SIERPINSKI CARPET HYPERBOLIC COMPONENTS OF
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ABSTRACT. In this paper, we will prove that Sierpinski carpet hyper-
bolic components of disjoint type are bounded. Furthermore, we show
that for each map f on the closure of the hyperbolic component, there
exists a quadratic-like restriction around every non-repelling periodic
point. Our methods are applicable for any hyperbolic component of dis-
joint type. In particular, we describe the post-critical set of any map on
the boundary of the hyperbolic component of z2.
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1. INTRODUCTION

A rational map f : C — C is called hyperbolic if every critical point of f
converges to an attracting periodic cycle under iteration. For our purposes,
it is convenient to mark all the fixed points, and consider the fixed point
marked rational maps Ratg g and the corresponding moduli space Mg g, =
Rat g m / PSLa(C) (see . The set of conjugacy classes of hyperbolic
maps form an open and conjecturally dense subset of M ¢y, and a connected
component is called a (marked) hyperbolic component.

Let H € Mgsm be a hyperbolic component. As [f] varies in H, the
topological dynamics on the Julia set J; remains constant, but the geometry
of Jy varies. We say H is a Sierpinski carpet hyperbolic component if the
Julia set of any map [f] € H is a Sierpinski carpet, and it is of disjoint type if
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for any map [f] € H, all critical points of [f] are in pairwise different periodic
cycles of Fatou components. Equivalently, H is of disjoint type if any map
[f] € H has exactly 2d — 2 attracting periodic cycles. For disjoint-type
hyperbolic components, the multipliers of attracting cycles provide natural
identification:
p: H — D2 (1.1)
Motivated by Thurston’s compactness theorem for acylindrical hyperbolic
3-manifold, McMullen conjectured in the early 1990s (see [McM95]) that

Conjecture 1.1. A Sierpinski carpet hyperbolic component H is bounded
m Md,f'm-

Despite many attempts throughout the decades, the conjecture remains
wide open. In this paper, we will prove it in the disjoint type case:

Theorem A. A Sierpinski carpet hyperbolic component H C Mg pm of dis-
joint type is bounded in My. Moreover, (1.1) naturally extends to

p: H — D22, (1.2)
In particular, OH is locally connected.

Our methods are applicable to any hyperbolic components of disjoint-
type. In Theorem [C] we will describe the postcritical sets of maps on 9H 2,
where H,2 C Moy gy is the hyperbolic component of z — 22. Theorem
is the prototype example of Conjecture [I.9] that will be discussed in the
follow-up paper.

Our approach also gives uniform bound of the dynamics of maps on H:

Theorem B. Let H be a Sierpinski hyperbolic component of disjoint type.
There exists a constant € > 0 such that for any map [f] € H and any
non-repelling periodic point x of periodic p, there exists a quadratic-like re-
striction fP: U — V, withx € U CV and mod(V —U) > e.
Applying the Douady-Hubbard straightening theorem to all quadratic-like
restrictions around non-repelling cycles, we obtain the refinement of (1.2)):
Rq: H = A*? c Mand22, (1.3)
where A is the main hyperbolic component of the Mandelbrot set.

1.1. Historical background. Thurston’s hyperbolization theorem is one
of the most important development in the study of 3-manifolds. The tools
developed along the theorem has revolutionized the theory of Kleinian groups.
In the proof of the hyperbolization theorem, two boundedness theorems, the
double limit theorem and the Thurston’s compactness theorem for acylindri-
cal manifolds, are the key ingredients (see [Kapl0, [Thu86]). Based on the
Sullivan’s dictionary, these two boundedness theorems have natural ana-
logues for rational maps. Since convex cocompact acylindrical Kleinian
groups have Sierpinski carpet limit sets, Conjecture [1.1] is the analogue of
the Thurston’s compactness theorem.
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FI1GURE 1.1. The Julia set of a Sierpinski carpet hyperbolic
rational map.

For Kleinian groups, the proof for both boundedness theorems is by con-
tradiction and can be break down into two steps:

(A) (Geometric part): constructing limiting isometric group actions on
R-trees with no global fixed point for any degenerating sequences of
Kleinian groups (see [MS84], Bes&8, [Pauss]);

(B) (Combinatorial/topological part): analyzing possible limiting group ac-
tions to get topological decompositions of the underlying 3-manifold

(see Rips’ theory and Skora’s duality theorem [Sko96]).

The contradiction for Thurston’s compactness theorem is that acylindrical
3-manifolds do not admit such decomposition constructed in Step The
story is similar for the double limit theorem, except the contradiction comes
from geometric constraints of the laminations.

It is already suggested in [McM95] that a similar strategy might work for
rational maps. There have been many constructions of limiting dynamics
on trees for degenerations of rational maps (see [McM09, Kiw15, Luo21b),
[Luo22al). These constructions complete Step for rational maps. In this
analogy, Step becomes essential for the boundedness results of rational
maps.



4 D. DUDKO AND Y. LUO

The boundary of a hyperbolic component H consists of two types of
points: geometrically finite maps and geometrically infinite maps. To carry
out Step we consider these two cases separately.

Geometrically finite maps are the first to be understood and are essen-
tially determined by a finite set of data (somewhat similar to PCF maps).
In [Luo22b], the second author showed that in a Sierpinski hyperbolic com-
ponent H (of any type) a ‘geometrically finite degenerations’ [f,] always
land at geometrically finite parameter [fo] € OH; in particular, [f,] does
not diverge in M. The main step is the following finiteness statement for
the dynamics in the limiting tree.

(b) There is a finite ‘core’ in the limiting tree if [f,,] diverges. This finiteness
induces a decomposition of the rational maps in H by some limiting
Thurston obstruction.

Similar to Kleinian groups, the contradiction is that Sierpinski carpet Julia
set would prevent the existence of such limiting obstructions.

Geometrically infinite maps are more mysterious. Conjecturally, they
all arise as limits of geometrically finite maps. To study such maps, some
uniform bound is usually needed. In this paper, we use bounds from renor-
malization theory developed in [DL22] to prove such a uniform bound for
a special class of geometrically infinite maps, called eventually-golden-mean
maps (see §2.3). The uniform bound allows us to obtain a limiting map
on a finite tree of Riemann spheres. Similar as in the geometrically finite
case, the finiteness allows us construct a decomposition of the rational map
in terms of limiting Thurston obstructions, and we obtain a contradiction
here.

Our results are related to the Thurston’s realization problem. Given a
topological branched covering of the sphere 5?2 Thurston’s realization prob-
lem asks when it is equivalent to a rational map. Thurston gives a negative
criterion to answer the question for post-critically finite branched coverings
[DH93]. Recently, Dylan Thurston gives a positive criterion for the realiza-
tion problem for post-critically finite maps [Thu20] (with non-vacuous Fa-
tou dynamics). For geometrically finite maps, Thurston’s realization prob-
lem has been studied extensively (see [DH93| [CJS04] [CJ11) ICT11) I[CT18]).
Usually, the realization problems for geometrically finite maps are studied
by deformation of hyperbolic maps. Various elementary deformations such
as pinching and spinning were constructed and studied (see [Mak00Q), Tan02),
HT04,[PT04,[CT1g]). These operations are generalized in [Luo2lal Luo22b].
From this perspective, Theorem [A] and Theorem [B] can be interpreted as a
Thurston’s realization theorem for geometrically infinite maps. Our method,
perhaps for the first time, combines two theories in complex dynamics:
bounds from the Thurston theory and the bounds from the renormaliza-
tion theory.
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There have been many previous studies to understand deformations of
rational maps and related boundedness problems. Results on unbounded-
ness of hyperbolic components were obtained in [Mak00, Tan02]. In [Eps00],
Epstein used algebraic and analytic methods to give the first general bound-
edness result of hyperbolic component of disjoint type in the quadratic case.
This was later generalized in the bi-critical setting by Nie and Pilgrim in
[NP19]. Related boundedness results in the degree 4 Newton family was
also proved in [NP20]. To the best of our knowledge, Theorem [A]is the first
time a boundedness theorem of an entire hyperbolic component in M, is
proved in degree d > 3.

Remark 1.2. In Spring 2022, J. Kahn simultaneously presented an inde-
pendent approach to the boundedness of Sierpinski hyperbolic components
of all types (not necessarily disjoint); see his MSRI-talks at [Kah22].

1.2. Estimate on degenerations. In this subsection, let H be a hyper-
bolic component of disjoint type, which may or may not be Sierpinski. Our
strategy is to uniformly control the geometry of the Julia set for some special
maps on OH, called eventually-golden-mean maps.

An irrational number 6 € (0,1) is said to be eventually-golden-mean if it
has a continuous fraction expansion 6 = [0;a1, ..., am,...] with a,, = 1 for
all large m. A map [f] € OH is called eventually-golden-mean map if the
multiplier for any of its indifferent periodic cycle is of the form €™, where 6
is eventually-golden-mean. In particular, every critical point of [f] is either
in an attracting basin or on the boundary of a Siegel disk.

Degenerations of compact Riemann surfaces. To discuss our bound
on the geometry, let X be a compact Riemann surface with boundaries. Let
7 be a non-peripheral arc connecting 0.X, and let I'y be the family of arcs
isotopic to 7. We define the degeneration W(v) for v of X as the extremal
width of the family I',. The arc degeneration for X is

Ware(X) = > W().

YW(v)>2

Similarly, let a be a homotopically non-trivial simple closed curve, and
let I'y, be the family of simple closed curves isotopic to a. We define the
degeneration W(a) for a of X as the extremal width of I'y,. We define the
loop degeneration for X as

Wloop(X) = Z W(Oé) :
a:W(a)>2

By losing < 2 extremal width of the family, we may assume I'; and I', are
laminations. We remark that since wide families do not cross, both Wp,..(X)
and Wieep(X) are in fact finite sums.
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Degenerations of eventually-golden-mean maps. Let [f] € 9H be an
eventually-golden-mean map. Denote the list of Siegel disks and attracting
Fatou components of f by

ZLO’ "’Zl,p1—17 2270, ceuy Zkl,pklfl and D170, ...D17q1_1, D270, ceny Dkz,qufl'

In §2.4{and §3.2} we will define the corresponding pseudo-Siegel disks Z”
and valuable-attracting domain lA)” Some important properties are
o 7 ;.; and D; ;.; are closed disks, with Z; ; C Z; ;,; and lA?” C D;
° f is 1nJect1ve on Z; ; and D, j is forward invariant under f;
° Z, j and Dz j contain the critical, post-critical points and the non-
repelling periodic point in Z; ; and D; ; respectively.
To quantify the degeneration of the map [f], we give the following definition.

Definition 1.3. We say [f] has degeneration bounded by K if there exist

e K-quasiconformal pseudo-Siegel disks Z; ;,
e K-quasiconformal valuable-attracting domains D; ;,
so that the pseudo-core surface of [f] (see §3|for more discussions)

Xy i=C—Jmt(Diy) — JInt(Zi;) satisfies

° Warc()?f) < K; and
o Wloop(Xf) < K.

We will prove the following boundedness theorems for eventually-golden-
mean maps with uniformly bounded degenerations.

Theorem 1.4. Let [f,] € OH be a sequence of eventually-golden-mean
maps. Suppose that [f,] has degeneration bounded by K. Then after pos-
sibly passing to a subsequence, [fn] — [f] € Mg fm, and [f] has 2d — 2
non-repelling cycles.

The pulled-off constant. We now introduce an important combinatorial
constant that controls the degenerations of eventually-golden-mean maps.

Two arcs 1 and o are said to

e intersect essentially if for any arcs (7;);c 1,2y homotopic to (7:)icq1,2}5
71 intersects 7»; and

e intersect laminally if for any arcs (7;);c (1,2} homotopic and disjoint
to (7Vi)ief1,2}), 71 intersects 7.

To justify the notations, let £1, Lo be two laminations consisting of ho-
motopic curves. If 71 € £ intersects laminally 5 € Lo, then every curve in
L1 intersects every curve in Lo.

A family of arcs 7; are said to be essentially disjoint (or laminally disjoint)
if no pairs in the family intersect essentially (or laminally). An essentially
(or laminally) disjoint pull back of a map f is an essentially (or laminally)
sequence of arcs g, ..., ¥n so that f : v;11 —> 7; is a homeomorphism for
eachi=0,....,n — 1.
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Let [f] € OH be an eventually-golden-mean map. Let v C @—U Int(lA)i’j)—

UZM be a non-peripheral arc connecting boundaries of Siegel disks. The
pulled-off constant N () for ~ is the smallest number n so that for any lam-
inally disjoint pull back sequence vy = 7,71, ..., Vn, at least one end point of
07y, is not on the boundary of a periodic Siegel disk.

Similarly, let [f,cr] € H be the post-critically finite center of #H, and
let P(fycr) be its post-critical set. Let v be a non-peripheral arc in C -
P(fpcr) that connects points in P(fp.f). Its pulled-back constant N(v) is
the smallest number n so that for any essentially disjoint pull back sequence
Y0 =Y, V1s -, T, at least one end point of 0, is not in P(fper).

