc degeneration of Xf . There exist a constant
M = M(K) depending on K, pseudo-Siegel disks Ẑm

i,j for all i, j so that for
all λ ≥ 10,
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(1) Ẑi,j = Ẑ−1
i,j is an M quasiconformal disk;

(2) for every grounded interval J ⊆ ∂Zi,j rel Ẑm
i,j with lm+1 < |J | ≤ lm,

we have
(a) W+,np

m (Jm) = O(Klm + 1); and
(b) W+,per

λ,m (Jm) = O(
√
Klm + 1).

We remark that (2a) and (2b) can be improved for all m unless m is the
“special transition” level; see refined versions in Appendix B, Theorem B.2.
See also Remark B.3 for an explanation of the estimates.

Proof. The construction is by induction on the cycles of Siegel disks. Sup-
pose that we have constructed pseudo-Siegel disks Ẑm

i,j for i < k, and we
want to construct the pseudo-Siegel disks for the k-th cycle. Abusing the
notations, denote the pseudo-core surface by X̂f . Let Z := Zk,1 be a Siegel
disk for f . Note that Z is a boundary component of X̂f . Since we can
construct Ẑk,j by f j−1(Ẑk,1), it suffices to construct the pseudo-Siegel disk
Ẑ = Ẑk,1. After passing to an iterate, we may assume Z is fixed by f .

The idea is to construct a ψ•-ql (pseudo-bullet-quadratic-like) map (see
§B.1 for the definition). By the construction in §B.2, we can associate a
ψ•-ql map

F = (fp, ι) : U ⇒ V

with
W•(F ) = 2Warc(Z) +O(1).

Since the vertical (or non-vertical) degeneration for F corresponds to, up to
a width of O(1), the non-peripheral (or peripheral) degeneration of X̂f with
endpoints on Z (see §A.5 and §B.2), the statements for intervals on ∂Z now
follow from Theorem B.2; more specifically from Eqation B.6.

By Proposition 3.3, replacing the Siegel disk Z by a pseudo-Siegel disk
only changes the the degeneration by a bounded error, we conclude that
statements for intervals on ∂Zi,j for i < k still holds. Since there are only
finitely many cycles of Siegel disks, we conclude the theorem. □

Remark 3.5. We remark that for any given T > 1, we can construct the
pseudo-Siegel disk that are T -stable. This parameter T affects only the
constant M and constants representing the “O( )” in (2) (see § B.5.3).

In this paper, we will select T to be sufficiently big to dominate the pulled-
off constant N in §4 and the constant a in Theorem 5.1. See §7.1 for the
choice of these constants. This selection will be used in:

• the proof of Localization of arc degenerations in Theorem 5.1;
• the proof of the Calibration lemma on shallow levels in Theorem 6.1.

4. The pulled-off constant and expanding model

Let H be a hyperbolic component of disjoint type. Let [f ] ∈ ∂H be an
eventually-golden-mean map with the pseudo-core surface, and [fpcf ] ∈ H
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be the post-critically finite center. Let NSiegel([f ]) and N([fpcf ]) be the
pulled-off constant as in Definition 1.5.

In this section, we will show that a pulled-off constant is uniformly bounded
for a Sierpinski carpet hyperbolic component. This is one of the key reasons
why a Sierpinski carpet hyperbolic component is bounded.
Theorem 4.1 (Pulled-off Principle). Let H be a Sierpinski carpet hyperbolic
component of disjoint type. Then there exists a constant N so that for any
eventually-golden-mean map [f ] ∈ ∂H, N([f ]) ≤ N.

We will deduce this theorem by justifying that the expanding model of
maps in H persists for eventually-golden-mean maps on ∂H. Then, assuming
Theorem 1.6, we will show that the expanding model persists for all maps
∂H implying Theorem B.

4.1. Characterization of Sierpinski carpet hyperbolic component.
Theorem 4.2. Let H be a hyperbolic component, and let [fpcf ] ∈ H be the
post-critically finite center. Then H is Sierpinski if and only if N([fpcf ]) <
∞.
Proof. By [Pil94, Corollary 5.18], the map fpcf has Sierpinski carpet Julia
set if and only if there is no periodic Levy arc. Here a Levy arc is a non-
peripheral simple curve γ with endpoints in the post-critical set P (fpcf ) so
that fn

pcf (γ) is isotopic rel P (fpcf ) to γ for some n.
If there is a periodic Levy arc, then, up to isotopy, it can be realized as a

concatenation of two internal rays and, hence, N([fpcf ]) = ∞.
Conversely, suppose that N([fpcf ]) = ∞. Then there exist arbitrarily

long essentially disjoint pull back sequence γ0, ..., γn. Note that the number
of essentially disjoint isotopic classes of arcs is bounded by the topological
complexity of Ĉ − P (fpcf ). Thus, for all large n, some pairs in γ0, ..., γn are
isotopic. Therefore, there exists a periodic Levy arc. □

4.2. Semiconjugacy to an expanding model. Let H be a Sierpinski
carpet hyperbolic component of disjoint type. In this subsection, we will
show that an eventually-golden-mean map [f ] ∈ ∂H is semiconjugate to a
topologically expanding map.

Let [fpcf ] ∈ H be the center of H, i.e., the unique post-critical finite map
in H. We define f̄ : S2 −→ S2 as the quotient map of fpcf by collapsing
each Fatou component to a point. Note that f̄ is topologically expanding,
as fpcf has Sierpinski carpet Julia set.

Let [f ] ∈ ∂H be an eventually-golden-mean map. Using renormalization
theory on Siegel disks, we will prove
Theorem 4.3 (Expanding model for ∂egmH). Let [f ] ∈ ∂H be an eventually-
golden-mean map. Then there exists a topological semiconjugacy

h : Ĉ −→ S2 with f̄ ◦ h = h ◦ f.
In particular, NSiegel([f ]) ≤ N([fpcf ]).
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Proof. Denote the multiplier profile for [f ] as (ρ1, ..., ρ2d−2). Let

(ρ1,n, ..., ρ2d−2,n)

be rational parameters converging strongly to (ρ1, ..., ρ2d−2), with corre-
sponding maps [fn] ∈ ∂H. By approximating each [fn] with hyperbolic
maps in H radially, there exists semiconjugacy (see [CT18, Theorem 1.5])

hn : Ĉ −→ S2 with f̄ ◦ hn = hn ◦ fn.

We assume the representatives are chosen so that fn → f as rational maps.
Since any orbit on the boundary of a Siegel disk is dense on the bound-

ary, it is easy to see that the Siegel disks and valuable attracting domains
have disjoint closures. By [DLS20, Theorem 6.9], for sufficiently large n, we
can find parabolic valuable flowers Li,j,n approximating the Siegel disks Zi,j .
Therefore, we can find disjoint small neighborhoods Ui,j of Zi,j and Wi,j of
D̂i,j so that for sufficiently large n, we have Li,j,n ⊆ Ui,j and D̂i,j,n ⊆ Wi,j .
For sufficiently large n, we can find a small perturbation h0 of hn so that
h0(Ui,j) and h0(Wi,j) are points. Note that the union U =

⋃
Ui,j ∪

⋃
Wi,j

contains the union of parabolic valuable flowers and valuable attracing do-
mains of fn, so U also contains the post-critical set of fn. Then we can pull
back h0 and get

h1
n : Ĉ −→ S2 with f̄ ◦ h0 = h1

n ◦ fn,

h1 : Ĉ −→ S2 with f̄ ◦ h0 = h1 ◦ f.

Since hn is a semiconjugacy between fn and f̄ , h1
n ∼ h0 on Xf for sufficiently

large n. Since fn → f , h1 ∼ h0 on Xf as well.
Since Int(Xf ) contains no post-critical point and f̄ is topologically ex-

panding, a standard pull-back argument gives the semiconjugacy.
Note that any laminally disjoint pull-back sequence for an eventually-

golden-mean map [f ] gives a laminally disjoint pull-back sequence for f̄ . If
γ for [f ] connects boundaries of Siegel disks, then the corresponding arc δ
for f̄ connects points in critical periodic cycles. Since each laminally disjoint
pull-back sequence is essentially disjoint, and f̄ is homotopically equivalent
to fpcf , we have that NSiegel([f ]) ≤ N([fpcf ]). □

Proof of Theorem 4.1. By Theorem 4.3, NSiegel([f ]) ≤ N([fpcf ]). By Theo-
rem 4.2, N([fpcf ]) < ∞. Therefore, NSiegel([f ]) is uniformly bounded. □

4.3. Proof of Theorem B. Recall that f̄ : S2 −→ S2 is the topologically
expanding map obtained from collapsing Fatou components of the center
[fpcf ] ∈ H.

Theorem 4.4 (Expanding model for maps in ∂H). Let [f ] ∈ H. There
exists a topological semiconjugacy

h : Ĉ −→ S2 with f̄ ◦ h = h ◦ f.
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Proof. Let [f ] ∈ ∂H with multiplier profile (ρ1, ..., ρ2d−2). Let [fn] ∈ ∂H be
a sequence of eventually-golden-mean maps with

• [fn] → [f ]; and
• its multiplier profile (ρ1,n, ..., ρ2d−2,n) →s (ρ1, ..., ρ2d−2).

Assume that the representatives are chosen so that fn → f .
By Theorem 1.6, after passing to a subsequence, we may assume pseudo-

Siegel disks Ẑi,j,n and valuable-attracting domains D̂i,j,n converge in Haus-
dorff topology to Ẑi,j and D̂i,j . Note that Ẑi,j and D̂i,j contain the post-
critical set of f . Denote the Riemann surface

X̂f := Ĉ −
⋃

Int(Ẑi,j) −
⋃

Int(D̂i,j).

By Theorem 4.3, there exists semiconjugacies

hn : Ĉ −→ S2 with f̄ ◦ h = h ◦ fn.

We can construct a similar purtabation h0 of hn for some sufficiently large
n. Let h1 be the pull back of h0 under f . A similar argument as in Theorem
4.3 gives that h0 ∼ h1 on X̂f with

f̄ ◦ h0 = h1 ◦ f

Since X̂f is disjoint from the post-critical set and f̄ is topologically ex-
panding, a standard pull back argument gives the semiconjugacy h. □

Theorem B now follows immediately from Theorem 4.4.