Definition 1.5 (Pulled-off constant). Let [f] € OH be an eventually-golden-
mean map. The (Siegel) pulled-off constant for [f] is

NS’iegel([f]) = SgpN(Fﬁ

where the supreme is over all non-peripheral arcs connecting boundaries of
Siegel disks.

Let [fper] € H be the post-critically finite center of H. The pulled-off
constant for [fycy] is

N([fper]) == sup N(v)

where the supreme is over all non-peripheral arcs connecting the points in
the post-critical set.

In §4 we will prove that

o N([fpef]) < oo if and only if H is Sierpinski.
® Nsicgel([f]) < N([fpef]) for any eventually-golden-mean map [f] €
OH, where H is a Sierpinski hyperbolic component.

By combining the above two statements, we see that Ngjeger([f]) is uniformly
bounded if H is a Sierpinski.

The following technical theorem gives the uniform bound for eventually-
golden-mean maps, and is the key in our argument.

Theorem 1.6. Let H be a hyperbolic component of disjoint type, and let
[f] € OH be an eventually-golden-mean map. Then [f] has degeneration
bounded by K, where K depends on

(1) the hyperbolic component H,
(2) the pulled-off constant Ngiecger([f]), and
(8) the multipliers of the attracting cycles of f.

For applications, Assumption is the main one in Theorem Therefore,
the condition “[f,] has degeneration bounded by K” in Theorem [L.4] can be
replaced (for practical purposes) with “Ngieger([fn]) < M” for some M.

Remark. We remark that if H is Sierpinski, then Ngjeger([f]) < N([fpef]) <
oo. Thus, in this case, the constant K is independent of the pulled-off con-
stant. We also remark that the constant K is independent of the indifferent
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multipliers of the map [f]. This crucial fact allows us to take the limit of
those eventually-golden-mean maps.

Sketch of the proof of Theorems [A] and To discuss how Theo-
rem [I.6] allows us to prove Theorems [A] and [B] we start with the following
decomposition of the boundary 0H.

Definition 1.7. Let H be a hyperbolic component of disjoint type. The
boundary

aH - areg% U anCH g Md,fm

splits into the regular and exceptional parts, where [f] € OwoH if [f] has
exactly 2d — 2 non-repelling periodic cycles, and [f] € OexcH otherwise: at
least two non-repelling periodic cycles of [f] collide.

We remark that by transversality, we have that (see Proposition [2.2))

e the natural extension of the multiplier map is an embedding
on the regular boundary p : OregH — 6D2d_2;
i P(aregH> N p<8exc7'l) =0.
Thus, to prove Theorem [A] it suffices to show that if # is Sierpinski, then
p(Ore ) = D2,

Denote the boundary of eventually-golden-mean maps and geometrically
finite maps by OegmH and dgH respectively. If H is Sierpinski, then p(dgH)
is dense in dD*2 (see [CTIS] or [Luo22b]). This allows us to show that
P(Degm™H) is dense in ID?**~2 (see Proposition .

Given any multiplier profile p = (p1, ..., p2q—2) € oD?**2 by Theorem
and Theorem we can construct a convergent sequence of eventually-
golden-mean maps [f,] — [f] with p([f]) = p. Since [f] has 2d — 2 non-
repelling cycles, [f] € OregH. Thus, p(dregH) = OD*2, and Theorem
follows.

To prove Theorem |E|7 we first construct a semiconjugacy between a map
[f] € H, and a topological model f : S — $? which is the quotient map of
the post-critical finite map [f,cf] € H by collapsing Fatou components. This
allows us to show there exists a quadratic-like restriction near every non-
repelling periodic point. The uniform bound of the modulus in Theorem [B]
then follows from the conclusion of Theorem [A|that H is compact.

1.3. Boundaries of hyperbolic components of disjoint type. A gen-
eral hyperbolic components of disjoint type H may not be bounded in Mg .
We give the following definition to parameterize the boundary at infinity.

Definition 1.8. Let A be a hyperbolic component of disjoint type. We
define the obstructed boundary

O°H = {pc oD**2 .
3[fn] € H with [f,] — oo in Mg and p([fn]) = p}-
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The rational obstructed boundary
8(057'[ =90HN 8QD2d_2

D2d72

where Jg consists of tuples (p1, ..., pag—2) so that all indifferent multi-

pliers are rational, i.e. of the form e2mipla,

We remark that the rational obstructed boundary dg'#H can be identified
as obstructed geometrically finite maps on the boundary of H, and can be
effectively computed. We formulate the following conjecture.

Conjecture 1.9. Let H be a hyperbolic component of disjoint type. Then
O°H = Oy H.

In particular, the natural extension of the multiplier map (L.1) gives an

identification for the regular boundary:

aregH = 8D2d_2 - 8(5?% - p(aexc%)

Combinatorial bound of Ngjegei([f]). An important ingredient for The-
orem [A]is that if H is Sierpinski, the pulled-off constant Ngjege([f]) is uni-
formly bounded for eventually-golden-mean map [f] € OH. It is in general
not bounded if H is not Sierpinski. In the sequel, we plan to bound the
pulled-off constant Ngjeger([f]) in terms of the combinatorial distance be-
tween p([f]) and OgfH, and prove Conjecture

1.4. The example of H,2. To illustrate Conjecture and the subtlety
about the exceptional boundary, consider the hyperbolic component H,2 in
the moduli space quadratic rational maps that contains z%. The (marked)
moduli space My ¢, of quadratic rational maps can be parameterized by the
multipliers of the three marked fixed points (p1, p2, p3), with the restriction
(from the holomorphic index formula) p1p2ps — (p1 + p2 + p3) +2 =0. In
this coordinate,

2—p1—p2,
H.2 = {(p1, p2,p3) : |p1ls [p2| < 1,p3 = 17} ~ D2
— P1p2

A simple computation shows that
aoosz2 _ {(627rit76—2m't)} — 8&7‘[% — {(627rip/q76727rip/q)}.

Note that that when p; = p2 = 1, p3 can be an arbitrary number. Thus, it
is easy to see that the exceptional boundary contains infinitely many maps
and fibers over (1,1), i.e., p(OexcH,2) = {(1,1)}. Hence, rigidity fails on the
exceptional boundary. Depending on how the multipliers converge to (1, 1),
the corresponding sequence [f,] can be either bounded or divergent.

In the case of OregH 2, the pulled-off constant Ng;eger([f]) can be explicitly
bounded. Therefore, applying Theorem [I.6] we obtain:

Theorem C. Consider f € OpegH, 2 with two neutral fized points. Let c1,co
be its critical points. Consider the associated postcritical sets Py, Py. Then

e f| P and f | P, have degree 1;
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e Pi, Py are separated by some annulus whose modulus depends on the
distance of py, ps € S*.

Proof. For any eventually-golden-mean map f on the boundary 0H > with

1
two neutral fixed points, by definition, Ngjeger([f]) = O () By
dist(p1, p2)
taking the limit and applying Theorem the corollary follows.

1.5. Outline of the proof of Theorem The proof of Theorem
breaks up into 2 steps. In the first step, we construct K-quasiconformal
disks, and show there are no arc degenerations. In the second step, we show
there are no loop degenerations. The proof for both steps are summarized
as follows.

Step 1: no arc degeneration. For an attracting Fatou component
D; j, we define its valuable domain ﬁ” C D;; to be the subdisk of D; ;
bounded by the equipotential through the unique critical value of the first
return map, see §2.4 We fix the multipliers of all attracting cycles; then,
the modulus of the annulus D ; —lA)m- is bounded from below by Lemma

Denote the pseudo-core surface (see §3)) of [f] by

Xp:=C—Jnt(Di) —JZi; and Kp = Ware(X;).

We will argue by contradiction and suppose that Ky can be arbitrarily large.

For a Siegel disk Z; ;, the dynamics of its first return map f; j: 0Z; ; © is
conjugate to some rigid irrational rotation on the circle. The conjugacy gives
a combinatorial coordinate on f;;: 0Z;; ©. The renormalization of the
irrational rotation gives a level structure on 0Z; ;: a level m combinatorial
interval is of the form J = [z, fi"™(2)] C 8Z;;, where fI"*'(x) is the

7 [2¥}
closest (level m) return of z, see We denote the combinatorial length
of a level m combinatorial interval by [,,, := |J|. Note that [,,, satisfies
0.5 1
<ln < .
dm+1 Am+1

1.5.1. Non-uniform Construction of pseudo-Siegel disks. In Theorem
using renormalization theory for v*-ql maps, we will construct a collection
of pseudo-Siegel disks Z; ; O Z; ; whose degenerations are bounded in terms
of Ky. Roughly, we will show that each Siegel disk Z; ; is contained in a

pseudo-Siegel disk Z] D Z; ; such that

(1) Z;; is a M = M(Ky)-quasiconformal disk;
(2) for every interval J C 8Z~J (“grounded” rel Z]) with [, < |J| <
[, we have
(a) WH™(J) = O(Kl,, +1); and
(b) WY P(J) = O(VEKL, +1).
Here W1 (J) is the extremal width of the family of non-peripheral arcs
starting at J, and W, " (J) is the extremal width of the family of peripheral
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arcs connecting the interval J C 82@;‘ to O)A(f—)\J in )A(f = @—U Int(lA?i,j)—
Unt(Z; ).

Important Properties of pseudo-Siegel disks are discussed in and
(see, in particular, §3.2.4)).

1.5.2. Pulled-off Argument and Localization. Let Ny := Ngjeger([f]) be the
pulled-off constant. We show that any wide families of non-peripheral arcs in
X ¢ must intersect some strictly periodic psuedo-Siegel disks of pre-period <
Ny (see Lemma . It allows us to localize the degeneration (see Theorem
. More precisely, we show that for every e > 0, if the arc degeneration
satisfies Ky > n; \(x;) 1, where X(Xy) is the Euler characteristic (i.e.,
complexity), then there exists some interval I on some periodic pseudo-
Siegel disk Z' so that

WHP (1) + WP (1) > K /A and  |I| <,

for some constant A = A(Ny, x(Xf)) > 1 independent of e. We may assume
[m+1 < |I| <.

1.5.3. Calibration Lemma. Finally, in Theorem [6.1, we show that we can
find an interval J C 9Z' (grounded rel Z’) such that

WHm(J) > K¢/C and |J| < g1 < |I| <e (1.4)

for some constant C' = C(Ny, x(Xy)) > A > 1 independent of e.
By choosing e sufficiently small, we obtain from Property and Esti-

mate ([1.4) that
Kf/C < W+’np(J) = O([m+1Kf + 1) = O(er + 1),
which is a contradiction.

Remark 1.10. We can summarize the argument in Step 1 as follows. The-
orem stated in § says that the arc degeneration Wy,.(X¢) of Xy
near Siegel disks Z; ; are uniformly distributed along 0Z; ;. On the other
hand, Theorem stated in §@ says that a substantial part of Wy,..(Xy)
can be localized on a small interval of some 0Z; ;.

The incompatibility of these two facts almost leads to a contradiction.
We note, however, that the estimate in is not sufficient to rule out
degeneration on the “special transition scale” (compare with Remark .

A potential degeneration on the special transition scale is handled in
Theorem [6.1] stated in § [1.5.3] Combinatorially, such degeneration obeys
certain invariance constraints of f | Xy (see Figure . This leads to a
contradiction by producing a bigger than Ky degeneration.

Step 2: no loop degeneration.
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1.5.4. Limiting map on a finite tree. We will argue by contradiction. Sup-
pose there exists a sequence of eventually golden-mean maps f,, € H with
Wloop()? #) — co. We prove that, after passing to subsequence if necessary,
fn converges to a non-trivial map on a finite tree of Riemann spheres (see
Theorem (8.4)).

1.5.5. Duality to multi-curves. We show that this limiting finite tree is “dual”
to some multi-curves in the complement of periodic Fatou components of f,,
for all sufficiently large n (see Proposition . This step crucially uses
the fact that the arc degeneration is uniformly bounded.

1.5.6. Limiting Thurston obstruction. The dynamics on the tree is recorded
by a Markov matrix M and a degree matrix D. We show that there exists
a non-negative vector ¥ # 0 with M¥ = D#¥. Since the limiting tree is
dual to multi-curves, for all sufficiently large n, we show that D~'M is no
bigger than the Thurston matrix for the corresponding multi-curves of f,,.
So the spectral radius of the Thurston’s matrix is greater or equal to 1 (see
Proposition . This is a contradiction, and Theorem follows.

Structure of the paper. In we give preparations and introduce some
notations. Four main ingredients in proving uniformly bounded arc degen-
eration are introduced in and §6 and these ingredients are
assembled in The uniformly bounded loop degeneration and Theorem [A]
is proved in Theorem [1.6]is proved combining Theorem [7.1]and Theorem

Finally, Theorem [B]is proved in

Notations. In this paper, we will usually fix a hyperbolic component. By
a universal constant, we mean a constant that depends, potentially, only on
the hyperbolic component.

We use A = O(1) to mean there exists a universal constant K so that
A < K. More generally, A = O,(1) means that there exists a constant K,
depending on x so that A < K,. Similarly, we use A = B and A >, B to
mean B/A = O(1) and B/A = O(1) respectively.