Proof of Theorem B. Let x̃ = h(x) ∈ S2, where h is the semiconjugacy in
Theorem 4.4. Let x̃ ∈ Ũ be a small neighborhood so that Ũ ⋐ f̄p(Ũ).
Let U = h−1(Ũ). Then fp : U −→ V = fp(U) gives the quadratic-like
restriction. Since H is compact, the modulus of V −U is uniformly bounded.
This proves the theorem. □

5. Localization of arc degeneration

In this section, we will prove that if the arc degeneration Warc(X̂f ) of
the pseudo-core surface X̂f is sufficiently big, then there exists some small
grounded interval I whose local degeneration W+

λ (I) is at least comparable
to Warc(X̂f ); compare with §1.5.2. More precisely, we will prove

Theorem 5.1 (Localization of arc degeneration). Let H be a hyperbolic
component of disjoint type. Let [f ] ∈ ∂H be an eventually-golden-mean map
with pulled-off constant N = NSiegel([f ]). There exist

• a constant a > 1 that depends on N ,
• and a threshold constant Λ ≫ 1

such that for every λ ≥ Λ and for every 0 < ϵ < 1/2λ, there exists a
threshold constant Kϵ,λ,N ≫ 1 depending on ϵ, λ,N and the multipliers of
attracting cycles of f with the following properties.
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Suppose that the Riemann surface X̂f := Ĉ −
⋃

Int(Ẑi,j) −
⋃

Int(D̂i,j)
has

Warc(X̂f ) := K ≥ Kϵ,λ,N .

Suppose that all pseudo-Siegel disks are at least N -stable. Then there exists
a pseudo-Siegel disk Ẑ = Ẑi,j and a grounded interval I ⊆ ∂Ẑ with |I| ≤ ϵ
such that

W+,np(I) + W+,per
λ (I) ≥ K/a.

Remark 5.2. We remark that if H is a Sierpinski carpet hyperbolic com-
ponent, then by Theorem 4.1, the pulled-off constant is uniformly bounded.
In this case, the constant a can be chosen to be universal, and the constant
Kϵ,λ,N depends only on ϵ, λ and the multipliers of the attracting cycles.

Pulled-off argument. We will follow the notations introduced in §3.5. It
follows from Proposition 3.3 and the fact that the Siegel disks are N -stable
that for sufficiently large arc degeneration K = Warc(X̂f ), we have

1
8Warc(X̂f ) ≤ Warc(X̂f (−N)) ≤ 8Warc(X̂f ).

Note that there are only finitely many homotopy classes of non-peripheral
arcs γ ⊆ X̂f (−N) with W(γ) ≥ 2. This number is bounded by a constant
M , which depends only on the number of boundary components of X̂f (−N).
Let γ ⊆ X̂f (−N) be a non-peripheral arc with

W(γ) ≥ Warc(X̂f (−N))
2M ≥ Warc(X̂f )

16M = K

16M .

We may realize such wide families by a rectangle Rγ whose vertical arcs are
homotopic to γ and

W(Fγ) = W(γ) −O(1),
where Fγ is the family of vertical arcs in Rγ .

By our construction, the modulus of the annulus Di,j − D̂i,j is bounded
below in terms of the multipliers of the attracting cycles of f . By making
the threshold Kϵ,λ,N larger if necessary, we may assume γ connects two
pseudo-Siegel disks Ẑ(−N) and Ẑ ′(−N). Note that Ẑ(−N) may equal to
Ẑ ′(−N).

Let U be a component of f−N (
⋃
Zi,j). Denote Û(−N) as the corre-

sponding pseudo-Siegel disks, i.e., Û(−N) is the closure of the component
of Ĉ − Ŷf (−N) that contains U .

Lemma 5.3 (Submergence into U). There exists
• a constant a1 depending on N ,
• a strictly pre-periodic Siegel disk U ⊆ f−N(

⋃
Zi,j) so that ∂Z and

∂U are in different connected components of ∂Yf (−N),
• a family G of homotopically equivalent non-peripheral arcs connect-

ing Ẑ and Û , and
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• a subfamily F1 ⊆ Fγ

so that
• W(F1) ≥ K/a1;
• the family F1 overflows G.

Proof. Note that γ ⊆ X̂f (−N) determines a unique homotopy class of non-
peripheral arc γ̃ ⊆ X̃f . We first claim after removing some buffers, we may
assume any arc in Fγ intersects some strictly pre-periodic component of
f−N (

⋃
Zi,j ∪

⋃
Int(D̂i,j)). Indeed, otherwise, we get N disjoint rectangles

R0 ⊆ Rγ , R1 = f(R0), ..., RN = fN (R). All vertical arcs of each of the
rectangles are homotopic to some non-peripheral arc in Xf . This produces
a disjoint pull back sequence γ0, ..., γN . This is impossible by the definition
of pulled-off constant N .

Since the modulus of the annulus Di,j − D̂i,j is bounded below, by mak-
ing the threshold Kϵ,λ,N larger if necessary, we may assume there exists a
subfamily F ′ ⊆ Fγ so that

• W(F ′) ≥ W(Fγ)/2; and
• no curve in F ′ intersects the preimages of valuable-attracting do-

mains f−N (
⋃

Int(D̂i,j)).
Thus, any arc in F ′ must intersect some strictly pre-periodic Siegel disk in
f−N (

⋃
Zi,j) ⊆ f−N (

⋃
Int(Ẑi,j)).

Note that there are a bounded number (depending on N) of strictly pre-
periodic Siegel disks U ⊆ f−N (

⋃
Zi,j). So there are a bounded number of

homotopy classes of wide non-peripheral arcs in Yf (−N). Thus there exists
a constant a1 depending on N , some family G of homotopically equivalent
arcs connecting Ẑ and a strictly pre-periodic pseudo-Siegel disk Û(−N) so
that the arcs in F ′ overflowing G has width at least K/a1. Let F1 ⊆ F ′ be
this collection of arcs and we conclude the lemma. □

Let F1 be the family of arcs in Lemma 5.3. Consider an arc γ : [0, 1] −→
X̂f (−N) in F1 with γ(0) ∈ ∂Ẑ(−N) and γ(1) ∈ ∂Ẑ ′(−N). Let t0 > 0 be
the first time that γ(t0) ∈ ∂Ŷf (−N). Let γ′ = γ|[0,t0]. By our construction,
γ′ ∈ G. Thus γ′ ⊆ Ŷf (−N) is an arc connecting Ẑ(−N) and Û(−N).

Lemma 5.4 (Localization of the submergence as I ′ ⊂ ∂Û(−N)). There
exists a threshold constant Kϵ,λ,N ≫ 1 so that if

K = Warc(X̂f ) ≥ Kϵ,λ,N ,

then there exist a constant a2 depending on N and a grounded interval I ′ ⊆
∂Û(−N) with |I ′| ≤ ϵ so that the collection F2 ⊆ F1 of arcs passing through
I ′ has width W(F2) ≥ K/a2.

Proof. Let γ1, γ2 ∈ F1 be the left and right most arcs in F1. Let xi be an
intersection point of γi with ∂Û(−N). Since the end points of γi are outside
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γ1

γ2

I1

I2

Û

Figure 5.1. The curve γ1 and γ2 are the left and right most
arcs in F1. Most of the arcs in F1 passes through I1 or I2.

of X (Û(−N)) and the extra outer protection XI has width bounded below,
by removing a collection of arcs of bounded width, we may assume that xi

is away from the extra outer protections X (Û(−N)).
Let xi ∈ Ii ⊆ ∂Û(−N) be a grounded interval with |Ii| ≤ ϵ. Let F ′ ⊆ F1

be the family of arcs that is disjoint from I1 ∪I2. Let F ′′ be the collection of
arcs δ ⊆ Û(−N) connecting the two components of ∂U − I1 − I2. Then any
arc F ′ must overflow an arc in F ′′. However, the width W(F ′′) ⪯ | log ϵ|.
Thus, W(F ′) ⪯ | log ϵ|.

By choosing the threshold Kϵ,λ,N larger if necessary, we may assume
K/a1 ≫ | log ϵ|. Thus the collection of arcs passing through I1∪I2 has width
≥ K/2a1. Without loss of generality, we assume the arcs of at least half of
the width pass through I1. The lemma now follows by letting I ′ = I1. □

We are ready to prove Theorem 5.1. In the proof, we first push forward
by fN the wide family from Lemma 5.4 passing through I ′ to obtain a wide
family F ′ based at I ′′ = fN (I ′) ⊂ ∂Ẑ. We then lift the appropriate restric-
tion of F ′ to the associated ψ•-map g around Ẑ. Applying Lemma B.4, we
construct an appropriate interval Ĩ in the dynamical plane of g. Using nat-
ural properties of the Thin-Thick decomposition, the projection of Ĩ back
to ∂Ẑ gives a required interval I.

Proof of Theorem 5.1. Consider an arc γ : [0, 1] −→ X̂f (−N) in F2 with
γ(0) ∈ ∂Ẑ(−N) and γ(1) ∈ ∂Ẑ ′(−N). Let t0 > 0 be the first time that
γ(t0) ∈ I ′. Denote the truncation γ|[0,t0] by γ′. Let F ′

2 be the collection of
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such truncations
F ′

2 := {γ′ : γ ∈ F2}.
Let I ′′ = fN (I ′). Then I ′′ is a grounded interval on some periodic pseudo-
Siegel disk Ẑ ′′. Since ∂Z and ∂U are in different connected components of
∂Yf (−N), we conclude that α := fN (γ′) is a non-peripheral arc starting
at I ′′, i.e., α is an arc in Ĉ so that at least one component of α ∩ X̂f is
non-peripheral. Let α′ be the smallest sub-arc of α starting at I ′′ so that
α′ ∩X̂f contains a non-peripheral component, and let F3 be the collection of
such truncations. Note that W(F3) ≥ K/a3 for some constant a3 depending
only on N . Let g be the associated ψ•-map around Ẑ. Then the arcs in
F3 can be lifted to vertical arcs for the ψ•-map (see §B.2 and §B.3). Let Ĩ
be the lift of the interval I ′′. By the Thin-Thick Decomposition (see §A.5),
we obtain a rectangle R of width K/a4 consisting of vertical arcs that start
at Ĩ, for some constant a4 depending only on N . We now apply Lemma
B.5 with λ′ = max{λ, 1

ϵ
}. We choose the threshold Kϵ,λ,N large enough so

that there exists some constant a5 depending only on N so that there exists
either

• a subrectangle R1 of R with W(R1) ≥ K/a5 such that R1 is outside
of int ˜̂

Z; or
• a grounded interval J ⊂ ∂

˜̂
Z such that W+,per

λ (J) ≥ W+,per
λ′ (J) ≥

K/a5.

Note that in the second case, since W+,per
λ′ (J) > 0, we have |J | < 1

λ′ ≤ ϵ.
We project the wide lamination down to the dynamical plane of f . In the
first case, we obtain some grounded interval I ⊆ I ′′ with

W+,np(I) ≥ K/a.
for some constant a depending on N . In the second case, we obtain some
grounded interval I ⊆ Ẑ with |I| < ϵ so that

W+,per
λ (I) ≥ K/a.

This proves the theorem. □

6. Calibration lemma on shallow levels for W+,np
m (I)

In this section, we will prove a calibration lemma for non-peripheral
arc degenerations. Roughly speaking, we will show that if there exists a
grounded interval I with sufficiently large non-peripheral arc degeneration
W+,np

m (I), then there is a grounded interval on a deeper level with compa-
rable local degeneration; see also §1.5.3.
Theorem 6.1 (Calibration lemma on shallow levels). Let H be a hyperbolic
component of disjoint type. Let [f ] ∈ ∂H be an eventually-golden-mean map
with pulled-off constant N = N([f ]). Let Z be a Siegel disk of period p and
Ẑ = Ẑm be a pseudo-Siegel disk of level m.
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For every a > N , there is a constant χa > 1 and a threshold constant
Ka > 1 with the following property.

Suppose that Warc(X̂f ) ≥ Ka, that all pseudo-Siegel disks are at least
4apN -stable and that I is a grounded interval with lm+1 < |I| ≤ lm, lm >
1/4a such that

K := W+,np
m (I) ≥ Warc(X̂f )/a.

Then there is a grounded interval J ⊆ ∂Ẑ with |J | ≤ lm+1 such that

W+,np
m+1 (J) ≥ K/χa ≥ Warc(X̂f )/χaa.

We remark that the shallow level refers to that lm (and hence m) is
bounded from below.

Bounds on qm+1. One important observation is the following lemma, which
bounds the iterations of f to consider.

Lemma 6.2. Suppose that lm ≥ 1/4a. Then
qm+1 ≤ 4a.

Proof. Note that by spreading around a level m interval I, we get qm+1
disjoint intervals of length lm:

I0 = I, I1 = f i1p(I), ..., Iqm+1−1 = f (iqm+1−1)p(I), ij ∈ {1, 2, ..., qm+1 − 1}.

So qm+1lm ≤ 1. Thus, if lm ≥ 1/4a, qm+1 ≤ 1/lm ≤ 4a. □

Proof of the calibration lemma. Following the definitions in §3.5, let
Ẑi,j(−n) be the closure of the component of f−n(Int(

⋃
Ẑi,j)) that contains

Zi,j . Since qm+1p ≤ 4ap by Lemma 6.2 and all pseudo-Siegel disks are
4apN -stable, we define

X̂f (−Nqm+1p) := Ĉ −
⋃

Int(D̂i,j) −
⋃

Int(Ẑi,j(−Nqm+1p)),

and
Ŷf (−Nqm+1p) := f−Nqm+1p(X̂f ).

Since qm+1p ≤ 4ap and N < a, the topological complexity, i.e., the number
of boundary components of Ŷf (−Nqm+1p) is bounded in terms of a.

Note that since the interval I is grounded, by Proposition 3.3, the wide
families for I of X̂f and X̂f (−Nqm+1p) have compatible width, as they
are both compatible to the corresponding family in Xf . Denote the cor-
responding family of X̂f (−Nqm+1p) for W+,np

m (I) by F . Let γ be a di-
rected arc in X̂f (−Nqm+1p) ⊆ Ŷf (−Nqm+1p). The initial segment δ of γ in
Ŷf (−Nqm+1p) is the first segment of the union of arcs γ ∩ Yf (−Nqm+1p).
We say two initial segments δ1, δ2 are homotopic if they are homotopic in
Ŷf (−Nqm+1p) and they both connect ∂U with ∂V where U, V are compo-
nent of Ĉ − Ŷf (−Nqm+1p). We remark that the homotopy condition does
not imply the second condition as ∂U ∪ ∂V may be connected.
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Since the topological complexity of Ŷf (−Nqm+1p) is bounded in terms
of a, there exists a constant C1 = C1(a) depending on a and a subfamily
F1 ⊆ F with

• W(F1) ≥ W(F)/C1 = K/C1; and
• all arcs in F1 have homotopic initial segments.

Note that we may assume F1 forms the vertical foliations of a rectangle
connecting I1 ⊆ I and L1 ⊆ ∂X̂f (−Nqm+1p). Since the non-peripheral arc
degeneration for I1 is large, by Proposition 3.3, we may assume that I1 is
grounded. Since |I1| ≤ lm, there are at most N critical points of fNqm+1p in
I1. Subdividing I1 into N + 1 subintervals if necessary, we may also assume
that there are no critical points of fNqm+1p on I1.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Suppose for contradiction that any grounded interval
J ⊆ ∂Z with |J | ≤ lm+1 satisfies W+,np(J) ≤ K/χa, where χa is some
constant to be determined.

Note that if |I1| ≤ lm+1, then we may take χa ≥ C1 and obtain a con-
tradiction. Thus, we may assume lm+1 < |I1| ≤ lm. Then the symmetric
difference

(fNqm+1p(I1) − I1) ∪ (I1 − fNqm+1p(I1))
consists of 2N number of level m + 1 combinatorial intervals. Note by
assumption, the widths W+,np for these combinatorial intervals are bounded
by K. Thus, the width W+,np for the union of these 2N intervals is bounded
from above by 2NK/χa. Thus there exists a rectangle in X̂f with base
fNqm+1p(I1) so that the family F̃ of its vertical arcs satisfies

|W(F̃) − W(F1)| = O(K/χa).

Let G be the pull back F̃ under fNqm+1p that starts at the interval I1. Since
fNqm+1p is univalent on I1, we have |W(G) − W(F̃)| = O(1) (see [DL22,
Lemma A.10]). Thus,

|W(G) − W(F1)| = O(K/χa).
After removing two 3NK/χa-buffers from F1, we get a subfamily F1,new ⊆
F1 starting at some interval I1,new. Note that by our assumption, the length
of each of the intervals in I1 − I1,new is at least 3N lm+1, and at most O(1)
curves in F1,new can cross the 1-buffers of G starting at I1 − I1,new. Thus,
by removing these curves if necessary, we obtain a subfamily F1,new ⊆ F1
with

|W(F1,new) − W(F1)| = O(K/χa)
that overflows G (see Figure 6.1).

Note that Nqm+1p ≥ N , arcs in G do not connect periodic pseudo-Siegel
disks by the definition of pulled-off constant. Thus, G consists of homotopi-
cally equivalent arcs connecting ∂Ẑ with some strictly pre-periodic pseudo-
Siegel disk ∂Û .
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F1,new

G

γ′

I1 fNqm+1p(I1)
∂Ẑ

∂Û

Figure 6.1. The configuration of the families F1,new and G.

Let γ′ be the part of γ ∈ F1,new after its first intersection with ∂Û .
Consider F ′ := {γ′ : γ ∈ F1,new}. Note that for each arc γ′ ∈ F ′, its image
fNqm+1p(γ′) contains some non-peripheral arc. Since the iteration Nqm+1p
is bounded, there exists a constant C2 = C2(a) so that

W(F ′) ≤ C2Warc(X̂f ).

By Proposition 3.3, W(F1) ≥ Warc(X̂f (−Nqm+1p))/aC1 ≥ Warc(X̂f )/4aC1.
Thus there exists a constant C3 = C3(a) so that

W(F ′) ≤ C3W(F1).
By the series law, we have

W(F1,new) ≤ W(G) ⊕ W(F ′).
Equivalently, we have

1/W(G) + 1/W(F ′) ≤ 1/W(F1,new).
Using our estimates on W(F1,new),W(G),W(F ′), we have

1/(W(F1) +O(K/χa)) + 1/(C3W(F1)) ≤ 1/(W(F1) +O(K/χa)).
Note that W(F1) ∈ [K/C1,K]. Let W(F1) = cK for c ∈ [1/C1, 1]. Thus,
by cancelling the common term K, we obtain

1/(c+O(1/χa)) + 1/(C3c) ≤ 1/(c+O(1/χa)).
This is a contradiction as such an inequality cannot hold if χa ≫ 1. This
concludes the proof of Theorem 6.1. □

7. Bounds on arc degeneration

In this section, we shall prove that Warc(X̂f ) is bounded in terms of
the pulled-off constant. By Theorem 4.1, this would immediately imply
that Warc(X̂f ) is uniformly bounded for eventually-golden-mean maps on
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the boundary of a Sierpinski carpet hyperbolic component of disjoint type.
More precisely, we will show

Theorem 7.1. Let H be a hyperbolic component of disjoint type. Let [f ] ∈
∂H be an eventually-golden-mean map with pulled-off constant N = N([f ]).
There exists a constant K depending only on N and the multipliers of at-
tracting cycles of f with the following properties.

(1) For each Siegel disk Zi,j of f , there exists a pseudo-Siegel disk Ẑi,j

which is a K-quasiconformal closed disk.
(2) For each attracting domain Di,j, there exists a valuable-attracting

domain D̂i,j with mod(Di,j − D̂i,j) ≥ 2π/K.
(3) The pseudo-core surface X̂f := Ĉ −

⋃
Int(D̂i,j) −

⋃
Int(Ẑi,j) has

uniformly bounded arc degeneration
Warc(X̂f ) ≤ K.

Let us outline the strategy of the argument. As a preparation, we first
construct pseudo-Siegel disks as in Theorem 3.4 with bounds depending on
Warc(X̂f ). Let X̂f be the pseudo-core surface. To prove Theorem 7.1, by
Theorem 3.4, it suffices to show that Warc(X̂f ) is uniformly bounded.

We will argue by contradiction. Suppose Warc(X̂f ) is sufficiently large.
Then

i) we can first localize the arc degeneration (Theorem 5.1) and obtain
a small grounded interval I1 with comparable local degeneration

W+,np(I) + W+,per
λ (I) ⪰ Warc(X̂f ).

ii) By Property (2)(b) in Theorem 3.4, the peripheral part W+,per
λ,m (I)

is relatively small.
iii) This means W+,np

m (I) is large. We will apply the calibration lemma
(see Theorem 6.1), and construct an interval on a deeper level with
big local degeneration, which contradicts Property (2)(a) in Theorem
3.4.

7.1. Choosing the constants. There are many constants in the proof. We
summarize their relations and the order we choose them here.

• a is the constant in the localization lemma (Theorem 5.1), and we
assume a > N ;

• χ is chosen so that it satisfies the calibration lemma (with constant
a = a)(Theorem 6.1);

• λ is chosen so that λ ≫ Λ,χ, where Λ is the constant in the local-
ization lemma (Theorem 5.1);

Let [f ] ∈ ∂H be an eventually-golden-mean map. Let θ1, ..., θl be the list
of rotation numbers for Siegel disks of f .

• ϵ is chosen so that
ϵ ≪ 1/χa.
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We also assume that all psuedo-Siegel disks are T -stable where

T ≫ 4aN max{pi}

where pi is the period of Siegel disks (see Remark 3.5). We remark that all
the constants above depend only on the pulled-off constant N .

7.2. Uniform geometric control.

Lemma 7.2. There exists a constant K depending on the pulled-off constant
N so that Warc(X̂f ) ≤ K.

Proof. Choose K ≫ 1 so that it is much bigger than the threshold in The-
orem 5.1 (with constant ϵ = ϵ, λ = λ and N), Theorem 6.1 (with constant
a = a).