1.6. Acknowledgement. The first author was partially supported by the
NSF grant DMS 2055532.

We thank Jeremy Kahn, Jan Kiwi, Curt McMullen, Mikhail Lyubich for
many insightful discussions over the years.

The results of the paper were first announced in Spring 2022 during the
MSRI semester program “Complex Dynamics: from special families to nat-
ural generalizations in one and several variables”.

2. BACKGROUND ON HYPERBOLIC COMPONENTS

In this section, we summarize some background facts on hyperbolic com-
ponents, and introduce the notion of eventually-golden-mean maps on the
boundary of a hyperbolic component in §2.3
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2.1. Marked hyperbolic component. Following the terminology in [Mil12],
a fized point marked rational map (f;zo,21,....,24) is a rational map f :
C — Cof degree d > 2, together with an ordered list of its d + 1 (not
necessarily distinct) fixed points z;. Let Ratqs, be the space of all fixed
point marked rational maps of degree d. The group of Mdbius transforma-
tion PSLy(C) acts naturally on Ratg s, and we define the marked moduli
space

Mg im = Ratg fm / PSLs(C).

The space of marked hyperbolic maps are open in Mg g, and a component
is called a (marked) hyperbolic component. To avoid complicated notations,
we shall use [f] to denote an element in M s, and simply refer to it as a
(marked) map. We remark that as maps vary in a hyperbolic component
H, the topology of the Julia sets remains constant.

Definition 2.1. Let H C Mg, be a hyperbolic component.

e It is of disjoint type if for any map [f] € H, each grand orbit of a
Fatou component of [f] contains a unique critical orbit.

o It is a Sierpinski carpet hyperbolic component if the Julia set of any
map [f] € H is homeomorphic to a Sierpinski carpet.

We remark that H is a finite branched covering of H. We choose to work
with H as the markings allows us to have a nice parameterization as follows.

Let H be a hyperbolic component of disjoint type. There are exactly
2d — 2 attracting periodic cycles for a map [f] € H. Let Cy,...,Coq—2 be a
list of attracting periodic cycles and let pq, ..., pog_o be the corresponding
multipliers. The marking of the fixed points allows us to consistently label
these attracting periodic cycles throughout # (see [Mill2, Theorem 9.3]),
and H is parameterized by the multiplier profile, i.e. the multipliers of these
2d — 2 attracting periodic cycles

p: H i> D2d_2 = ]Dl X ... X Dzdfg.

2.2. Transversality for multipliers. Recall that the boundary
OH = 8reg/}'[ U 86XCH - Md,fm

splits into the regular and exceptional parts, where [f] € OwgH if [f] has
exactly 2d — 2 non-repelling periodic cycles, and [f] € OexcH otherwise.

Let [f] € OregH. Let x be a non-repelling periodic point of f with period
p. Suppose [f,] € H with f, — f, and x,, — = be a sequence of non-
repelling periodic points of f,. We classify the non-repelling periodic point
x into three categories:

e Type (1): The multiplier of [f] at = is not 1 and z,, has period p;

e Type (2): The multiplier of [f] at = is not 1 and x,, has period vp,
with v > 2;

e Type (3): The multiplier of [f] at = is 1.
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Proposition 2.2. The multiplier map extends to an embedding on the reg-
ular boundary p : OregM — oD%=2 gnd P(OregM) N P(Oexc M) = 0.

Here p(OregH) or p(OexcH) are understood as the accumulation set of p([fn])
as [fn] = OregM 07 [fn] = OcxcH respectively.

Proof. Let [f] € Oreg M. Let us first suppose that every non-repelling periodic
point of f is Type Let C; be a list of non-repelling periodic cycles of [f].
Then by implicit function theorem, the cycles C; move holomorphically on a
neighborhood of f. Thus, we can define a holomorphic map (p1, ..., p2qg—2) :
U — C?*72 on a neighborhood U of [f], where p; is the multiplier of the
cycle C;. By transversality of the multipliers (see [Levl0, Theorem 6] or
[Eps00]), (p1, ..., p2d—2) gives a local parameterization of the moduli space
M . Therefore, p extends to an embedding near [f], and p~'(p([f])) =
)

If there are Type or Type non-repelling periodic points, the argu-
ment is similar, but we need to pass to a branched cover. Indeed, we can
consider the space of n-periodic marked rational maps consisting of

(f;x0,...,xqn) € Raty X@dnfl,

where f is a rational map of degree d together with an ordered list of its
d"+1 (not necessarily distinct) periodic points dividing n. Since the iteration
map Raty — Ratgn is a local immersion (see [Yel5l Proposition 4.1]), by
pulling back the local charts for Ratg» t,, we have local holomorphic charts
near any n-periodic marked rational map. Note that the forgetful map from
n-periodic marked rational maps to fixed point marked rational maps is a
branched covering.

If x is a Type point, then two or more periodic points in the same
periodic cycle of f, collide in the limit, as we assume [f] € OyeeH. Denote
the period vp and p cycle by C and C respectively. By marking these periodic
points, we may assume the C and C move holomorphically on this branched
covering, and their multipliers p and p are holomorphic functions.

Similarly, if z is a Type|(3)| point, then there is a period p repelling point
Iy of f, with Z, — x. Denote these two cycles by C and C. By marking
these periodic points, we may assume that C and C move holomorphically,
and their multipliers p and p are holomorphic functions.

In this way, there exists a neighborhood U of [f] and a branched cover
U of U so that the multipliers map (p1, ..., Pky Pk+1y Pkt1s s P2d—25 P2d—2)
is a holomorphic map on U , where k is the number of Type cycles.
By transversality of the multipliers (see [Lev10, Theorem 6] or [Eps00])
and restrict the domain if necessary, the map is a finite branched covering
onto its image, and the image of U under the restricted multiplier map
(p17 w0y Pky Ph415 Pl+25 -+ 102d—2) is open.

It is easy to see that f has at least 3 distinct fixed point. Thus, Aut(f) =
{id}, where Aut(f) is the automorphism group of the fixed point marked
rational map f. Therefore, the fiber of the branched cover U — U consists
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only of the same map with (potentially) a different marking on the periodic
points. By fixing a marking of the attracting periodic points in H, we obtain
a homeomorphic lift VCUof V=HNU. The branched cover U — U is

injective on ‘7, and hence a homeomorphism between V and V. By lifting

the map p from V to V, it is now easy to see that p extends to an embedding
of OH near [f], and p~(p([f])) = {[f]}. The proposition now follows. [

2.3. Eventually-golden-mean maps. In this subsection, we will fix a hy-
perbolic component H of disjoint type.
Let 6 € (0,1) be an irrational number, with continued fraction expansion

0=1[0;a1,....am,...| =

We say 0 is of bounded type if
sup{am,} < 0.

More generally, we say 0 is Brjuno if

I
Z 0g dm+1 < o0
In

Note that if 6 is of bounded type, then € is Brjuno.

These arithmetic properties of irrational numbers are relevant to holo-
morphic dynamics. It is well-known that if f is a holomorphic map defined
on 0 € U, with f(0) = 0 and f(0) = €™ with # being Brjuno, then f is
conjugate to the rigid rotation z — >z in a neighborhood of 0. If f is a
globally defined, then this neighborhood is part of a Siegel disk for f.

If f is a rational map with a fixed point of multiplier 2™ with 6 of
bounded type, then the corresponding Siegel disk has quasi-circle boundary
which passes through at least one critical point [Zhall].

Let 0 = [0;a1,...,am,...]. We say it is eventually-golden-mean if there
exists my so that a, = 1 for all n > my. Note that in this case, 0 is
automatically of bounded type.

Let H be a hyperbolic component of disjoint type, and [f] € 9H. Then
some attracting periodic cycles must become indifferent. By following the
deformations for the corresponding periodic cycles, its multiplier profile

(p1y ey p2a—2) = (P1([f])s -y p2a—2([f])) lies on the boundary
()017 ) P2d—2) € 8D2d_2'

Definition 2.3. We say a boundary parameter (p1, ..., p2g—2) € oD24-2 ig

e rational if each p; is either in D or p; € S' and is rational;

e irrational if each p; is either in D or p; € St and is irrational;

o cventually-golden-mean if each p; is either in D or p; € St and is
eventually-golden-mean.
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We also say (p1, ..., pad—2) is realizable if there exists [f] € OH C Mg g with
multiplier profile (p1, ..., p2g—2)-

Let & C dD%2 be the set of realizable eventually-golden-mean boundary
parameter. In this paper, we will focus on the following maps:

Definition 2.4. A map [f] € OH C Mg is called an eventually-golden-
mean map if its multiplier profile (p1, ..., p2q—2) € &. We denote by Oegm™ =~
G the set of all such maps in OH.

We remark that since eventually-golden-mean irrational numbers are of
bounded type, any non-repelling cycles of a eventually-golden-mean map | f]
are contained either in (super-)attracting Fatou components or Siegel disks.
Moreover, since its multiplier profile is on the boundary dD??~2, there is at
least one cycle of Siegel disk for [f].

Definition 2.5. Let (p1, ..., paqg_2) € oD% A sequence (P1my s P2d—2,0) €
D212 is said to converge to (p1, ..., pad—2) strongly, denoted by

(PLns s P2a—2,0) —>s (P15 -5 P2a—2),
if pjn — p; for all j, and p;, = p; when |p;| < 1.

If we further assume that the Julia set is a Sierpinski carpet, then we have
the following density result for eventually-golden-mean maps.

Proposition 2.6. Let H be a Sierpinski carpet hyperbolic component of
disjoint type. The set © is dense in D22,
Moreover, for any (p1, ..., p2q—2) € 0]D>2d_2, there exists a sequence

(pl,n7 ) p2d72,n) €6
converging to (p1, ..., pad—2) strongly.

Proof. Tt follows from the pinching deformation in [CT18| (see also [Luo22b])
that all rational boundary points are realizable. Let [f] € OH with rational
multiplier profile (pi, ..., p2q—2). Since H is Sierpinski, no non-repelling pe-
riodic points collide. We may assume p; # 1 for all ¢, as other wise, we can
pass to a branched cover as in Proposition Hence, we can locally param-
eterized the periodic cycles analytically. Thus, there exists a neighborhood
U C Mg of [f] so that the multipliers

p(t) == (p1(t), ... p2a—2(1))

is an analytic function on ¢t € U. By transversality of the multipliers (see
[Levi0, Theorem 6] or [Eps00]), o~ ((p1, .-, p2d—2)) = {[f]}. Thus by shrink-
ing U if necessary, the image p(U) € C?*~2 is open (see [GRS4, p. 107]).
Since eventually-golden-mean irrational numbers are dense, we can find an
eventually-golden-mean map [f] € U. Since the rational parameters are
dense, G is dense. The moreover part can be proved in the same way. [
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2.4. Valuable-attracting domains. Let D be an attracting Fatou compo-
nent for f of period p. Assume that the multiplier of the attracting periodic
point is p. Then the first return map f? : D — D is conjugate to the
Blaschke product

F:D—D

z+p

Z 2 —.
14 pz

1
Let ¥ : D — D be the conjugacy map, and let r := max{i, lp|}. We call
the closed Jordan disk

D=9"'B(0,r)) C D

the valuable-attracting domain for D. One can easily verify by our construc-
tion that

Lemma 2.7. Let D be the valuable-attracting domain for D. Then

e D is forward invariant under fP;
e D contains the unique critical point of f¥ in D;

~ 1 1
e The annulus D — D has modulus ~5 log(max{i, |-
T

3. CORE AND PSEUDO-CORE SURFACES OF MAPS IN OegmH

In this section, we will introduce pseudo-Siegel disks and pseudo-core
surfaces. The main construction is in Theorem see also

Let us fix a hyperbolic component ‘H of disjoint type. Recall from Defini-
tion that Oegm™ denotes the set of eventually-golden-mean maps in OH:
every neutral periodic cycle of a map in Oegm#H is Siegel of the eventually-
golden-mean type.

We discuss some combinatorial facts of irrational rotations on a circle in
§3.1 In §3.2] we review the notion of almost-invariant pseudo-Siegel disks.
They are obtained from regular forward-invariant Siegel disks by filling-in
parabolic fjords as illustrated on Figure [3.2} see Definition [3.1]

The core surface Xy of f € Oegm™ is the complement to the union of
all periodic valuable-attracting domains and Siegel disks; see . The
pseudo-core surface X ¢ C Xy is obtained by removing pseudo-Siegel disks
instead of Siegel disks; see . Properties of X; and X ¢ are discussed
in §3.51 We remark that some terminologies for degeneration of Riemann
surfaces are summarised in QE

3.1. Combinatorial intervals for Siegel disks. In this subsection, we
introduce the terminologies for dynamics on Siegel disks. We remark that
most of the discussions in this section work for any rational map with a
Siegel disk with a single critical point on its boundary.