Suppose by contradiction that Warc(X̂f ) = K ≥ K. By the localization
lemma (Theorem 5.1), there exist a pseudo-Siegel disk Ẑ and a grounded
interval I of Ẑm with

• |I| ≤ ϵ ≪ 1/χa; and
• W+,np

m (I) + W+,per
λ,m (I) ≥ 2K/a

Suppose that lm+1 < |I| ≤ lm. By Property (2)(b) of Theorem 3.4, the
peripheral part

W+,per
λ,m (I) = O(

√
lmK + 1) ≪ K/a,

for all sufficiently large K.
Thus, W+,np

m (I) ≥ K/a. By Property (2)(a) for level m of Theorem 3.4,
K/a ≤ W+,np

m (I) + W+,per
λ,m (I) = O(Klm + 1), so lm ≥ 1

4a . Therefore, we
can apply Theorem 6.1, and obtain a grounded interval J with |J | ≤ lm+1
with

W+,np
m+1 (J) ≥ K/χa.

By Property (2)(a) for level m+ 1 of Theorem 3.4, we have

W+,np
m+1 (J) = O(lm+1K + 1).

Since lm+1 ≤ |I| ≤ ϵ ≪ 1/χa, increase K if necessary, we have

W+,np
m+1 (J) ≪ K/χa,

which is a contradiction. The lemma now follows. □

Proof of Theorem 7.1. The theorem follows by combining Theorem 3.4, Lemma
2.7 and Lemma 7.2. □

8. Dynamics on limiting trees and bounds on loop degeneration

In this section, we shall prove the following theorem giving uniform bounds
of loop degeneration for eventually-golden-mean maps.
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Theorem 8.1. Let H be a hyperbolic component of disjoint type. Let [f ] ∈
∂H be an eventually-golden-mean map with (Siegel) pulled-off constant N =
NSiegel([f ]). Let

X̂f := Ĉ −
⋃

Int(D̂i,j) −
⋃

Int(Ẑi,j)

be the Riemann surface as in Theorem 7.1. There exists a constant Kloop

depending only on N and the multipliers of the attracting cycle of [f ] so that

Wloop(X̂f ) ≤ Kloop.

8.1. Limiting maps on trees. Recall that the marked hyperbolic compo-
nent H are parameterized by the 2d− 2 multipliers ρ1, ..., ρ2d−2:

H ∼= D1 × ...× D2d−2.

Fixing a1, ..., ak ∈ D and a constant N , and consider the slice

A := {[f ] ∈ ∂H : [f ] is an eventually-golden-mean map, with
ρi = ai, i = 1, ..., k, |ρi| = 1, i = k + 1, ..., 2d− 2, NSiegel([f ]) ≤ N}.

To prove Theorem 8.1, it suffices to show that there exists a constant Kloop

with Wloop(X̂f ) ≤ Kloop for any map [f ] ∈ A.
The proof is by contradiction. We first show that, after passing to a

subsequence, any sequence [fn] ∈ A converges to a limiting map on a tree of
Riemann spheres. If there is no such constant Kloop, then the limiting tree
is non-trivial. The dynamics on the tree is recorded by a Markov matrix M
and a degree matrix D. We show that there exists a non-negative vector
v⃗ ̸= 0⃗ with Mv⃗ = Dv⃗. As matrices with non-negative entries, we show that
D−1M is no bigger than the Thurston matrix for fn for sufficiently large
n. So the spectral radius of the Thurston’s matrix is greater or equal to 1,
giving a contradiction.

Following the notations in [Luo22b], we define

Definition 8.2. A tree of Riemann spheres (T , ĈV ) consists of a finite tree
T with vertex set V , a disjoint union of Riemann spheres ĈV :=

⋃
a∈V

Ĉa,

together with markings ξa : TaT ↪−→ Ĉa for a ∈ V .
The image Ξa := ξa(TaT ) is called the singular set at a, and Ξ =

⋃
a∈V

Ξa.

A rational map (F,R) on (T , ĈV ) is a map

F : (T ,V ) −→ (T ,V ) that is injective on edges,

and a union of maps R :=
⋃

a∈V

Ra so that

• Ra : Ĉa −→ ĈF (a) is a rational map;
• Ra ◦ ξa = ξF (a) ◦DFa.



42 D. DUDKO AND Y. LUO

It is said to have degree d if R has 2d− 2 critical points in ĈV − Ξ.
A sequence fn of degree d rational maps is said to converge to (F,R) on

(T , ĈV ) if there exist rescalings Aa,n ∈ PSL2(C) for a ∈ V such that
• A−1

F (a),n ◦ fn ◦Aa,n(z) → Ra(z) compactly on Ĉa − Ξa;
• A−1

b,n ◦ Aa,n(z) converges to the constant map ξa(v), where v ∈ TaT
is the tangent vector in the direction of b.

Theorem 8.3. Let [fn] ∈ A. Then after passing to a subsequence [fn]
converges to a degree d rational map (F,R) on (T , ĈV ).

Moreover, [fn] converges in Md,fm if and only if T is trivial, i.e., T
consists of a single vertex.

We remark that a similar result is proved for quasi-post critically finite de-
generations of arbitrary rational maps in [Luo22b]. For quasi-post critically
finite degeneration, the orbit of the critical points is controlled uniformly
throughout the sequence. In our setting, the critical orbits are controlled
in those valuable-attracting domains, as the multipliers stay constant, and
Theorem 7.1 gives a uniform bound for pseudo-Siegel disks. More precisely,
we use these uniform bounds crucially in two places.

(1) We use the fact that valuable-attracting domains and pseudo-Siegel
disks are uniform quasi disks to show that their rescaling limits con-
verge (Definition 8.5 and Lemma 8.6).

(2) We use the uniform bound on arc degeneration to control the holes
for the rescaling limit (Proposition 8.16), which allow us to construct
Thurston obstructions for large n (Proposition 8.19).

With these modifications, the proof is similar to the quasi-post critically
finite case as in [Luo22b].

We also remark that the same proof of Theorem 8.3 also gives the following

Theorem 8.4. Let [fn] ∈ H be a seuqnece of eventually-golden-mean maps
with uniformly bounded Warc(X̂f ). Then after passing to a subsequence [fn]
converges to a degree d rational map (F,R) on (T , ĈV ).

Moreover, [fn] converges in Md,fm if and only if T is trivial, i.e., T
consists of a single vertex.

Since maps in the slice A are marked, we use V to denote the collection
of valuable-attracting domains and open pseudo-Siegel disks.

More precisely, this means that if U ∈ V and [f ] ∈ A, then U(f) is either
a valuable-attracting component or the interior of a pseudo-Siegel disk for
f . Note that we have an induced dynamics

f∗ : V −→ V.

Construction of the rescaling. Let us fix a sequence [fn] ∈ A. We define
the rescaling for U ∈ V as follows.
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Definition 8.5. Let U ∈ V. Let αn ∈ U(fn) be the corresponding non-
repelling periodic point. A sequence AU,n ∈ PSL2(C) is called a rescaling
for U if

• AU,n(0) = αn ∈ U(fn);
• AU,n(1) ∈ ∂U(fn);
• AU,n(∞) ∈ Ĉ − U(fn).

Lemma 8.6. After passing to a subsequence, A−1
U,n(U(fn)) converges in

Hausdorff topology to some quasiconformal disk.

Proof. Since U(fn) are uniformly quasiconformal disks by Theorem 7.1,
there is a sequence Ψn : Ĉ −→ Ĉ of uniformly quasiconformal maps so that
Ψn(D) = U(fn), normalized so that Ψn(0) = AU,n(0),Ψn(1) = AU,n(1) and
Ψn(∞) = AU,n(∞). Then A−1

U,n ◦ Ψn is uniformly quasiconformal and fixes
0, 1,∞. Therefore, after passing to a subsequence, A−1

U,n ◦ Ψn converges to a
quasiconformal map Ψ. Thus, A−1

U,n(U(fn)) converges to the quasiconformal
disk Φ(D). □

The following lemma follows from the same argument as in [Luo22b,
Lemma 4.3].

Lemma 8.7. If AU,n, BU,n are two rescalings for U ∈ V, then the sequence
B−1

U,n ◦AU,n is bounded.
Equivalently, if we identify the hyperbolic 3-space H3 as the unit ball and

PSL2(C) ∼= Isom(H3), then
dH3(AU,n(0), BU,n(0)) is bounded,

where 0 ∈ H3 is the center of the unit ball.

Let us now fix rescaling AU,n for U ∈ V.

Lemma 8.8. Let U ∈ V. Let AU,n, Af∗(U),n be rescalings for U and f(U).
Then after passing to a subsequence,

A−1
f∗(U),n ◦ fn ◦AU,n

converges (away from finitely many points) to a non-constant map.

Proof. Note that A−1
f∗(U),n ◦ fn ◦AU,n is a sequence of rational maps, so after

passing to a subsequent, it converges (away from finitely many points) to
a rational map with degree ≤ d. By Lemma 8.6, after passing to a sub-
sequence, A−1

U,n(U(fn)) and A−1
f∗(U),n(f∗U(fn)) converge to U∞ and (f∗U)∞.

By [McM94, Theorem 5.6], A−1
f∗(U),n ◦fn ◦AU,n cannot converge to a constant

map on U∞, and the lemma follows. □

After passing to a subsequence, we may assume for different U, V ∈ V,
A−1

U,n ◦AV,n converges to either
• a Möbius transformation; or
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• a constant map.
This defines an equivalence relation on V: U ∼ V if and only if A−1

U ◦ AV

converges to a Möbius transformation. It follows from the same proof of
[Luo22b, Lemma 4.7] that if U ∼ V , then f∗(U) ∼ f∗(V ).

Let Π := V/ ∼ be the set of equivalence classes. By the previous remark,
we have an induced map

F : Π −→ Π.

Definition 8.9. For each equivalence class a ∈ Π, we choose a representa-
tive U ∈ a, and define the rescaling at a by

Aa,n := AU,n ∈ PSL2(C).

Construction of the tree of Riemann spheres (T , ĈV ). Recall that
we identify the hyperbolic 3-space H3 as the unit ball in R3 and Ĉ as the
conformal boundary of H3. Denote 0 ∈ H3 as the center of the unit ball.
We denote xa,n = Aa,n(0) ∈ H3 and Πn = {xa,n ∈ H3 : a ∈ Π}. Note that
by our construction, A−1

a,n ◦Ab,n → ∞ in PSL2(C), so

dH3(xa,n, xb,n) → ∞ if a ̸= b.

Thus, the hyperbolic polyhedra Cvx Hull(Πn) is degenerating. One can
construct a sequence of trees Tn as the spine for Cvx Hull(Πn) capturing
the degenerations of the polyhedra. We summarize some properties for Tn

and refer the readers to [Luo22b, §3 and §4] for more details.
• The vertex set Vn for Tn is a finite set consisting of Πn and branched

points of Tn;
• Each edge of Tn is a hyperbolic geodesic segment whose length goes

to ∞ as n → ∞;
• There exists a uniform lower bound on the angle between two adja-

cent edges of Tn;
• The finite tree Tn ⊆ Cvx Hull(Πn) and any point x ∈ Cvx Hull(Πn)

is within uniform bounded distance from Tn.
Since there are a bounded number of endpoints for Tn, after passing to a
subsequence, we assume that Tn are isomorphic as finite trees. Denote this
isomorphic class of finite trees as (T ,V ), and we have a marking for each n

Ψn : (T ,V ) −→ (Tn,Vn).