Let H be a hyperbolic component of disjoint type. Let [f] € OH be
an eventually-golden-mean map. Let Z be a Siegel disk for f of period p
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with rotation number 6. Let h : Z — D be a Riemann mapping with
h(a) = 0, where « is the fixed point in Z. Since Z is a quasi-disk, h extends
continuously to
h:Z—D, h(a) =0
which conjugate fP|5, with the rigid rotation on S*.
We define the combinatorial length of an interval I C 97 as

1] = (D) gz € (0,1).
Similarly, we define the combinatorial distance between x,y € 0Z as
dist(z,y) := distgz(h(x), h(y)) € [0,1/2].
Let z € 0Z and t € R/Z, we set
cBt=h"1(h(z)+1),

i.e.,, x Bt is x rotated by angle t. Note that fP(z) =286 for all x € 0Z.
Let [0;a1, ..., m, ...] be the continued fraction expansion for 6. Let

P/ Am = {

be the sequence of approximations for 6 given by the continued fraction. We
use the convention and set qg = 1. Then f%P = fP_f9P _is the sequence
of first returns of f?|sz, i.e.,

dist(f(z), z) > dist(f9P(x), ) =: by, x € 0Z for all i < .
We define 6,,, € (—1/2,1/2) so that
fAmP(x) = x B 0.

[0;a1, ..., am], if ag > 1
[0;a1,...;ame1], if a; =1

Note that [, = |0p].

Given two points z,y € 07 with dist(z,y) < 1/2, we let [x,y] be the
shortest closed interval of 0Z between x,y. Let I C 0Z be an interval. We
define the A-scaling of I as

M = {z € 0Z :dist(z,I) < (A —1)|I]/2}.

An interval I C 07 is called a combinatorial interval of level m, or simply
a level m interval if |I| = [,,,. Note that a level m interval is of the form

I = [z, f7"(x)].
Let I be a level m interval. We say the intervals
{fP(1):i€40,1,...,qmi1 — 1}

are obtained by spreading around I. We enumerate these intervals counter-
clockwise starting with I = I

Io=1,1) = f22(I), ..., Iq, 1 = fOma=9P(D) i € {1,2, ., qar — 1}

Note that the interval I; is either attached to I; 11 or there is a level m + 1
combinatorial interval between I; and [;4.
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FI1GURE 3.1. The first return and combinatorial intervals.

3.1.1. Diffeo-tiling ©,,. There is a unique critical point ¢ of f¥ on 0Z. We
denote by CP,, = CP,,(Z) the set of critical points of f9™+? on 90Z. We
define the diffeo-tiling ©,, of level m as the partition of 7 induced by CP,,.
Note that there are q,,41 intervals in ©,,, and each interval has length either
Ly or [y 4 L1

3.2. Pseudo-Siegel disks. A pseudo-Siegel disk Z™ is obtained from a
Siegel disk Z by filling-in all parabolic fjords of levels > m. The formal
definition of Z™ for maps in OcgmH (see is the same as for quadratic
polynomials with the additional requirement that the “territory” X Zm)
containing all auxiliary objects of AR peripheral rel Z; see and

Property @ in

3.2.1. Parabolic fjords and their protections. As in let Z be a periodic
Siegel disk of [f] € Ocgm™ with period p and rotation number 6.

We say that a disk D D Z is peripheral rel Z if D\ Z does not intersect the
post-critical set of f. More generally, we say that a set S C C is peripheral
rel Z if S is within a peripheral disk D. In other words, S is peripheral rel
Z if S can be “contracted” rel the postcritical set into Z.

Consider a diffeo-tiling ©,, (see and an interval I € D,,. Given a
peripheral curve 5 C C \ Z with endpoints in I, set §3 to be the closure of
the connected component of @\ (ZUp) enclosed by BUI. If §g is peripheral
rel Z, then we call §s the parabolic fjord bounded by ; see Figure We
will refer to 8 as the dam of §3.

Let X C C\ Z be a rectangle with
o"x c I := I\ {ends of I}.

*
We denote by X the union of X and the closure of the connected component
of @\ (X UT) enclosed by 0"X U I. We say that X protects a fjord Fg if
*
e §gC X \ &
* J—
e X is peripheral rel Z.
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3.2.2. Pseudo Siegel disks for rational maps in OegmH.

Definition 3.1. Following notations fiom !‘ a pseudo-Siegel disk zm
of m > —1 and its territory X(Z™) D Z™ are disks inductively constructed
as follows (from bigger m to smaller ones):

(1) Z™ =Z and X(Z™) = Z for all sufficiently large m >> 0,
(2) either
Z™ .= 7™ and X(Z™) = X(Z™HY),
or for every interval I € ©,, there is
e a parabolic peripheral fjord §; = §, bounded by its dam 3;

with endpoints in I; and
e a peripheral rectangle X7 protecting §;

such that
Zm=zm | 3
1€Dm,
. . x (3.1)
X(zm) =xZz"u |J Ar
1€Dm

and such that Z™ and X (Zm) satisfy 7 compatibility condition
stated in [DL22, § 5.1] and briefly summarized in §3.2.4]

We remark that in addition to 7 compatibility conditions from [DI22,
§ 5.1], a pseudo-Siegel disk satisfies the following additional property:

(P) X(Z™) is peripheral rel Z.

If Z™ # Z™*1 then we say Z™ is a reqularization of Z™t! at level m.
We denote Z = Z ~1 and call it the pseudo-Siegel disk. We remark that
Definition allows us to potentially take Z" = Z and X(Z") = Z for
all n, which will satisfy all the compatible conditions. Thus, Z is trivially a
pseudo-Siegel disk (of any level). Similarly, any level m pseudo-Siegel disk
Z™ can be extended to lower levels by setting Z" = Z™ for all n < m. With
this in mind, when we introduce definitions or state theorems for pseudo-
Siegel disks, they apply to regular Siegel disks as well.

3.2.3. Regular intervals. A point x € 8Z™ is reqular if z € 2™ N dZ. By
construction, if a point x € dZ™ is regular, then «x is regular on dZ* for all
k > m. A reqular interval I C dZ™ is an interval with regular endpoints.

The projection of a regular interval I C 0Z™ onto dZ is the interval
I* C 0Z with the same endpoints and the same orientation as I. We define
the combinatorial length of I by |I| := |I°®|. Similarly, we can define the
projection I* of a regular interval I C dZ™ onto dZ* for k > m.

For an interval I C 97, the projection I™ onto 0Z™ is the smallest regular
interval whose projection onto 0Z contains I. Similarly, we can define the
projection of an interval I C 9Z™ onto dZ" for n < m.
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FI1GURE 3.2. An illustration of psuedo-Siegel disk. The in-
tersection patterns of the protecting annulus Ay, the inner
buffer S™(I), extra outer protection X are indicated on
the graph.

Let I C dZ™ be a regular interval. Abusing the notations, we denote
A C 0Z™ as the projection of A\I®* on 9Z" where I*®* C 0Z is the projection
of I onto 0Z.

3.2.4. Compatibility conditions between Z™ and Z. The 7 compatibility con-
ditions stated in [DL22, § 5.1] are designed to ensure the following key-
properties of Z™:
(A) Z™ is almost invariant under f* for |i| < qmi1;
(B) the “slight” shrinking
C\Z ~ C\2zZ™
has small affect on the width of rectangles in @\7 that have vertices
in C\ X(Z™); see Lemma
Below we will recall the main aspects of the axiomatization of Z™ from [DL.22,

§ 5.1]. Various minor technical conditions will be omitted. We remark that
Z™ can be defined explicitly using explicite hyperbolic geodesics in the com-
plement of Z; see Appendix

Property follows the requirement that all W(X7) are sufficiently wide
and will be discussed in §3.2.5

Let us now discuss L It follows from that

(C) that critical points CP,, of fim+'P N 9Z are regular points of Z" for
any n > m.
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In particular, the projections I of I € ®,,, induce a well-defined diffeo-tiling
of 82",

As illustrated on Figure for all I C ®,,, we require the existence of
annuli A7 around the 87 with

mod (A7) >0 >0,  where d > 0 is small but fixed (3.2)

such that for all |i| < g1 the annuli (Af)ep,, control the difference be-
tween f(Z™) and Z™ in the following sense.

(D) Assume f': Z — Z maps J € D,, into most of the J € D,,; i.e.,
the difference f%(J) \ I is either empty or consists of an interval in
Dpms1. Then we require that A; also surrounds f*(5y).
We remark that A; was denote by A°*(8;) in [DL22].

Write I = [a,b] C Z and denote by a’, b the endpoints of 8; as shown
on Figure Denote by a”,b” the intersection of the inner boundary of
A with [a,d ™, [/, 0"]™T! c I"™T!, where the superscript indicates the
projections of the intervals onto Z™*1. The inner buffer is defined by

Sinn(I) — [a",b"]m — [a//’a/]m—i—l U 61 U [6/76//]m+1 C aZm‘

We also define
sz = |J s cozm,
n>m, I
where the union is taken over all I € D,, and n > m.
It is required that there is an annulus A" separating {a”, b”} from
Br with mod (A™) > § such that (A™™);cp . also control the difference
between f'(Z™) and Z™ as in@ above. In short:

e the A; = A" guarantee that wide families typically submerge into
Z™ through “grounded intervals,” see i‘
e the A" guarantee that f* | Z™ is “geometrically close” to the stan-

dard rigid rotation; conseequently, 0Z™ has inner geometry similar
to that of a Siegel disk; see [DL22, Theorem 5.12].

3.2.5. Robustness of the outer geometry under @\7 ~ C \ Z™. In [DI.22,
Remark 5.11], it is assumed that

W(Xr) > A,  where A > 0 is sufficiently big but fixed

forall I € ©, and all n > m.
Consider a rectangle R C C\ Z. Assume that:

e vertices Vg of R are outside of int(Z™); and
e R\ Z™ has a connected component R’ such that Vx C OR’'.

Then R’ is Jordan domain, and we view its closure R := R asa rectangle
with vertex set Vi gnd the _same orientation of sides as R. We call R™ the
restriction of R to C\ int(Z™).
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Lemma 3.2 ([DL22) (5.12) in §5.2.4]). If R™ is the restriction of a rect-
nalge R to C \ int(Zm) as above and if the vertex set Vx of R is outside of
int X(Z2™), then

W(R™)
W(R)

1—ea < <1+en,

where epx — 0 as A — 0.

3.2.6. Grounded intervals. We will be usually working with a special type
of regular intervals called grounded intervals. An interval I C 0Z™ is a
grounded interval if the end points 91 are in o7m — Sinn(fm).

Lemma 3.2l implies the following fact about grounded intervals. For a pair
1,J C dZ™ of disjoint grounded intervals, consider a rectangle

RcC\Z withd""R=1'R=1

Since I,J are grounded, R restrict to a rectangle R™ in C \ Z™ with
OMOR™ = I"™ and IIR™ = J™.
Then the argument in [DL22, Lemma 5.10] implies that

W(R) — O5(1) < W(R™) < (1 +ea)W(R) + O5(1). (3.3)

In the paper, we will usually replace “1 + ¢” with “2”; see for example
Proposition [3.3]

3.3. Stability of Z™ and pseudo-bubbles. Recall that Z has period p.
Given a peripheral closed disk D O Z and an iteration ™", set D to be
the closure of the connected component of f~"P(Int(D)) containing Z. If

~ np

D =— D has degree 1 (i.e., it is a homeomorphism), then we call
D(—np) = D

the pullback of D under " (rel 7).

Observe that D(—np) is well defined if and only if (D \ Z) does not
contain any critical value of f™. Since D is peripheral, every critical value
of f™ in D are necessary on 0Z.

We say that a pseudo-Siegel disk Z™ is k-stable if for every n < kqm41
the pullback of X(Z™) under f™ is well defined. It follows then

(27 (=n), X(Z™)(=n)] := (f") (27, X(Z™)]
is a well-defined pseudo-Siegel disk together with its territory.
For every I = [a,b] € D, set
_ dist(0" Xy, {a,b}) B

kr:
! [m+1

2, k:;r := max{ky,0},

and ky, := min min {k}}. Then it follows from the above discussion that
nzm IE@TL

7™ is k,-stable.
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Observe that if 7" is T-stable, then so is any Z" for n > m. In particular,
if Z = Z7!is T-stable, then Z™ is T-stable for all m. We remark that this
T can be chosen arbitrarily large, (see Remark and §[B.5.3)).

3.3.1. Pseudo-bubbles. A bubble B is a closed strictly preperiodic Siegel disk;
i.e., it is the closure of a connected component of f~¥(Z)\ Z. The generation
of B is the minimal &k such that f*(B) = Z; i.e. f*: B — Z is the first
landing. Given a pseudo-Siegel disk Z ™ the pseudo-bubble B is the closure of
the connected component of f~*(int Zm) containing int B. In other words,
B is obtained from B by adding the lifts of all reclaimed fjords (components
of Z™ \ Z) along f*: B — Z.

Dams Sy, collars Ay, extra protections X7 are defined for B as pullbacks
of the corresponding objects along f*: B — Z™. For instance, X(Zg) is
the pullback of X (Zm) under f*. The length of an interval I C 9B is the
length of its image f*(I) C dZ™. Properties of pseudo-Siegel disks can also
be obtained for pseudo-bubbles by pulling back using the dynamics.