We remark that Π ⊆ V , and any point a ∈ V − Π is a branch point. We
extend the definition of rescalings for V − Π. Let a ∈ V − Π, a sequence
Aa,n ∈ PSL2(C) ∼= Isom(H3) is defined to be a resacling at a if

Aa,n(0) = Ψn(a).

Note that different choices of rescalings at a are differed by pre-composing
with a rotation that fixes 0, which form a compact group.
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Denote B = H3 ∪ Ĉ, and Ba = H3
a ∪ Ĉa for a ∈ V . We define a sequence

zn ∈ B converges to z ∈ Ba in a-coordinate or with respect to the rescaling
at a, denoted by zn →a z or z = lim

a
zn if

lim
n→∞

A−1
a,n(zn) = z.

By construction, A−1
a,n◦Ab,n converges to a constant map xb for a ̸= b ∈ V .

Thus, we can associate the point xb ∈ Ĉa to b. It is interpreted that the
Riemann sphere Ĉb converges to xb in the rescaling coordinate Ĉa. We
denote

Ξa :=
⋃
b ̸=a

xb ⊆ Ĉa

as the singular set at a and Ξ :=
⋃

a∈V

Ξa ⊆ ĈV as the singular set.

It follows from the construction that Ψn(b) →a xb ∈ Ĉa if a ̸= b ∈ V .
Since the angle ∠Ψn(a)Ψn(b)Ψn(c) is uniformly bounded below from 0 for
any distinct triple a, b, c ∈ V , the singular set Ξa is in correspondence with
the tangent space TaT at a. We denote this correspondence by

ξa : TaT −→ Ξa.

Construction of the rescaling rational maps. The following lemma
allows us to construct rescaling rational maps.

Lemma 8.10. Let a ∈ V , after passing to a subsequence, there exists a
unique b ∈ V so that

A−1
b,n ◦ fn ◦Aa,n

converges to a rational map Ra = Ra→b of degree at least 1.
Moreover, the holes of Ra are contained in Ξa.

Proof. If a ∈ Π ⊆ V , i.e., if a is represented by some U ∈ V, then Lemma
8.10 follows immediately from Lemma 8.8.

Otherwise, the proof is the same as [Luo22b, Lemma 4.12]. □

The above lemma allows us to define F : V −→ V by setting F (a) as the
unique vertex b in Lemma 8.10 extending the map F : Π ⊆ V −→ Π ⊆ V .

We define the map F : T −→ T by extending continuously on any edge
[a, b] to the arc [F (a), F (b)].

Modulus estimate for dynamics on edges. Let E = [a, b] be an edge
of T . In the following, we shall associate it with annuli AE,n and define the
local degree of E.

Let xb ∈ Ξa ⊆ Ĉa and xa ∈ Ξb ⊆ Ĉb be the points associated to b and a
respectively. Choose a small closed curve Ca ⊆ Ĉa around xb. We assume
Ca bounds no holes nor critical points of Ra other than possibly xb and
Ra : Ca −→ Ra(Ca) is a covering map of degree degξa(vb)(Ra). Similarly, we
define Cb ⊆ Ĉb around xa.
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Since A−1
F (a),n ◦ fn ◦ Aa,n converges uniformly to Ra in a neighborhood of

Ca, we can find a sequence of closed curves Ca,n such that
• fn : Ca,n −→ fn(Ca,n) is a covering of degree degξa(vb)(Ra);
• A−1

a,n(Ca,n) converges in Hausdorff topology to Ca.
Similarly, let Cb,n be the corresponding closed curves for Cb. Note that
Ca,n and Cb,n are disjoint for sufficiently large n and bounds an annulus
AE,n ⊆ Ĉ. We call AE,n a sequence of annuli associated to E.

We claim that AE,n contains no critical points of fn for sufficiently large
n. Indeed, otherwise, after passing to a subsequence, let cn ∈ AE,n, and let
c ∈ Π corresponds to the sequence (cn). Consider the projection

proj[Ψn(a),Ψn(b)](Ψn(c))

of Ψn(c) ∈ H3 onto the geodesics [Ψn(a),Ψn(b)]. Since we assume Ca bounds
no holes nor critical points other than possibly ξa(vb) and similarly for Cb,

dH3(proj[Ψn(a),Ψn(b)](Ψn(c)), ∂[Ψn(a),Ψn(b)]) → ∞.

This contradicts that [a, b] is an edge of T .
Therefore, fn : AE,n −→ fn(AE,n) is a covering map. Thus, degxb

(Ra) =
degxa

(Rb), and we define the local degree at E
δ(E) := degxb

(Ra) = degxa
(Rb),

as the degree of this covering map.
The proof of following modulus estimate can be found in [Luo22b, Propo-

sition 4.15].

Proposition 8.11. Let AE,n associated to an edge E = [a, b] of T . There
exists a constant K such that the modulus

| mod(AE,n) − dH3(Ψn(a),Ψn(b))
2π | ≤ K,

and
| mod(fn(AE,n)) − dH3(Ψn(F (a)),Ψn(F (b)))

2π | ≤ K.

The above modulus estimate gives the following corollaries.

Corollary 8.12. Let E = [a, b] be an edge of T . Then
dH3(Ψn(F (a)),Ψn(F (b))) = δ(E)dH3(Ψn(a),Ψn(b)) +O(1).

Corollary 8.12 implies that the map F is injective on edges. Thus, we
can define the tangent map DFa : TaT −→ TF (a)T . Since A−1

b,n ◦ fn ◦ Aa,n

converges to a rational maps away from the singular set, we also have the
following compatibility property.

Corollary 8.13. Let a ∈ T . Then
Ra ◦ ξa = ξF (a) ◦DFa.
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Proof of Theorem 8.3. By our construction, fn converges to (R,F ) and (R,F )
is a degree d rational map on (T , ĈV ).

For the moreover part, we note that if [fn] converges in Md,fm, then all
rescaling limits AU,n are equivalent for U ∈ V, so T consists of a single
vertex. On the other hand, if all rescaling limits AU,n are equivalent, then
A−1

U,n ◦ fn ◦ AU,n converges to a degree d rational map, so [fn] converges in
Md,fm. □

Matrix encoding. Index the set of edges of T by {E1, ..., Ek}. We define
the following two matrices to encode the dynamics F : T −→ T .

• (Markov matrix): Mi,j =
{

1 if Ei ⊆ F (Ej)
0 otherwise

• (Degree matrix): Di,j =
{
δ(Ei) if i = j

0 otherwise

Proposition 8.14. Let M and D be the Markov matrix and the degree
matrix respectively. If T is not trivial, then there exists a non-negative
vector v⃗ ̸= 0⃗ so that

Mv⃗ = Dv⃗.

Proof. Let v⃗n =

l(Ψn(E1))
...

l(Ψn(Ek))

, where l(Ψn(Ei)) is the hyperbolic length of

the edge Ψn(Ei). Let ρn = max
i=1,...,k

lH3(Ψn(Ei)) → ∞ After passing to a
subsequence, we assume the limit v⃗ = lim

n→∞
v⃗n/ρn exists. Then v⃗ is non-

negative and v⃗ ̸= 0⃗.
If suffices to check Mv⃗ = Dv⃗. If a, b ∈ V are connected by a sequence of

edges Ei1 ∪Ei2 ∪ ...Eim , since the angles between different incident edges at
a vertex of Tn are uniformly bounded below from 0, we have

dH3(Ψn(a),Ψn(b)) =
m∑

j=1
lH3(Ψn(Eij )) +O(1).

Thus, by Corollary 8.12, if F (Ei) = Ei1 ∪ Ei2 ∪ ...Eim , then

δ(Ei)lH3(Ψn(Ei)) =
m∑

j=1
lH3(Ψn(Eij )) +O(1).

Dividing both sides by ρn and taking limits, we conclude the result. □

8.2. Thurston’s obstruction. Let f : Ĉ −→ Ĉ be a rational map with
post-critical set Pf . Let Pf ⊆ U be a forward invariant set, i.e., f(U) ⊆ U .
A simple closed curve σ on Ĉ − U is essential if it does not bound a disk
in Ĉ − U , and a curve is peripheral if it encloses a single point of U . Two
simple curves are parallel if they are homotopic in C − U .



48 D. DUDKO AND Y. LUO

A curve system Σ = {σi} in Ĉ − U is a finite nonempty collection of
disjoint simple closed curves, each essential and non-peripheral, and no two
parallel. A curve system determines a transition matrix A(Σ) : RΣ −→ RΣ

by the formula
Aστ =

∑
α

1
deg(f : α → τ)

where the sum is taken over components α of f−1(τ) isotopic to σ.
Let λ(Σ) ≥ 0 denote the spectral radius of M(Σ). Since A(Σ) ≥ 0, the

Perron-Frobenius theorem guarantees that λ(Σ) is an eigenvalue for A(Σ)
with a non-negative eigenvector.

The same proof of [McM94, Theorem B.4] gives
Proposition 8.15. Let [f ] ∈ A be an eventually-golden-mean Siegel map.
Let Uf be the union of Siegel disks and valuable-attracting domains. Let Σ
be a curve system in Ĉ − Uf , then λ(Σ) < 1.
Curve system for edges of T . Let Un be the union of Siegel disks and
valuable-attracting domains for fn, and let Ûn be the union of open pseudo-
Siegel disks and valuable-attracting domains for fn. Note that Un is forward
invariant, and Un ⊆ Ûn. Let AE,n be the annulus associated to an edge E.

After passing to a subsequence, we may assume that for any a ∈ V ,
and any pseudo-Siegel disk or a valuable-attracting domain U(fn), the limit
A−1

a,n(U(fn)) exists. Since U(fn) are uniformly quasiconformal disks, the
limit is either a point or a quasiconformal disk. We say U(fn) is trivial for
a if the limit is a point, and non-trivial otherwise.

The following lemma is the crucial step that we use the geometric control
of valuable-attracting domains and pseudo-Siegel disks.
Proposition 8.16. Let a ∈ V . The singular set Ξa is disjoint from the clo-
sure of any non-trivial limits of pseudo-Siegel disks and valuable-attracting
domains in Ĉa.
Proof. Let U = limA−1

a,n(U(fn)) ⊆ Ĉa be a non-trivial limit. It is easy to
see that the singular set is disjoint from U . Now suppose x ∈ Ξa ∩ ∂U .
Since x is a singular point, there exists a sequence of pseudo-Siegel disk or
a valuable-attracting domain W (fn) with limA−1

a,n(W (fn)) = x. Without
loss of generality, we assume a is fixed. Since there is a critical point on the
boundary of U, Ra has degree at least 2. Therefore, Ĉa contains at least
two non-trivial limit of pseudo-Siegel disks or a valuable-attracting domains.
Consider a small arc γ ⊆ Ĉa − U with ∂γ ⊆ ∂U that encloses x. Then the
corresponding arc with end points in ∂U(fn) for fn is non-peripheral and
its extremal width goes to infinity as n → ∞. This is a contradiction to
Theorem 7.1. □

As a corollary, we have
Corollary 8.17. For sufficiently large n, the core curve σE,n of AE,n is a
curve in Ĉ − Ûn ⊆ Ĉ − Un.
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Let
Σn = {σE,n : E is an edge of T }.

Then Σn is a curve system in Ĉ − Un for all sufficiently large n.

Lemma 8.18. If E ⊆ F (E′), then for sufficiently large n, σE,n has a lift of
degree δ(E′) homotopic to σE′,n in Ĉ − Un.

Proof. Let AE,n and AE′,n be annuli associated to E and E′ respectively.
Modify the boundaries of AE,n if necessary, we may assume AE,n ⊆ fn(AE′,n),
where the inclusion induces an isomorphism on the fundamental group.
So for sufficiently large n, there exists an essential simple closed curve
γn ⊆ AE,n that has a degree δ(E) lift γ′

n ⊆ AE′,n. By Proposition 8.16,
these γn and γ′

n are homotopic to core curves σE,n and σE′,n in Ĉ− Un, and
the lemma follows. □

Combining Proposition 8.14 and Lemma 8.18, we have

Proposition 8.19. Let Σn be the curve system associated with the edges of
T in Ĉ−Un. If T is not trivial, i.e. it contains more than one vertex, then
for sufficiently large n, the spectral radius λ(Σn) ≥ 1.

Proof of Theorem 8.1. Suppose for contradiction that Theorem 8.1 does not
hold. Then there exists a sequence [fn] ∈ A with Wloop(Xfn) → ∞. After
passing to a subsequence, [fn] converges to a degree d rational map (F,R)
on (T , ĈV ) by Theorem 8.3. Since [fn] → ∞ in Md,fm, the tree T is
not trivial. By Proposition 8.19, the curve system Σn has spectral radius
λ(Σn) ≥ 1 for all sufficiently large n. This is a contradiction to Proposition
8.15. □

The same proof also gives Theorem 1.4 and Theorem A.

Proof of Theorem 1.4. Since the arc degeneration is uniformly bounded, fn

converges to a degree d rational map (F,R) on (T , ĈV ) by Theorem 8.4.
Suppose for contradiction that [fn] diverges, then the tree T is non-trivial.
Therefore, Wloop(Xfn) → ∞ which is a contradiction. Since the degenera-
tion is uniformly bounded, the psuedo-Siegel disks and valuable-attracting
domains do not collide. So [f ] has 2d− 2 non-repelling cycles. □

Proof of Theorem A. It suffices to show that the marked hyperbolic com-
ponent H is bounded. Note that H is identified with D1 × ... × D2d−2. It
suffices to realize the multiplier (λ1, ..., λ2d−2) ∈ ∂(D1 × ...×D2d−2) by a map
[f ] ∈ ∂H. Let [fn] ∈ ∂H be a sequence of eventually-golden-mean maps with
the corresponding multipliers (λ1,n, ..., λ2d−2,n) converging to (λ1, ..., λ2d−2)
strongly (see Definition 2.5).

By Theorem 4.1, the pulled-off constant is uniformly bounded in this case.
By Theorem 8.1, [fn] has uniformly bounded degeneration, so [fn] → [f ] ∈
Md by Theorem 1.4. By construction, the corresponding multiplier profile
of f is (λ1, ..., λ2d−2), and the theorem follows. □
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Appendix A. Degenerations of Riemann surfaces

In this section, we introduce some terminologies to study degenerations
of Riemann surfaces using extremal length and extremal width. There is a
wealth of sources containing background material on this topic (see [Ahl73],
[Kah06] or [KL09, Appendix 4]). We will briefly summarize the necessary
minimum.

A.1. Arcs and simple closed curves. Let X be a compact Riemann
surface with boundary. An arc γ of X is a continuous map

h : [0, 1] −→ X

with h(0), h(1) ∈ ∂X. We shall not differentiate the continuous map with
its image γ in X.

We say two arcs γ0, γ1 are homotopic, denoted by γ0 ∼ γ1, if there exists
a continuous path in the space of all arcs that connects γ0 and γ1. This
means that there exists a continuous map

H : [0, 1] × [0, 1] −→ X

with H(t, 0) = γ0(t), H(t, 1) = γ1(t), H(0, s), H(1, s) ∈ ∂X.
We remark that this is different from homotopy relative to ∂X, as we

allow the homotopy to slide points on the boundary ∂X.
An arc γ is said to be peripheral if it is a homotopic to an arc that is

contained in a boundary component of X. Note that each component of ∂X
is a circle and an arc is peripheral if and only if it is homotopic to a point.

Similarly, a closed curve α of the Riemann surface X is a continuous map
h : S1 −→ X.

We do not differentiate the continuous map with its image α in X. Two
closed curves are homotopic if the two continuous maps are homotopic. We
denote this by α0 ∼ α1. It is said to be simple if h is an embedding.

For simplicity, we refer to both arc and closed curve as curves.

A.2. Extremal length and extremal width. Let F be a family of curves
on X. Given a (measurable) conformal metric ρ = ρ(z)|dz| on X, let

L(F , ρ) := inf
γ∈F

L(γ, ρ),

where L(γ, ρ) stands for the ρ-length of γ. The extremal length of F is

LX(F) := sup
ρ

L(F , ρ)2

A(X, ρ) ,

where A(U, ρ) is the area of X with respect to the measure ρ2, and the
supremum is taken over all ρ subject to the condition 0 < A(X, ρ) < ∞.
The extremal width of F is defined as the inverse of the extremal length:

WX(F) = 1
LX(F) .
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A.2.1. Series law and parallel law. One of the key properties of the extremal
width is that it behaves like resistance in an electric circuit.

We say a family of curves F overflows another family of curves G if every
curve γ ∈ F contains a subcurve γ′ ∈ G. By definition, if F overflows G,
then

WX(F) ≤ WX(G).
We say F disjointly overflows two families G1,G2 if any curve γ ∈ F

contains the disjoint union γ1 ⊔ γ2 of two curves γi ∈ Gi (see Figure A.1). If
F disjointly overflows G1,G2, then the Grötzsch inequality states that

WX(F) ≤ WX(G1)
⊕

WX(G2), (A.1)

where x
⊕

y = 1
1
x + 1

y

is the harmonic sum. We shall refer to Equation A.1

the series law.

G1

G2

F

F

G1
G2

Figure A.1. An illustration of the series law on the left and
parallel law on the right.

On the other hand, if F ⊆ G1 ∪ G2, i.e., every curve in F is either a curve
in G1 or a curve in G2 (see Figure A.1), then

WX(F) ≤ WX(G1) + WX(G2). (A.2)
We shall refer to Equation A.2 the parallel law.

A.2.2. Extremal width between two sets. Let I, J ⊆ X be subsets of X.
By an arc connecting I and J in X, we mean an arc parameterized by a
continuous map γ : [0, 1] −→ X with γ(0) ∈ I, γ(1) ∈ J and γ((0, 1)) ⊆
X − (I ∪ J).

We use WX(I, J) to denote the conformal widths of the family of arcs
connecting I and J in X. When the underlying Riemann surface X = Ĉ,
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we will sometimes omit the subindex, and simply write
W(I, J) := WĈ(I, J).

A.3. Euclidean rectangles and (topological) rectangles. A Euclidean
rectangle is a rectangle Ex := [0, x] × [0, 1] ⊂ C, where:

• (0, 0), (x, 0), (x, 1), (0, 1) are four vertices of Ex,
• ∂hEx = [0, x] × {0, 1} is the horizontal boundary of Ex,
• ∂h,0Ex := [0, x] × {0} is the base of Ex,
• ∂h,1Ex := [0, x] × {1} is the roof of Ex,
• ∂vEx = {0, x} × [0, 1] is the vertical boundary of Ex,
• ∂v,ℓEx := {0} × [0, 1], ∂v,ρEx := {x} × [0, 1] is the left and right

vertical boundaries of Ex;
• F(Ex) := {{t} × [0, 1] | t ∈ [0, x]} is the vertical foliation of Ex,
• F full(Ex) := {γ : [0, 1] → Ex | γ(0) ∈ ∂h,0Ex, γ(1) ∈ ∂h,1Ex} is the

full family of curves in Ex;
• W(Ex) = W(F(Ex)) = W(F full(Ex)) = x is the width of Ex,
• mod (Ex) = 1/W(Ex) = 1/x the extremal length of Ex.

By a (topological) rectangle in a Riemann surface we mean a closed Jordan
disk R together with a conformal map g : R −→ Ex. We call the preimage
∂h,0R of [0, x] × {0} the base, and the preimage ∂h,1R of [0, x] × {1} the
roof. We denote the horizontal boundaries by

∂hR := ∂h,0R ∪ ∂h,1R.
Similarly, we denote the vertical boundaries by

∂vR := ∂v,0R ∪ ∂v,1R.
The width of a rectangle R is

W(R) := WR(∂h,0R, ∂h,1R) = x.

A K-buffer of a rectangle R is the image g([0,K]× [0, 1]∪ [x−K,x]× [0, 1]).
The collection of vertical arcs

Fv,R := {g({t} × [0, 1]) : t ∈ [0, x]}
is called the vertical foliation of the rectangle R. Similarly, the horizontal
foliation of R is the collection

Fh,R := {g([0, x] × {t}) : t ∈ [0, 1]}.
Abusing the notations, when we say remove K-buffers for the vertical folia-
tion, we mean the foliation

F := {g({t} × [0, 1]) : t ∈ [K,x−K]}.
A genuine subrectangle of Ex is any rectangle of the form E′ = [x1, x2] ×

[0, 1], where 0 ≤ x1 < x2 ≤ x; it is identified with the standard Euclidean
rectangle [0, x2 − x1] × [0, 1] via z 7→ z − x1. A genuine subrectangle of a
topological rectangle is defined accordingly.
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A.4. Arc and loop degenerations. Let γ be a non-peripheral arc of X,
and F(γ) be the family of arcs homotopic to γ. We define the degeneration
for γ as the extremal width

W(γ) := W(F(γ)).
Since majority of wide rectangles do not intersect (see, for example, [Kah06,
§3]), there are only finitely many homotopy classes of non-peripheral arcs
γ with W(γ) ≥ 2. In fact, this number is bounded by the topological
complexity of X. We define the arc degeneration for X as

Warc(X) =
∑

γ:W(γ)≥2
W(γ).