3.4. Convention for valuable-attracting domains and pseudo-Siegel
disks. We assume the following convention throughout the paper. Let C be
a cycle of attracting Fatou components of [f] with period p, and let D € C
be the unique Fatou component that contains the critical point. Then

o — ~

fi(D) = f/(D) forall j =1,...,p— 1. (3.4)

Similar to valuable-attracting domains, we shall use the following convention
for pseudo-Siegel disks throughout the paper. Let C be a cycle of Siegel disks
of [f] with period p, and let Z € C be the unique Fatou component that
contains the critical point on its boundary. Then

—m Lo~
fi(Z) = f(Z™) for all m and for all j =1,...,p— 1. (3.5)
3.5. Core and pseudo-Core Surfaces. Let H be a hyperbolic component
of disjoint type. Let [f] € OH be an eventually-golden-mean map. Let
Zl,07 "'ZLpl—la 22707 s Zkl,pkl—l and D1,07 ---Dl,q1—17 D2707 s Dkg,qk2—1

be the list of Siegel disks and attracting Fatou components of f. Denote the
corresponding pseudo-Siegel disks and valuable-attracting domains by Z;%

and lA)” respectively. As usual, we define Z] = 2;]1 = U Z”;
m
The indices are chosen so that for all
ZM = f(ZM) forallm € Nyi =1, k1, j = 0,1, ..., pr, — 2;

and

~

Dj 1= f(ﬁw) foralli=1,...,ke,j =0,1,...,p5, — 2.

By construction, ﬁza and Z; ; are all Jordan domains with pairwise dis-
joint closures. Thus, we define the core surface as the Riemann surface with
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boundary by

Xp=C-JInt(Dsy) — | Z, (3.6)
2 2
and the pseudo-core surface as
X :=C—JInt(Ds;) — | JInt(Z; ;). (3.7)
i,J i,J

Since we will construct pseudo-Siegel disks for a single cycle while fixing
other cycles of pseudo-Siegel disks and valuable-attracting domains, it is
useful to introduce the following notations.

Let Zy, == Zj, 9. We define the level m pseudo-core surface for k-th cylce
of Siegel disks Zj, as

pr—1
X7 (Z) :=C—JInt(Ds;) — |J Imt(Zi;) — |J Int(Z7Y).
i,j i#k,j J=0

Note that under this notation, )?f = )?f_l(Zk) for any k. We also define

Pr—1
X?(Zr) =C—JInt(Dy;) — |J Int(Ziy) — |J Int(Zgy),
iJ i#k,j J=0
as lenj = Z,; for all sufficiently large m.
To avoid too many subindices, we shall simplify the notation as X}” =
X§'(Zy,) if the underlying cycle of Siegel disks is not ambiguous.

3.5.1. Pullback of pseudo-Siegel disks and pseudo-core surfaces. Note that
pseudo-Siegel disks are not necessarily forward invariant. Thus, it is im-
portant to introduce notations for the pullbacks. Let us assume that all
pseudo-Siegel disks are T-stable.

For each iterate n < T, the preimage f _”(U Int(Z;";)) is union of disks,

2%
each mapped conformally to some component Int(ZZ‘j). We denote by
Z”}(—n) the closure of the unique component of f _”(U Int(ZZ”})) that con-
2

tains Zi,j~
Generalizing such notations for pseudo-core surfaces, we define

Xy(=n) = C = JInt(Di ) ~ (JInt(Zi j(~—n)).
b

i?j
and
XP(=n) :=C—={Jmt(Ds;) — |J mt(Zij(—n)) — |J t(Z}"(—n)).
i,j i£k,j J=0

We also define
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and R R
Yfm(—n) = f_”(X}”).

We summarize the relations between these spaces in the following diagram.

Y(-n) Yi'(=n)
R/(—n) X; Xp(-n) Xy
X; X

Here the hooked arrows represent inclusions and f" : lA/f(—n) — X § or
7Y (—=n) — X§" are covering maps.

3.6. Local degeneration on pseudo-core surfaces. In this subsection,
using the dynamics of f on the boundaries of the Siegel disks, we introduce
some special families of curves for the pseudo-core surfaces. The extremal
widths for such families are crucial in our analysis.
Set Z := Z1, with period p = p;. Consider the level m pseudo-core
surface for Z
p—1
X7 :=C-JInt(Z;) — JInt(Ds;) — |J Int(Z]).
i#1 §=0
Let I C 0Z™ be a regular interval. Denote
B =B(I,)\) = 0X}" — M.
We use the notations

‘F)T (I) = ‘F;E\m (I) a‘nd ‘FA (I) = ‘F)\’Z\m (I)

)

to denote that curves families connecting I with B in )A(}” and in C re-
spectively. As we will be working with pseudo-Siegel disks of Z of different
levels simultaneously, the subindex Z™ is sometimes added to clarify which
pseudo-Siegel disk we are considering. We denote
WA (D) = WD) =Wy (D) = Wen (1, BULN) = WFT) - (38)
WAL) = WanlI) = W, 5 (1) = Wa(L, BULN) = WRD).  (39)

We shall refer to the quantities Wy (I) as local degenerations. We remark
that here local means that we have localized one end of the arcs to be in the
interval I. The arcs are not necessarily restricted in a local part of X}”.

The family F ;’ (I) can be decomposed into the peripheral and non-peripheral
parts, and we denote the corresponding families by

FyP(I) and Fy"P(T).
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Their widths are denoted by
WHPET(T) and W™ (1)

We remark that A is chosen to be a large constant. Thus, there is a large
combinatorial distance between the end points of any arc in F, (I).

We also use the notation W"(I) := W, ™ (I), i.e. the width of non-

0,m

peripheral arcs in )A(]C” starting on the interval I.

3.6.1. Comparing local degenerations. One of the most important properties
of grounded intervals is that local degenerations behave nicely as we pass
from Siegel disks to Pseudo-Sigel disks. Moreover, for non-peripheral de-
generations, we can simply replace an interval by a grounded interval with
some uniform control on the correction.

Proposition 3.3. Let I C 9Z™ be a grounded interval, and let I* C 8Z be
the projection of I onto 0Z. Suppose that X > 10. Then

W;“,Z(I') -0(1) < W;iim(l) < QWIZ(I') +O(1).

For any interval I C 8Z, let ISFNP 191 C 97 be the smallest grounded
interval of level m that contains I and the largest grounded interval of level
m that is contained in I respectively. Then

Wy (I EP) — O(1) < W™ (1) < Wy (19FP),
W19 < Wz (1) < Wy " (197%) + O(1).

Proof. The Thin-Thick Decomposition (see [Lyu, Theorem 7.25] allows us,
up to O(1), to replace Fy ,(I*) with a union of finitely many rectangles in

F ;r 4 (I*). Therefore, (3.3) implies the first statement.

The second statement follows from the observation that TBND \ T ig
within a union of at most two intervals, each being surrounded by an annulus
A°"(\) with modulus > e. Therefore, the width of curves in F"P(I6RND)\

2
F ™ (I) is bounded by - A similar argument holds for I and ™4, O

We remark that it is possible to replace 2 by by 1 + §, where § = §(A)
can be arbitrary small if the protection A for the Pseudo-Siegel disk is
sufficiently big.

3.7. Non-uniform construction of pseudo-Siegel disks. In this sub-
section, we construct pseudo-Siegel disks so that non-peripheral degenera-
tion dominates peripheral degeneration — see and below. More
precisely, with the notations introduced in and §3.6] we will prove

Theorem 3.4. Let H be a hyperbolic component of disjoint type. Let [f] €
OH be an eventually-golden-mean map with the pseudo-core surface Xy. Let
K = Wyo(Xy) be the arc degeneration of Xy. There exist a constant
M = M(K) depending on K, pseudo-Siegel disks 22"3 for all i,j so that for
all A > 10,
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(1) Z-J- = 2;]1 is an M quasiconformal disk;

(2) for every grounded interval J C 0Z; ; rel ZZZ with 41 < |J| < I,
we have
(a) W™ (J™) = O(Kly, +1); and
(5) W (77) = O(/ KTy +1

We remark that and (2b)) can be improved for all m unless m is the
“special transition” level; see refined versions in Appendix [B] Theorem [B.2]
See also Remark [B.3] for an explanation of the estimates.

Proof. The construction is by induction on the cycles of Siegel disks. Sup-
pose that we have constructed pseudo-Siegel disks Z”} for i < k, and we
want to construct the pseudo-Siegel disks for the k-th cycle. Abusmg the
notations, denote the pseudo-core surface by X 7. Let Z := Zj1 be a Siegel
disk for f. Note that Z is a boundary component of X f. Since we can
construct Zk,j by f7 _1(219,1), it suffices to construct the pseudo-Siegel disk
7 = Zlal- After passing to an iterate, we may assume Z is fixed by f.

The idea is to construct a 1°*-ql (pseudo-bullet-quadratic-like) map (see
for the definition). By the construction in §B.2] we can associate a
¥*-gl map

=(fP): U3V
with
W (F) = 2Ware(Z) + O(1).
Since the vertical (or non-vertical) degeneration for F' corresponds to, up to
a width of O(1), the non-peripheral (or peripheral) degeneration of X 7 with
endpoints on Z (see §A.5and , the statements for intervals on 0Z now
follow from Theorem [B.2} more specifically from Eqation [B:6

By Proposition [3:3] replacing the Siegel disk Z by a pseudo-Siegel disk
only changes the the degeneration by a bounded error, we conclude that
statements for intervals on 0Z; ; for i < k still holds. Since there are only
finitely many cycles of Siegel disks, we conclude the theorem. O

Remark 3.5. We remark that for any given 7" > 1, we can construct the
pseudo-Siegel disk that are T-stable. This parameter T affects only the
constant M and constants representing the “O( )” in (see §-

In this paper, we will select T" to be sufficiently big to domlnate the pulled-
off constant N in §4 and the constant a in Theorem See for the
choice of these constants. This selection will be used in:

e the proof of Localization of arc degenerations in Theorem
e the proof of the Calibration lemma on shallow levels in Theorem
4. THE PULLED-OFF CONSTANT AND EXPANDING MODEL

Let H be a hyperbolic component of disjoint type. Let [f] € OH be an
eventually-golden-mean map with the pseudo-core surface, and [fp.f] € H
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be the post-critically finite center. Let Ngjeger([f]) and N([fpcs]) be the
pulled-off constant as in Definition [1.5)

In this section, we will show that a pulled-off constant is uniformly bounded
for a Sierpinski carpet hyperbolic component. This is one of the key reasons
why a Sierpinski carpet hyperbolic component is bounded.

Theorem 4.1 (Pulled-off Principle). Let H be a Sierpinski carpet hyperbolic
component of disjoint type. Then there exists a constant N so that for any
eventually-golden-mean map [f] € OH, N([f]) < N.

We will deduce this theorem by justifying that the expanding model of
maps in H persists for eventually-golden-mean maps on 0H. Then, assuming
Theorem we will show that the expanding model persists for all maps
OH implying Theorem B.

4.1. Characterization of Sierpinski carpet hyperbolic component.

Theorem 4.2. Let H be a hyperbolic component, and let [fpcr] € H be the
post-critically finite center. Then H is Sierpinski if and only if N([fpef]) <
00.

Proof. By [Pil94], Corollary 5.18], the map f,.; has Sierpinski carpet Julia
set if and only if there is no periodic Levy arc. Here a Levy arc is a non-
peripheral simple curve v with endpoints in the post-critical set P(fpcf) so
that f).¢(7) is isotopic rel P(fycr) to 7 for some n.

If there is a periodic Levy arc, then, up to isotopy, it can be realized as a
concatenation of two internal rays and, hence, N ([ fpcr]) = 0.

Conversely, suppose that N([fper]) = 0o. Then there exist arbitrarily
long essentially disjoint pull back sequence 7y, ..., v,. Note that the number
of essentially disjoint isotopic classes of arcs is bounded by the topological
complexity of cC-rP (fper)- Thus, for all large n, some pairs in 7o, ..., are
isotopic. Therefore, there exists a periodic Levy arc. [l

4.2. Semiconjugacy to an expanding model. Let H be a Sierpinski
carpet hyperbolic component of disjoint type. In this subsection, we will
show that an eventually-golden-mean map [f] € OH is semiconjugate to a
topologically expanding map.

Let [fper] € H be the center of H, i.e., the unique post-critical finite map
in H. We define f : S — S? as the quotient map of fpep by collapsing
each Fatou component to a point. Note that f is topologically expanding,
as fpes has Sierpinski carpet Julia set.

Let [f] € OH be an eventually-golden-mean map. Using renormalization
theory on Siegel disks, we will prove

Theorem 4.3 (Expanding model for Oegm ). Let [f] € OH be an eventually-
golden-mean map. Then there exists a topological semiconjugacy

h:C— S with foh=ho f.
In particular, NSiegel([f]) < N([fpch'
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Proof. Denote the multiplier profile for [f] as (p1, ..., p2g—2). Let

(Pl,m (XX} P2d72,n)

be rational parameters converging strongly to (pi, ..., pag—2), with corre-
sponding maps [f,] € OH. By approximating each [f,] with hyperbolic
maps in H radially, there exists semiconjugacy (see [CT18, Theorem 1.5])

hyp : C — S% with f o hy = hy o fo.