Similarly, if Z is a component of ∂X, we defined
W loc

arc(Z) =
∑

γ∈Γ1:W(γ)≥2
W(γ) + 2

∑
γ∈Γ2:W(γ)≥2

W(γ)

where Γ1 (or Γ2) contains homotopy classes of non-peripheral arcs with
exactly one endpoint (or two endpoints) on Z. Note that by definition,

2Warc(X) =
∑
Z

W loc
arc(Z),

where the sum is over all boundary components of X.
Similarly, let α be a homotopically non-trivial simple closed curve, and

let G be the family of simple closed curves isotopic to α. We remark here
that the curve α is allowed to be homotopic to a boundary component of
X. We define the degeneration for α of X as the extremal width

W(α) := W(G).
We define the loop degeneration for X as

Wloop(X) =
∑

α:W(α)≥2
W(α).

A.5. The Thin-Thick Decomposition. Here, we summarize a few vari-
ations of the fundamental fact that wide families of curves are supported
within finitely many pairwise disjoint wide rectangles. We refer the readers
to [Lyu, §7.6] for more details.

Let I, J ⊂ ∂X be two intervals. Let FX(I, J) be the family of arcs
connecting I and J in X. Then the Thin-Thick Decomposition of X rel the
pair I, J says that, up to Oχ(X)(1), we can replace the family FX(I, J) by
a finitely many disjoint rectangles. More precisely, there exist finitely many
pairwise disjoint non-homotopic rectangles R1, ...,Rs connecting I and J ,
i.e,

∂h,0Ri ⊂ I and ∂h,1Ri ⊂ J,

such that
s∑

i=1
W(Ri) = WX(I, J) −Oχ(X)(1), (A.3)
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X

Figure A.2. An illustration of arc and loop degenerations.
Here X is a genus 0 Riemann surface with 5 boundary com-
ponents. Arc and loop degenerations are indicated by dark
and light grey respectively.

where χ(X) is the Euler characteristic of X. We remark that since the
rectangle are disjoint and non-homotopic, s is bounded by the topological
complexity of the surface X.

The Thin-Thick Decomposition of X says that there are finitely many
pairwise disjoint non-homotopic rectangles and annuli in X

TX = (R1,R2, . . . ,Rt,A1,A2, . . .As), ∂hR ⊂ ∂X

such that
• families

F(γ), Farc(X), F loc
arc(Z)

for the corresponding

W(γ), Warc(X), W loc
arc(Z)

introduced in §A.4 are supported, up to Oχ(X)(1), within finitely
rectangles from TX ,

• the family Floop(X) (for Wloop(X)) is formed by the annuli from TX .
Given a component Z of ∂X, the covering annuli A(X,Z) of X with

respect to Z is obtained by opening up all loops except Z; see [DL23, §3.3.3]
for a more detailed description. Then the family F

(
A(X,Z)

)
of curves in

A(X,Z) connecting its boundary components is, up to Oχ(X)(1), supported
in the univalent lifts Rτ

i ⊂ A(X,Z), τ ∈ {0, 1} of the rectangles Ri from TX

with
• τ = 0 if ∂h,0Ri ⊂ Z,
• τ = 1 if ∂h,1Ri ⊂ Z.
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In particular, this means that

W (A(X,Z)) =
∑
i,τ

W(Rτ
i ) +Oχ(X)(1) (A.4)

=
∑

Ri∈TX , ∂h,0Ri⊂Z

W(Ri) +
∑

Ri∈TX , ∂h,1Ri⊂Z

W(Ri) +Oχ(X)(1)

= W loc
arc(Z) +Oχ(X)(1).

Appendix B. Siegel ψ•-ql maps and psuedo-Siegel disks

In this appendix, we summarize pseudo-Siegel bounds from [DL22] adopted
to ψ•-ql maps.

We recall that ψ-quadratic-like maps were introduced in [Kah06]. They
generalize the notion of quadratic-like maps with the goal of explicitly relat-
ing the geometry of various renormalizations of quadratic polynomials. It
is essential for the theory that the post-critical set of the map is ι-proper
(see §B.1). In [Kah06], it is assumed that the filled-in Julia set itself is
ι-proper in the definition of ψ-ql maps. In this appendix, we will consider
ψ•-ql Siegel maps with the requirement that the closed Siegel disk (and its
iterated preimages) is ι-proper. We refer to [DL23] for a related notion of
ψ•-ql “bush” maps. For technical reasons, we require in Item (II) that ι is
a covering onto its image in the complement of the Siegel disk.

B.1. ψ•-ql Siegel maps. A map ι : A → B between open Riemann sur-
faces is called an immersion if every x ∈ X has a neighborhood Ux such
that ι : Ux → ι(Ux) is a conformal isomorphism. Immersions arising in
applications are compositions of covering maps and embeddings in various
orders. A compact subset S ⋐ B is called ι-proper if ι | ι−1(S) → S is a
homeomorphism.

A pseudo•-quadratic-like Siegel map (“ψ•-ql Siegel map”) is a pair of holo-
morphic maps

F = (f, ι) : (U,ZU )⇒ (V,Z), so ZU ⊆ f−1(Z) ∩ ι−1(Z) (B.1)
between two conformal disks U , V with the following properties:

(I) f : U → V is a double branched covering with a unique critical point
c0;

(II) ι : U → V is an immersion such that

ι : U \ f−1(ZU ) −→ ι
(
U \ f−1(ZU )

)
is a covering map;

(III) ZU = ι−1(Z) is ι-proper; in particular, ι : ZU
≃−→ Z;

define inductively K0 := Z, K1,U := f−1(Z), K1 := ι(K1,U ), and, for n ≥ 1

Kn,U := f−1 ◦
(
ι ◦ f−1)n−1(Z) and Kn := ι(Kn,U ) =

(
ι ◦ f−1)n(Z);

(IV) for all n ≥ 0, the restriction ι : Kn,U
≃−→ Kn is a homeomorphism;
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(V) there exist neighborhoods XU ⊃ ZU and X ⊃ Z with the following
property: ι : XU → X is a conformal isomorphism such that

fX := f ◦
(
ι | XU

)−1 : X → f(XU ) =: Y (B.2)

is a Siegel map: Z ⋐ X ∩ Y is the closed qc Siegel disk around the
fixed point α ∈ Z = intZ with bounded-type rotation number.

Since ι is a conformal isomorphism in a neighborhood of Z, we will below
identify

Z ≃ ZU ≡ ZF and write F : (U,Z)⇒ (V,Z) or F : U ⇒ V.

Similarly, we identify Kn ≃ Kn,U .
The width of F is

W•(F ) := W(V \ Z).
If W•(F ) ≤ K, then XU ≃ X in Item (V) can be selected so that

mod (X \ Z) ≥ ε(K). (B.3)
Thereofre, ψ•-ql Siegel maps f with W•(f) ≤ K form a compact set.

Example B.1. Consider a quadratic rational map g ∈ ∂egmHz2, where Hz2

is the hyperbolic component of z 7→ z2, see §1.4. Assume that g has closed
Siegel qc-disks Z0, Z∞ at 0 and ∞. We naturally obtain two ψ•-ql maps:

G0 = (g, ↪→) : (U0, Z0)⇒ (V0, Z0), V0 = Ĉ \ Z∞, U0 = g−1(V0),

G∞ = (g, ↪→) : (U∞, Z∞)⇒ (V∞, Z∞), V∞ = Ĉ \ Z0, U∞ = g−1(V∞),
where the immersion ι =“↪→” is an embedding. We have:

W•(G0) = W•(G∞) = W
(
Ĉ \ [Z0 ∪ Z∞]

)
.

B.2. ψ•-ql renormalization. Consider a disjoint type hyperbolic compo-
nents H and an eventually-golden mean map [f ] ∈ ∂egmH; see Definitions 2.1
and 2.4. The construction below is an adaptation of ψ-ql renormalization
from [Kah06]; see also [DL23, §3].

Consider a periodic Siegel disk Zs = Zi,j of f with period p ≥ 1. We will
now define a ψ•-ql map associated with Z. Write

X := Ĉ −
⋃
i,j

Di,j −
⋃
i,j

Zi,j and X ′ := f−p(X).

Since X ′ ⊂ X, we obtain a correspondence:
(fp, ↪→) : X ′ ⇒ X, (B.4)

where ↪→ is a natural embedding. Consider the covering X̃ → X opening up
all loops except ∂Z; in particular, X̃ is an annulus. Similarly, the covering
X̃ ′ → X ′ opens up all loops except (slightly thickened) ∂(Z ∪Z ′), where Z ′

is the unique preperiodic fp-lift of Z attached to Z.
Then (B.4) induces a correspondence

F = (fp, ι) : X̃ ′ ⇒ X̃,
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where fp is a 2 : 1 covering map and ι is an immersion obtained by lifting
“↪→”. (In fact, ι is a covering onto its image). Gluing X̃ with Z and gluing
X̃ ′ with Z ∪ Z ′, we obtain a ψ•-ql map

F = (fp, ι) : U ⇒ V (B.5)

The Thin-Thick Decomposition in §A.5, or more precisely, the Equation
A.4 implies that

W•(
F

)
= W loc

arc(Z) +O(1),

where W loc
arc is defined in §A.4. Moreover, the rectangles in the Thin-Thick

Decomposition of X adjacent to Z lift univalently into the dynamical plane
of F ; their lifts are disjoint rectangles connecting ∂V and ∂Z with total
width being W(F ) −O(1).

B.3. A priori-bounds for ψ•-ql Siegel maps. The definition of pseudo-
Sigel disks for ψ•-ql Siegel maps is the same as Definition 3.1 (for maps in
∂egmH) with no peripheral requirements as in §3.2.1 – every set in intV is
peripheral rel Z. In other words, Property (P) in §3.2.2 takes form:

(P•) The territory X (Ẑm) is a topological disk in V .
Let D ⊃ Z be a peripheral disk. We say a curve γ in V is vertical or non-

peripheral (rel D) if γ connects ∂D and ∂V in V , and we say it is peripheral
(rel D) if ∂γ ⊆ ∂D.

Let λ ≥ 1 and let I be an interval on Ẑm. The families F+,ver

Ẑm
(I),F+,per

λ,Ẑm
(I)

and their corresponding widths W+,ver

Ẑm
(I),W+,per

λ,Ẑm
(I) are defined accordingly

as in §3.6. We remark that here + in the superscript means that the curves
in the family have interior contained in in V − Ẑm.

Let KF := W•(F ) be the width of F . We define the special transition
level mF for F as follows.

• If KF ≤ 1, we set mF := −2;
• Otherwise, we set mF to be the level satisfying

1
lmF

< KF ≤ 1
lmF +1

or,
equivalently,

lmFKF > 1, and
lmF +1KF ≤ 1.

We recall that l−1 = 1 and l0 = dist(x, f(x)).
The following theorem is proved in [DL22, Theorem C.3].