We assume the representatives are chosen so that f,, — f as rational maps.
Since any orbit on the boundary of a Siegel disk is dense on the bound-
ary, it is easy to see that the Siegel disks and valuable attracting domains
have disjoint closures. By [DLS20, Theorem 6.9], for sufficiently large n, we
can find parabolic valuable flowers L; ;,, approximating the Siegel disks Z; ;.
Therefore, we can find disjoint small neighborhoods U; ; of Z; g and W; ; of
Dzj so that for sufficiently large n, we have L; ;,, C U; ; and D” n C Wi
For sufficiently large n, we can find a small perturbation h° of h,, so that
RO(U; ;) and h°(W; ;) are points. Note that the union U = U Ui ;U U Wi ;
contains the union of parabolic valuable flowers and valuable attracing do-

mains of f,, so U also contains the post-critical set of f,. Then we can pull
back h° and get

hl:C — $% with foh® = hl o f,,
h':C — S? with foh®=h'o f.

Since h,, is a semiconjugacy between f,, and f, h}L ~ h%on X ¢ for sufficiently
large n. Since f, — f, h' ~ k% on Xy as well.

Since Int(Xy) contains no post-critical point and f is topologically ex-
panding, a standard pull-back argument gives the semiconjugacy.

Note that any laminally disjoint pull-back sequence for an eventually-
golden-mean map [f] gives a laminally disjoint pull-back sequence for f. 1If
7 for [f] connects boundaries of Siegel disks, then the corresponding arc ¢
for f connects points in critical periodic cycles. Since each laminally disjoint
pull-back sequence is essentially disjoint, and f is homotopically equivalent

to fper, we have that Ngieger([f]) < N([fpes])- O

Proof of Theorem[{1. By Theorem [£.3] Ngjeger([f]) < N([fper])- By Theo-
rem [£.2) N([fpes]) < oo. Therefore, Ngjeger([f]) is uniformly bounded. O

4.3. Proof of Theorem Recall that f : S — S? is the topologically
expanding map obtained from collapsing Fatou components of the center

[fpcf] €EH.

Theorem 4.4 (Expanding model for maps in OH). Let [f] € H. There
exists a topological semiconjugacy

h:C— S with foh=ho f.
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Proof. Let [f] € OH with multiplier profile (p1, ..., p2q—2). Let [f,] € OH be
a sequence of eventually-golden-mean maps with
e [fu] = [f]; and
e its multiplier profile (p1 .y, ..., P2a—2.n) —s (P1, -y P24—2)-
Assume that the representatives are chosen so that f, — f.
By Theorem [1.6] after passing to a subsequence, we may assume pseudo-
Siegel disks Zl 4n and valuable-attracting domains DZ Ljn converge in Haus-

dorff topology to Z”- and D” Note that sz and D,j contain the post-
critical set of f. Denote the Riemann surface

X;:=C- Unt(Zi ;) — JInt(D)
By Theorem there exists semiconjugacies
hn: C — S% with foh=ho f,.

We can construct a similar purtabation h° of h,, for some sufficiently large
n. Let k' be the pull back of h” under f. A similar argument as in Theorem
gives that h° ~ h' on Xy with

foh’=hlof

Since X ¢ is disjoint from the post-critical set and f is topologically ex-
panding, a standard pull back argument gives the semiconjugacy h. (]

Theorem [B] now follows immediately from Theorem [4.4]

Proof of Theorem@ Let # = h(z) € 52, where h is the semiconjugacy in
Theorem |4 Let # € U be a small nelghborhood so that U e fP(U).
Let U = h YU). Then fP : U — V = fP(U) gives the quadratic-like
restriction. Since H is compact, the modulus of V —U is uniformly bounded.
This proves the theorem. O

5. LOCALIZATION OF ARC DEGENERATION

In this section, we will prove that if the arc degeneration Wam()? ) of
the pseudo-core surface X s is sufficiently big, then there exists some small
grounded interval I whose local degeneration Wy () is at least comparable
t0 Ware(X #); compare with More precisely, we will prove

Theorem 5.1 (Localization of arc degeneration). Let H be a hyperbolic
component of disjoint type. Let [f] € OH be an eventually-golden-mean map
with pulled-off constant N = Ngjegei([f]). There exist

e a constant a > 1 that depends on N,
e and a threshold constant A > 1

such that for every X\ > A and for every 0 < € < 1/2X\, there exists a
threshold constant K. x n > 1 depending on e, \, N and the multipliers of
attracting cycles of f with the following properties.
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Suppose that the Riemann surface )A(f =C — UInt(Z-J) - UInt(lA)i,j)
has R
Warc(Xf) =K > Ke,/\,N~
Suppose that all pseudo-Siegel disks are at least N-stable. Then there exists
a pseudo-Siegel disk Z = Z; ; and a grounded interval I C 8Z with |I| < e
such that
WHP(T) + WP (T) > K /a.

Remark 5.2. We remark that if H is a Sierpinski carpet hyperbolic com-
ponent, then by Theorem the pulled-off constant is uniformly bounded.
In this case, the constant a can be chosen to be universal, and the constant
K. ) n depends only on €, A and the multipliers of the attracting cycles.

Pulled-off argument. We will follow the notations introduced in It
follows from Proposition [3.3] and the fact that the Siegel disks are N-stable
that for sufficiently large arc degeneration K = We,o(X¢), we have

1 BN ~ ~
gWarc(Xf) < Warc(Xf(_N)) < 8WaTC(Xf)'
Note that there are only finitely many homotopy classes of non-peripheral
arcs v € X¢(—N) with W(v) > 2. This number is bounded by a constant
M, which depends only on the number of boundary components of X (—N).
Let v € X¢(—=N) be a non-peripheral arc with
W(’y) > Wam()?f(_N)) > Wam()?f) _ K .
2M 16M 16M
We may realize such wide families by a rectangle R, whose vertical arcs are
homotopic to v and

W(Fy) =W(v) - 0(1),
where F, is the family of vertical arcs in R,.

By our construction, the modulus of the annulus D; ; — lA)” is bounded
below in terms of the multipliers of the attracting cycles of f. By making
the threshold K, ) y larger if necessary, we may assume < connects two
pseudo-Siegel disks Z(—N) and Z'(—N). Note that Z(—N) may equal to
Z'(=N).

Let U be a component of f*N(U Z;i ;). Denote U(=N) as the corre-
sponding pseudo-Siegel disks, i.e., U (—=N) is the closure of the component
of C — ?f(—N) that contains U.

Lemma 5.3 (Submergence into U). There exists
e q constant a; depending on N,
e q strictly pre-periodic Siegel disk U C f*N(U Zi ;) so that 0Z and
oU are in different connected components of 0Yy(—N),
e a family G of homotopically equivalent non-peripheral arcs connect-
ing Z and ﬁ, and
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o a subfamily 7, C F,
so that

° W(./Tl) > K/al;
o the family F1 overflows G.

Proof. Note that v C X #(=N) determines a unique homotopy class of non-
peripheral arc ¥ C X ¢. We first claim after removing some buffers, we may
assume any arc in JF, intersects some strictly pre-periodic component of
f_N(U Zi; U UInt(]_A)i,j)). Indeed, otherwise, we get N disjoint rectangles
Ry € Ry, Ry = f(Ro),...,Rxv = fY(R). All vertical arcs of each of the
rectangles are homotopic to some non-peripheral arc in X ;. This produces
a disjoint pull back sequence 7y, ..., yn. This is impossible by the definition
of pulled-off constant V.

Since the modulus of the annulus D; ; — ﬁ” is bounded below, by mak-
ing the threshold K, ) v larger if necessary, we may assume there exists a
subfamily ' C F, so that

e W(F') > W(F,)/2; and
e no curve in F' intersects the preimages of valuable-attracting do-
mains fﬁN(U Int(D; ;).
Thus, any arc in F’ must intersect some strictly pre-periodic Siegel disk in
MU %) < YUt (Zg).-

Note that there are a bounded number (depending on N) of strictly pre-
periodic Siegel disks U C f_N(U Z; ). So there are a bounded number of
homotopy classes of wide non-peripheral arcs in Yy(—N). Thus there exists
a constant a; depending on N, some family G of homotopically equivalent
arcs connecting Z and a strictly pre-periodic pseudo-Siegel disk U (—N) so
that the arcs in F’ overflowing G has width at least K/ay. Let F1 C F be
this collection of arcs and we conclude the lemma. ([

Let Fi be the family of arcs in Lemma Consider an arc v : [0,1] —
X;(—N) in F; with 4(0) € dZ(—N) and v(1) € dZ'(—N). Let to > 0 be
the first time that v(¢p) € 8}?f(—N). Let 7' = 7049 By our construction,
7' €G. Thus v/ C fff(—N) is an arc connecting Z(—N) and U(—N).

Lemma 5.4 (Localization of the submergence as I' ¢ dU(—N)). There
exists a threshold constant K¢y y > 1 so that if

K = Ware(Xy) > Kean,

then there exist a constant az depending on N and a grounded interval I' C
OU(—N) with |I'| < € so that the collection Fo C Fy of arcs passing through
I’ has width W(F2) > K/as.

Proof. Let v1,7v2 € F1 be the left and right most arcs in F;. Let x; be an
intersection point of v; with QU (—N). Since the end points of ~; are outside
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FIGURE 5.1. The curve ~; and 7y» are the left and right most
arcs in Fi. Most of the arcs in F; passes through I or Is.

of X(U(—N)) and the extra outer protection X7 has width bounded below,
by removing a collection of arcs of bounded width, we may assume that z;
is away from the extra outer protections X (U (—N)).

Let x; € I; C dU(—N) be a grounded interval with |I;| < e. Let F' C Fy
be the family of arcs that is disjoint from I; UI5. Let F” be the collection of
arcs 0 C ﬁ(—N) connecting the two components of QU — I1 — Is. Then any
arc F' must overflow an arc in F”. However, the width W(F") < |loge|.
Thus, W(F') < |loge|.

By choosing the threshold K, ) y larger if necessary, we may assume
K/a; > |loge|. Thus the collection of arcs passing through I; UI5 has width
> K/2a;. Without loss of generality, we assume the arcs of at least half of
the width pass through I;. The lemma now follows by letting I’ = I;. [

We are ready to prove Theorem [5.1l In the proof, we first push forward
by fV the wide family from Lemma passing through I’ to obtain a wide
family 7' based at I” = fN(I') € 8Z. We then lift the appropriate restric-
tion of F’ to the associated v*-map g around Z. Applying Lemma we
construct an appropriate interval I in the dynamical plane of g. Using nat-
ural properties of the Thin-Thick decomposition, the projection of I back
to 0Z gives a required interval .

Proof of Theorem[5.1. Consider an arc v : [0,1] — X;(=N) in Fp with
v(0) € 0Z(—N) and (1) € 0Z'(—N). Let tog > 0 be the first time that
Y(to) € I'. Denote the truncation 7|j 4, by 7. Let Fy be the collection of
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such truncations
Fy={y 7€ R}
Let I" = fN(I'). Then I” is a grounded interval on some periodic pseudo-
Siegel disk Z". Since 8Z and dU are in different connected components of
9Y;(—N), we conclude that o := f~(7/) is a non-peripheral arc starting
at I”, ie., a is an arc in C so that at least one component of a N Xf is
non-perlpheral Let o be the smallest sub-arc of « starting at I” so that
odNX ¢ contains a non-peripheral component, and let 3 be the collection of
such truncations. Note that W(F3) > K /ag for some constant ag depending
only on N. Let g be the associated ¥*-map around Z. Then the arcs in
JF3 can be lifted to vertical arcs for the ¢*-map (see and ~D Let I
be the lift of the interval I”. By the Thin-Thick Decomposition (see §
we obtain a rectangle R of width K /a4 consisting of vertical arcs that start
at I, for some constant ay depending only on N. We now apply Lemma

1
B.5| with A" = max{\, =}. We choose the threshold K ) y large enough so
€

that there exists some constant a; depending only on N so that there exists
either

e a subrectangle Ry of R with W(R1) > K/as such that Ry is outside
of int Z; or N

e a grounded interval J C dZ such that W;\“per(J) > W;\r,’per(J) >
K/a5.

1
Note that in the second case, since W5, P (J) > 0, we have |J| < v <e.

We project the wide lamination down to the dynamical plane of f. In the
first case, we obtain some grounded interval I C I” with

W (1) > K/a.

for some constant a depending on N. In the second case, we obtain some
grounded interval I C Z with |I] < € so that

WP(I) > K/a.
This proves the theorem. O

6. CALIBRATION LEMMA ON SHALLOW LEVELS FOR W,""P(T)

In this section, we will prove a calibration lemma for non-peripheral
arc degenerations. Roughly speaking, we will show that if there exists a
grounded interval I with sufficiently large non-peripheral arc degeneration
W,E"P(T), then there is a grounded interval on a deeper level with compa-
rable local degeneration; see also

Theorem 6.1 (Calibration lemma on shallow levels). Let H be a hyperbolic
component of disjoint type. Let [f] € OH be an eventually-golden-mean map
with pulled- off constant N = N([f]). Let Z be a Siegel disk of period p and
Z=2" be a pseudo-Siegel disk of level m.



36 D. DUDKO AND Y. LUO

For every a > N, there is a constant x, > 1 and a threshold constant
K, > 1 with the following property.

Suppose that Wm()?f) > K, that all pseudo-Siegel disks are at least
4apN -stable and that I is a grounded interval with ly,1 < |I| < by, by >
1/4a such that

K = Wﬂ-ﬁ;,ﬂp(]) > Warc()?f)/a'
Then, there is a grounded interval J C 8Z with |J| < Ly such that
W () = K/Xa = Ware(X§) /Xaa.

We remark that the shallow level refers to that [, (and hence m) is
bounded from below.

Bounds on ¢, 1. One important observation is the following lemma, which
bounds the iterations of f to consider.

Lemma 6.2. Suppose that L, > 1/4a. Then
Im+1 < 4a.

Proof. Note that by spreading around a level m interval I, we get gm4+1
disjoint intervals of length [,:

Io=1,1) = f22(I), ..., Iq, 1 = fOma=9P(D) i € {1,2, ., g — 1}
So Gm+1ln < 1. Thus, if [, > 1/4a, qm+1 < 1/L, < 4a. O

Proof of the calibration lemma. Following the definitions in let
Z,j(—n) be the closure of the component of f*”(Int(U ZJ)) that contains
Z;j. Since qpi1p < 4ap by Lemma and all pseudo-Siegel disks are
4apN-stable, we define

Xj(=Nams1p) = C = (JInt(Dij) = | Jt(Zij (= Nam+1p)),
and
Yi(=Nams1p) = f N HP(Xy).
Since qm+1p < 4ap and N < a, the topological complexity, i.e., the number
of boundary components of f/f(—N qm+1P) is bounded in terms of a.

Note that since the interval I is grounded, by Proposition [3:3] the wide
families for I of X; and X;(—Ngy+1p) have compatible width, as they
are both compatible to the corresponding family in X;. Denote the cor-
responding family of X'f(—quHp) for W™ (I) by F. Let v be a di-
rected arc in X'f(—quHp) C f/f(—quHp). The initial segment ¢ of 7 in
?f(—quHp) is the first segment of the union of arcs v N Y (—Ngm11p).
We say two initial segments &1, do are homotopic if they are homotopic in
)A/f(—N qm+1p) and they both connect OU with OV where U,V are compo-
nent of C — }A/f(—N qm+1p). We remark that the homotopy condition does
not imply the second condition as OU U 9V may be connected.



SIERPINSKI HYPERBOLIC COMPONENTS OF DISJOINT TYPE ARE BOUNDED 37

Since the topological complexity of }A/f(—N qm+1p) is bounded in terms
of a, there exists a constant C1 = C(a) depending on a and a subfamily
F1 C F with

* W(F1) =2 W(F)/Cr = K/Cy; and

e all arcs in F; have homotopic initial segments.
Note that we may assume Fj forms the vertical foliations of a rectangle
connecting I; C I and L; C 8)A(f(—qu+1p). Since the non-peripheral arc
degeneration for I is large, by Proposition we may assume that I is
grounded. Since |I1| < [, there are at most N critical points of f~9m+1P in
I;. Subdividing I; into N + 1 subintervals if necessary, we may also assume
that there are no critical points of fN9m+1P on I;.

We are now ready to prove Theorem

Proof of Theorem[6.1]. Suppose for contradiction that any grounded interval
J C 0Z with |J| < Ly satisfies W™ (J) < K/xq, where X, is some
constant to be determined.

Note that if |I;| < l,41, then we may take x, > Cp and obtain a con-
tradiction. Thus, we may assume l,4; < |I1| < [,. Then the symmetric
difference

(fNm P (1) = ) U (I = fNIm P (1)

consists of 2N number of level m + 1 combinatorial intervals. Note by
assumption, the widths W™ for these combinatorial intervals are bounded
by K. Thus, the width W for the union of these 2NV intervals is bounded

from above by 2NK/x,. Thus there exists a rectangle in X ¢ with base
fNam+1P (11 so that the family F of its vertical arcs satisfies

IW(F) = W(F1)| = O(K/Xa).

Let G be the pull back F under fNam+1P that starts at the interval I;. Since
fNam+1P s univalent on Ij, we have |W(G) — W(F)| = O(1) (see [DL22,
Lemma A.10]). Thus,

IW(G) = W(F1)| = O(K/Xa)-

After removing two 3N K /xq-buffers from Fi, we get a subfamily Fj pe C
J1 starting at some interval I j,c,. Note that by our assumption, the length
of each of the intervals in Iy — I neqy is at least 3N, 41, and at most O(1)
curves in Fj pew can cross the 1-buffers of G starting at Iy — Iy pew. Thus,
by removing these curves if necessary, we obtain a subfamily Fj yew € Fi
with
IW(FLnew) = W(F1)| = O(K/Xa)

that overflows G (see Figure .

Note that Ng,,+1p > N, arcs in G do not connect periodic pseudo-Siegel
disks by the definition of pulled-off constant. Thus, G consists of homotopi-
cally equivalent arcs connecting 07 with some strictly pre-periodic pseudo-
Siegel disk ouU .
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FIGURE 6.1. The configuration of the families Fi je, and G.

Let +' be the part of v € Flnew after its first intersection with ou.
Consider F' := {7 : v € Fi pew}- Note that for each arc ' € F, its image
fNamt1p (7/) contains some non-peripheral arc. Since the iteration N¢,,+1p
is bounded, there exists a constant Cy = Cz(a) so that

W(F') < CoWare(X ).

By Proposition W(F) > WMC()A(f(—quJrlp))/aCl > Warc(f(f)/élacl.
Thus there exists a constant C5 = C3(a) so that

W(F') < CsW(F).
By the series law, we have
W(Finew) < W(G) & W(F').
Equivalently, we have
1/W(G) + 1/W(F') < 1/W(Finew)-
Using our estimates on W(Fi new), W(G), W(F'), we have
L/W(F1) + O(K/xa)) + 1/(CsW(F1)) < 1/W(F1) + O(K/Xa))-

Note that W(F1) € [K/C1,K]. Let W(F1) = cK for ¢ € [1/C1,1]. Thus,
by cancelling the common term K, we obtain

1/(c+0(1/xa)) +1/(Csc) <1/(c+ O(1/xa))-
This is a contradiction as such an inequality cannot hold if x, > 1. This
concludes the proof of Theorem [6.1] O
7. BOUNDS ON ARC DEGENERATION

In this section, we shall prove that Warc(f( #) is bounded in terms of
the pulled-off constant. By Theorem [1.1} this would immediately imply
that Wypc(Xy) is uniformly bounded for eventually-golden-mean maps on
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the boundary of a Sierpinski carpet hyperbolic component of disjoint type.
More precisely, we will show

Theorem 7.1. Let H be a hyperbolic component of disjoint type. Let [f] €
OH be an eventually-golden-mean map with pulled-off constant N = N([f]).
There exists a constant K depending only on N and the multipliers of at-
tracting cycles of f with the following properties.

(1) For each Siegel disk Z;; of f, there exists a pseudo-Siegel disk ZJ

which is a K-quasiconformal closed disk.
(2) For each attmctmg domain D; )ij there exists a valuable-attracting

domain D”- with mod (D ij — D; 7]) > 27 /K.
(3) The pseudo-core surface Xf =C- Ulnt ij) — Ulnt(z,j) has
uniformly bounded arc degeneration

Warc(Xf) < K.

Let us outline the strategy of the argument. As a preparation, we ﬁrst
construct pseudo- Siegel disks as in Theorem [3.4) with bounds dependin
Wa'rc(X f)- Let X ¢ be the pseudo-core surface. To prove Theorem |7 by
Theorem (3.4} it suffices to show that Warc(X f) is uniformly bounded.

We will argue by contradiction. Suppose Weye(X ) is sufficiently large.
Then

i) we can first localize the arc degeneration (Theorem and obtain
a small grounded interval I; with comparable local degeneration

WHP(I) + WP (T) = Ware( X ).

ii) By Property (2)(b) in Theorem [3 H, the peripheral part W)\ ()
is relatively small.

iii) This means W,5"P(I) is large. We will apply the calibration lemma
(see Theorem , and construct an interval on a deeper level with
big local degeneration, which contradicts Property (2)(a) in Theorem

3.4

7.1. Choosing the constants. There are many constants in the proof. We
summarize their relations and the order we choose them here.

e a is the constant in the localization lemma (Theorem [5.1)), and we
assume a > N;
e x is chosen so that it satisfies the calibration lemma (with constant

a = a)(Theorem [6.1));
e M\ is chosen so that A > A, x, where A is the constant in the local-
ization lemma (Theorem [5.1));

Let [f] € OH be an eventually-golden-mean map. Let 6y, ..., 6; be the list
of rotation numbers for Siegel disks of f.

e € is chosen so that
€< 1/xa.
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We also assume that all psuedo-Siegel disks are T-stable where
T > 4aN max{p;}

where p; is the period of Siegel disks (see Remark . We remark that all
the constants above depend only on the pulled-off constant V.

7.2. Uniform geometric control.

Lemma 7.2. There exists a constant K depending on the pulled-off constant
N so that War(Xy) < K.

Proof. Choose K > 1 so that it is much bigger than the threshold in The-
orem (with constant € = €, \ = XA and N), Theorem (with constant
a=a).

Suppose by contradiction that Warc(f( f) = K > K. By the localization
lemma (Theorem , there exist a pseudo-Siegel disk Z and a grounded
interval I of Z™ with

o |I|<e< 1/xa;and

o WHP(I) + Wy (I) > 2K /a
Suppose that l,+1 < |I| < [,. By Property (2)(b) of Theorem the
peripheral part

WP (1) = O(VinK + 1) < K/a,

for all sufficiently large K.
Thus, W, (I) > K/a. By Property (2)(a) for level m of Theorem [3.4

1
K/a < WH™(I) + WP (1) = O(Kly, + 1), 50 Ly, > e Therefore, we

7m a
can apply Theorem and obtain a grounded interval J with |J| < ;41
with
Wit () > K/xa.

m

By Property (2)(a) for level m + 1 of Theorem [3.4] we have
WETP(J) = Ol K +1).

m

Since 41 < |I| < € < 1/xa, increase K if necessary, we have

Wit (J) < K/xa,

m

which is a contradiction. The lemma now follows. O

Proof of Theorem[7.1]. The theorem follows by combining Theorem 3.4 Lemma
2.1 and Lemma [7.2l O

8. DYNAMICS ON LIMITING TREES AND BOUNDS ON LOOP DEGENERATION

In this section, we shall prove the following theorem giving uniform bounds
of loop degeneration for eventually-golden-mean maps.
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Theorem 8.1. Let H be a hyperbolic component of disjoint type. Let [f] €
OH be an eventually-golden-mean map with (Siegel) pulled-off constant N =

NSiegel([f])- Let
Xf =C- U Int(ﬁi,j) — UInt(Z«J)

be the Riemann surface as in Theorem . There exists a constant Kjoop
depending only on N and the multipliers of the attracting cycle of [f] so that

Wloop()?f) < Kloop-

8.1. Limiting maps on trees. Recall that the marked hyperbolic compo-
nent H are parameterized by the 2d — 2 multipliers py, ..., p2g—_a:

H = ]D)l X ..o X ng_Q.
Fixing a1, ...,a; € D and a constant IV, and consider the slice

A :={[f] € OH : [f] is an eventually-golden-mean map, with
pi=a,i=1,. klp|=1i=k+1,..2d— 27NSiegel([fD < N}

To prove Theorem @, it suffices to show that there exists a constant Ky
with Wloop()A(f) < Kjpop for any map [f] € 2.

The proof is by contradiction. We first show that, after passing to a
subsequence, any sequence [f,] € 2 converges to a limiting map on a tree of
Riemann spheres. If there is no such constant Kj,,,, then the limiting tree
is non-trivial. The dynamics on the tree is recorded by a Markov matrix M
and a degree matrix D. We show that there exists a non-negative vector
¥ # 0 with M7 = D¥. As matrices with non-negative entries, we show that
D™'M is no bigger than the Thurston matrix for f, for sufficiently large
n. So the spectral radius of the Thurston’s matrix is greater or equal to 1,
giving a contradiction.

Following the notations in [Luo22b|, we define

Definition 8.2. A tree of Riemann spheres (7, @7/) consists of a finite tree
J with vertex set ¥, a disjoint union of Riemann spheres ¢ = U @a,
N ac¥
together with markings &, : 7,7 — C, for a € V.
The image =, := &,(1,7) is called the singular set at a, and = = U Ba-
N acy
A rational map (F, R) on (7, (C'V) is a map

F:(7,9)— (Z,7) that is injective on edges,

and a union of maps R := U R, so that
acV
e Ry :Cy —> @F(Q) is a rational map;
e R, Ofa = é-F(a) o DF,.
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It is said to have degree d if R has 2d — 2 critical points in Cc’ —=.
A sequence f, of degree d rational maps is said to converge to (F, R) on
(7, (Cy/) if there exist rescalings A, , € PSLy(C) for a € ¥ such that

° A;‘%a),n o fn 0 Agn(2) = Ra(z) compactly on C, — =

o Ay 1o A, ,(2) converges to the constant map &,(v), where v € T, 7
is the tangent vector in the direction of b.