Theorem B.2. Consider an eventually-golden-mean ψ•-ql map F (see §B.1)
of width KF := W•(F ) and the transition level mF . Then there is an in-
creasing sequence of pseudo-Siegel disks Ẑm, m ≥ −1 such that for every
grounded interval J ⊂ ∂Z with lm+1 < |J | ≤ lm the following holds:

(A) if m > mF , then

W+,ver

Ẑm
(Jm) = O(1) and W+,per

10,Ẑm
(Jm) ≍ 1,
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(B) if m < mF , then

W+,ver

Ẑm
(Jm) ≍ |J |KF and W+,per

10,Ẑm
(Jm) = O(1),

(C) if m = mF , then

W+,ver

Ẑm
(Jm) = O(lmKF ) and W+,per

10,Ẑm
(Jm) = O(

√
lmKF ).

Moreover, Ẑ−1 is M(KF )-qc disk; i.e. the dilatation of Ẑ−1 is bounded in
terms of KF .

We remark that in Cases (B) and (C), we have |J |KF , lmKF ≥ 1.
We also remark that in all three cases, we have the following bounds

W+,ver

Ẑm
(Jm) = O(lmKF + 1)

W+,per

10,Ẑm
(Jm) = O(

√
lmKF + 1).

(B.6)

Remark B.3. In short, ψ•-formalism stated in Theorem B.2 takes care of
all scales except the special transition scale m = mF . Case (A) says that
on deep scales, the geometry of F is uniformly bounded, and the estimates
are equivalent to that of quadratic polynomials. Case (B) says that on
shallow scales, vertical degeneration dominates peripheral and is uniformly
distributed at all intervals.

Theorem B.2 does not provide a satisfactory description of W+,ver and
W+,per

10 in Case (C). In our paper, such information comes from the global
analysis of pseudo-Core surface degenerations stated in Theorem 5.1 and
Theorem 6.1; see Remark 1.10.

For an explicit construction of “geodesic” pseudo-Siegel disks satisfying
Theorem B.2, see §B.5.

B.4. Localization of submergence. Let us say that a rectangle R sub-
merges into a pseudo-bubble Ẑi if

• ∂hR is disjoint from X (Ẑi); and
• every curve γ ∈ F(R) intersects Ẑi.

Lemma B.4. Assume that a rectangle R with W(R) = K submerges into
a pseudo-bubble Ẑi. Then for every λ > 2, there is

• a grounded interval J ⊂ ∂Ẑi with |J | < 1
λ2 , and

• sublamination Q̃ ⊂ F(R) that overflows a lamination Q outside of
Ẑi with W(Q) ⪰ K −O(lnλ)

such that
• either Q is a lamination from J to ∂h,1R;
• or Q ⊂ F+(J, ∂Ẑi \ [λJ ]c); i.e., Q is a lamination outside of Ẑi from
J to ∂Ẑi \ (λJ).
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A0 A1
γ0 γ1 γ2

∂0,hR

∂Ẑi

Figure B.1. An illustration of a rectangle submerging into
a pseudo-bubble.

Proof. Let γ̃0, γ̃1, γ̃2 be the leftmost, middle and rightmost vertical arcs of
the rectangle R. We orient these arcs so that they connects the lower bound-
ary ∂h,0R to ∂h,1R. Since R submerges into Ẑi, γ̃j intersects Ẑi. Let aj

be the first time γ̃j enters Ẑi, and let γj ⊆ γ̃j be the sub arc connecting
∂h,0R and aj . Let A0, A1 be the region bounded by γ0, γ1, ∂

h,0R, ∂Ẑi and
γ1, γ2, ∂

h,0R, ∂Ẑi as illustrated in Figure B.1). Since ∂h,1R is disjoint from
X (Ẑi), at least one of the regions A0, A1 is disjoint from ∂h,1R. Without loss
of generality, we may assume A0 is disjoint from ∂h,1R. Consider the left
rectangle R′ ⊆ R bounded by γ̃0, γ̃1, ∂

h,0R, ∂h,1R, and let I be the interval
on ∂Ẑi bounded by a0, a1. Then for every vertical γ arc connecting ∂h,0R′

to ∂h,1R′,
• the first intersection of γ with D is in I; and
• the last intersection of γ with D is in Ic = ∂D \ I.

With this reduction, we can directly apply [DL22, Lemma 6.9], and the
lemma follows. □

B.4.1. From Wnp to W+,np ⊔ W+,p
λ . We need the following submergence

results in our main application to convert Wnp-degeneration into W+,np

and W+,p
λ -degenerations.

Lemma B.5. Let Ẑ be a pseudo-Siegel disk. Let R be a rectangle with
W(R) = K such that the I := ∂h,0R is a grounded interval on Ẑ, and ∂h,1R
is disjoint from X (Ẑ). Then for every λ > 2, there is either

• a genuine subrectangle R1 of R with W(R1) ⪰ K such that R1 is
outside of int Ẑ; or

• a grounded interval J ⊂ ∂Ẑ such that W+,per
λ (J) ⪰ K −O(lnλ); in

particular, |J | < 1
λ

if K ≫ lnλ.
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Proof. Assume that there are no genuine subrectangle R1 of R with W(R1) ⪰
W(R). Then a substantial part of F(R) submerges into int Ẑm and we have
two cases:

• either a substantial part of F(R) first submerges into int Ẑm in
(λ3I)c;

• or a substantial part of F(R) first submerges into int Ẑm in λ3I.
In the first case, we take J := I. The second case follows from [DL22,
Corrolary 6.2] applied to either the pair I ∪ L−, (λ3I)c or to the pair I ∪
L+, (λ3I)c, where L−, L+ are two intervals in (λ3I) \ I. □

B.5. Geodesic pseudo-Siegel disks. In this subsection, we summarize
an explicit construction of geodesic pseudo-Siegel disks Ẑ satisfying Theo-
rem B.2 for an eventually-golden-mean ψ•-ql map F . We refer the readers
to [DL22, §C] for more discussions.

Choose an absolute but big constant M ≫ 1, and let mF be the transition
level defined in §B.3. We set

Mm :=


M, if m > mF ,
M + elmKF , if m = mF ,
∞, if m < mF .

(B.7)

We say that a level m is near-parabolic if lm > Mmlm+1; otherwise m is
non-parabolic. Since F is eventually-golden-mean, all sufficiently deep levels
m ≫F 1 are non-parabolic. In short, Mm will be a combinatorial threshold
for regularization: if lm

lm+1
≥ Mm, then Ẑm+1 is regularized into Ẑm at

depth e
√

ln Mm , see §B.5.1; otherwise Ẑm := Ẑm+1. We remark that by our
definition of Mm, if m < mF , then we always set Ẑm := Ẑm+1.

B.5.1. Construction of parabolic fjord FI and Sinn
I . Consider a parabolic

level m. Let I = [a, b] ∈ Dm be an interval in the mth diffeo-tiling of ∂Z.
Choose a′, b′ ∈ I with a < a′ < b′ < b such that

dist(a, a′) = dist(b′, b) =
⌊
e

√
ln Mm

⌋
lm+1

and set βI to be the hyperbolic geodesic of V \ Z connecting a′, b′. This
defines the parabolic fjord FI , see Figure 3.2. We remark that since the
level m is near-parabolic, we have

|I| = dist(a, b) ≍ lm ≥ Mmlm+1 ≫
⌊
e

√
ln Mm

⌋
lm+1.

To construct Sinn
I , we choose a sufficiently big v ≫ 1 with the under-

standing that e
√

ln Mm ≫ v. Choose a′′ ∈ [a, a′] and b′′ ∈ [b′, b] such that

dist(a, a′′) = dist(b′′, b) =
⌊
e

√
ln Mm

v

⌋
lm+1 ≫ lm+1, (B.8)

this defines Sinn
I , see Figure 3.2.
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B.5.2. Construction of AI and
⋆
X I . Let GI be the rectangle from [a, a′′] to

[b′′, b] bounded by hyperbolic geodesics in V \ Z; i.e.,

∂h,0GI = [a, a′′], ∂h,1GI = [b′′, b]

and ∂vGI is the pair of hyperbolic geodesics. The condition that e
√

ln Mm ≫
v implies that (see [DL22, §4])

W(GI) ≍ ln
(
e

√
ln Mm/v

)
≫ 1.

We can now select a required rectangle XI conformally deep in GI (i.e.,
conformally close to βI) so that its width is of the size ∆ ≪

√
ln Mm. We

can also select AI separating XI from Sinn
I . In particular, we can assume

that the interval

[xa, xb] := ∂
⋆
X I ∩ I with xa ∈ [a, a′′], xb ∈ [b′′, b]

is defined similar to (B.8):

dist(a, xa) = dist(xb, b) =
⌊
e

√
ln Mm

w

⌋
lm+1,

where w ≫ v ≫ 1 with the understanding that we still have e
√

ln Mm ≫ w.

B.5.3. Stability of Ẑm. Since e
√

ln Mm ≫ w, we see that the construction

guarantees that dist(∂hXI , ∂I) =
⌊
e

√
ln Mm

w

⌋
lm+1 ≫ lm+1. Thus, by the

discussion in § 3.3, we see that Ẑm can be assumed to be T -stable for
arbitrarily large T (see Remark 3.5).
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2010.

[Kiw15] J. Kiwi. Rescaling limits of complex rational maps. Duke Math. J., 164(7):1437–
1470, 2015.

[KL09] J. Kahn and M. Lyubich. The Quasi-Additivity Law in conformal geometry.
Ann. of Math.(2), 169:561–593, 2009.

[Lyu] M. Lyubich. Conformal Geometry and Dynamics of Quadratic Polynomials.
Book in preparation; www.math.stonybrook.edu/ mlyubich/book.pdf

[Lev10] G. Levin. Multipliers of periodic orbits in spaces of rational maps. Ergodic The-
ory and Dynam. Systems, 31(1):197–243 2010.

[Luo21a] Y. Luo. On geometrically finite degenerations I: boundaries of main hyperbolic
components. arXiv:2101.07880, 2021.

[Luo21b] Y. Luo. Limits of rational maps, R-trees and barycentric extension. Adv. Math.,
394: 108075, 2021.

[Luo22a] Y. Luo. Trees, length spectra for rational maps via barycentric extensions and
Berkovich spaces. Duke. Math. J., 171(14): 2943–3001, 2022.

[Luo22b] Y. Luo. On geometrically finite degenerations II: convergence and divergence.
Trans. Amer. Math. Soc., 375: 3469–3527, 2022.

[Mak00] P. Makienko. Unbounded components in parameter space of rational maps. Con-
form. Geom. Dyn., 4:1–21, 2000.

[Mil12] J. Milnor. Hyperbolic components (with an appendix by A. Poirier). In Francis
Bonahon, Robert Devaney, Frederick Gardiner, and Dragomir Šarić, editors,
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