Theorem 8.3. Let [f,] € A. Then after passing to a subsequence [fy]
converges to a degree d rational map (F,R) on (7,C”).

Moreover, [fn] converges in Mg g, if and only if T is trivial, i.e., T
consists of a single verter.

We remark that a similar result is proved for quasi-post critically finite de-
generations of arbitrary rational maps in [Luo22b|. For quasi-post critically
finite degeneration, the orbit of the critical points is controlled uniformly
throughout the sequence. In our setting, the critical orbits are controlled
in those valuable-attracting domains, as the multipliers stay constant, and
Theorem [7.1] gives a uniform bound for pseudo-Siegel disks. More precisely,
we use these uniform bounds crucially in two places.

(1) We use the fact that valuable-attracting domains and pseudo-Siegel
disks are uniform quasi disks to show that their rescaling limits con-
verge (Definition [8.5] and Lemma [3.6).

(2) We use the uniform bound on arc degeneration to control the holes
for the rescaling limit (Proposition [8.16)), which allow us to construct
Thurston obstructions for large n (Proposition .

With these modifications, the proof is similar to the quasi-post critically
finite case as in [Luo22b].
We also remark that the same proof of Theorem[8.3]also gives the following

Theorem 8.4. Let [f,] € H be a seugnece of eventually-golden-mean maps
with uniformly bounded Warc()A(f). Then after passing to a subsequence [ fy,]
converges to a degree d rational map (F,R) on (7,C”).

Moreover, [fy| converges in Mg fm if and only if T is trivial, i.e., T
consists of a single verter.

Since maps in the slice 2 are marked, we use V to denote the collection
of valuable-attracting domains and open pseudo-Siegel disks.

More precisely, this means that if U € V and [f] € A, then U(f) is either
a valuable-attracting component or the interior of a pseudo-Siegel disk for
f. Note that we have an induced dynamics

fe:V— V.

Construction of the rescaling. Let us fix a sequence [f,] € 2. We define
the rescaling for U € V as follows.
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Definition 8.5. Let U € V. Let «a, € U(f,) be the corresponding non-
repelling periodic point. A sequence Ay, € PSLy(C) is called a rescaling
for U if

o Ayn(0) = an € U(fn);
o Aun(1) € AU (fn);
o Ayn(o0) € C=U(fn).

Lemma 8.6. After passing to a subsequence, A(};L(U(fn)) converges in
Hausdorff topology to some quasiconformal disk.

Proof. Since U(f,) are unlformly quasiconformal disks by Theorem |7 -,

there is a sequence V¥, :C—Cof uniformly quasiconformal maps so that
U, (D) = U(fn), normalized so that ¥,,(0) = Ay, (0), ¥, (1) = Ay ,(1) and
¥, (00) = Apn(00). Then Ayl oW, is uniformly quasmonformal and fixes
0,1, 00. Therefore, after passmg to a subsequence, A » © ¥ converges to a
quasiconformal map W. Thus, AUm( (fn)) converges to the quasiconformal
disk ®(D). O

The following lemma follows from the same argument as in [Luo22b)
Lemma 4.3].

Lemma 8.7. If Ay, By,, are two rescalings for U € V, then the sequence
B(;}@ o Ay, is bounded.
Equivalently, if we identify the hyperbolic 3-space H® as the unit ball and
PSLy(C) = Isom(H?), then
dys (Ayn(0), Bun(0)) is bounded,
where 0 € H3 is the center of the unit ball.
Let us now fix rescaling Ay, for U € V.

Lemma 8.8. Let U € V. Let Ay, Af, yn be rescalings for U and f(U).
Then after passing to a subsequence,

Af*lU) o frnoAun
converges (away from finitely many points) to a non-constant map.

Proof. Note that A;*l(U),n o fn o Ay is a sequence of rational maps, so after
passing to a subsequent, it converges (away from finitely many points) to
a rational map with degree < d. By Lemma after passing to a sub-
sequence, Aﬁln(U(fn)) and AJI () (f+U(fn)) converge to Uy and (ful)oo
By [McM94, Theorem 5.6], A *1( )n© fno Ay, cannot converge to a constant
map on Uy, and the lemma follows. O

After passing to a subsequence, we may assume for different U,V € V,

AUln o Ay, converges to either

e a Mobius transformation; or
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e a constant map.

This defines an equivalence relation on V: U ~ V if and only if Al}l oAy
converges to a Mobius transformation. It follows from the same proof of
[Luo22b, Lemma 4.7] that if U ~ V, then f,(U) ~ f.(V).

Let IT := V/ ~ be the set of equivalence classes. By the previous remark,
we have an induced map

F 11 — 1L

Definition 8.9. For each equivalence class a € 11, we choose a representa-
tive U € a, and define the rescaling at a by

Aa,n = AU,n S PSLQ(C)

Construction of the tree of Riemann spheres (7 ,@7/). Recall that
we identify the hyperbolic 3-space H? as the unit ball in R® and C as the
conformal boundary of H3. Denote 0 € H? as the center of the unit ball.
We denote z,, = A, (0) € H? and II,, = {Zan € H? : a € IT}. Note that
by our construction, A;}L o Ap, — 00 in PSLy(C), so

dys (Tan, Tppn) — 00 if @ # b.

Thus, the hyperbolic polyhedra Cvx Hull(Il,) is degenerating. One can
construct a sequence of trees 7, as the spine for Cvx Hull(Il,) capturing
the degenerations of the polyhedra. We summarize some properties for .7,
and refer the readers to [Luo22b, §3 and §4] for more details.

e The vertex set ¥, for 7, is a finite set consisting of II,, and branched
points of T;;

e Each edge of .7, is a hyperbolic geodesic segment whose length goes
to oo as n — oo;

e There exists a uniform lower bound on the angle between two adja-
cent edges of T,;

e The finite tree .7, C Cvx Hull(Il,,) and any point € Cvx Hull(IL,)
is within uniform bounded distance from .7;,.

Since there are a bounded number of endpoints for .7, after passing to a
subsequence, we assume that .7, are isomorphic as finite trees. Denote this
isomorphic class of finite trees as (.7, 7'), and we have a marking for each n

U, (T,Y) — (T, Yn)-

We remark that II C ¥, and any point a € ¥ — Il is a branch point. We
extend the definition of rescalings for ¥ — II. Let a € ¥ — II, a sequence
Agn € PSLy(C) = Tsom(H?) is defined to be a resacling at a if

Ay n(0) =T, (a).

Note that different choices of rescalings at a are differed by pre-composing
with a rotation that fixes 0, which form a compact group.
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Denote B = H? U @, and B, = Hz U @a for a € ¥. We define a sequence
zn € B converges to z € B, in a-coordinate or with respect to the rescaling
at a, denoted by z, —, z or z = lim z,, if

a

. -1
nll_)IrOlO An(zn) = 2.

By construction, A, oAb n converges to a constant map x fora #£b € 7.

Thus, we can assomate the point x; € C, to b. Tt is interpreted that the
Riemann sphere (Cb converges to xp in the rescaling coordinate Co. We
denote R
Ea = U Iy g (Ca
b#a
as the singular set at a and = := U =, C C” as the singular set.
acV N

It follows from the construction that ¥, (b) —, x, € C, if a # b € 7.
Since the angle 2V, (a)¥,(b)¥,(c) is uniformly bounded below from 0 for
any distinct triple a,b,c € ¥, the singular set =, is in correspondence with
the tangent space T,.7 at a. We denote this correspondence by

(o T, T — =,

Construction of the rescaling rational maps. The following lemma
allows us to construct rescaling rational maps.

Lemma 8.10. Let a € ¥, after passing to a subsequence, there exists a
unique b € ¥V so that

Ab_rlz o frnoAun
converges to a rational map R, = Ry_p of degree at least 1.
Moreover, the holes of R, are contained in =,.

Proof. If a € TI C ¥, i.e., if a is represented by some U € V, then Lemma
follows immediately from Lemma
Otherwise, the proof is the same as [Luo22b, Lemma 4.12]. O

The above lemma allows us to define F' : ¥ — ¥ by setting F'(a) as the
unique vertex b in Lemma extending the map F: IIC ¥ — I C 7.

We define the map F :  — 7 by extending continuously on any edge
[a, b] to the arc [F(a), F(b)].

Modulus estimate for dynamics on edges. Let E = [a,b] be an edge
of 7. In the following, we shall associate it with annuli Afg, and define the
local degree of F.

Let zp € 2, C @a and z, € 5 C @b be the points associated to b and a
respectively. Choose a small closed curve C, C C, around xp. We assume
C, bounds no holes nor critical points of R, other than possibly x; and
Ry : Cy — Ry(C,) is a covering map of degree degg, (,,)(q). Similarly, we

define Cy C ((A:b around x,.

vp)
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1
(a),n
Cq, we can find a sequence of closed curves Cg ,, such that

Since A;, o fn o A,y converges uniformly to R, in a neighborhood of
o fn:Cun — fn(Capn)is a covering of degree degga(vb)(Ra);
. A;}L(Ca’n) converges in Hausdorff topology to C,.
Similarly, let 3, be the corresponding closed curves for Cj. Note that
Can and Cy,, are disjoint for sufficiently large n and bounds an annulus

Apn C C. We call Ag n a sequence of annuli associated to E.

We claim that Afg, contains no critical points of f, for sufficiently large
n. Indeed, otherwise, after passing to a subsequence, let ¢, € Ag,, and let
¢ € II corresponds to the sequence (c¢,). Consider the projection

PIOjjw, (a),w, (5)] (¥n(c))

of ¥,,(c) € H? onto the geodesics [¥,,(a), ¥, (b)]. Since we assume C, bounds
no holes nor critical points other than possibly &,(vy) and similarly for Cp,

A3 (PrOj[w,, (), w,, () (¥ (€)); O[Wn(a), Wn (D)]) — 0.

This contradicts that [a, b] is an edge of 7.
Therefore, fn : Apn — fa(Agy) is a covering map. Thus, deg,, (R,) =
deg, (Rp), and we define the local degree at [

6(E) = deg:pb (Ra) = degxa (Rb)a

as the degree of this covering map.
The proof of following modulus estimate can be found in [Luo22b, Propo-
sition 4.15].

Proposition 8.11. Let Ag,, associated to an edge E = [a,b] of 7. There

exists a constant K such that the modulus

_ dys(Wn(a), Un(D))
2

| mod(Ag,») | < K,

and
dps (U (F'(a)), Un(F(b)))
2

The above modulus estimate gives the following corollaries.
Corollary 8.12. Let E = [a,b] be an edge of . Then
digs (U (F(a)), Un(F (b)) = 6(E)dys (¥n(a), ¥n(b)) + O(1).

Corollary 812 implies that the map F' is injective on edges. Thus, we
can define the tangent map DFy, : 1,7 — Tpq) 7. Since Ab_JlL o fnoAan
converges to a rational maps away from the singular set, we also have the
following compatibility property.

| mOd(fn(AE,n)) -

| < K.

Corollary 8.13. Leta € 7. Then
Rgoé&y = §F(a) o DFy.
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Proof of Theorem [8.3 By our construction, f,, converges to (R, F') and (R, F)
is a degree d rational map on (.7,C”).

For the moreover part, we note that if [f,] converges in Mg gy, then all
rescaling limits Ay, are equivalent for U € V, so .7 consists of a single
vertex. On the other hand, if all rescaling limits Ay, are equivalent, then
A{]}n o fn o Ay converges to a degree d rational map, so [f,] converges in
Md,fm- (]

Matrix encoding. Index the set of edges of .7 by {Ei, ..., Ex}. We define
the following two matrices to encode the dynamics F':  — 7.
B {1 if E; C F(E;)

e (Markov matrix): M;; = .
’ 0 otherwise

§(E) ifi=j

o (Degree matrix): D;; = {0 otherwise

Proposition 8.14. Let M and D be the Markov matriz and the degree
matriz respectively. If 7 is not trivial, then there exists a mon-negative
vector U # 0 so that
M9 = Dv.
H(¥n(EL))
Proof. Let ¢, = : , where [(¥,,(E;)) is the hyperbolic length of
the edge ¥, (E;). Let p, = max lgs (U, (E;)) — oo After passing to a
i=1,...,
subsequence, we assume the limit v = li_>m Un/pn exists. Then ¥ is non-
n o

negative and @ # 0.

If suffices to check M@ = Dv. If a,b € ¥ are connected by a sequence of
edges E;, UE;, U...E; , since the angles between different incident edges at
a vertex of 7, are uniformly bounded below from 0, we have

dggs (U, ZZH3 n(Ei.)) + O(1).

Thus, by Corollary- if F(E;) = E;; UE;, U...E;_, then

§(E;)lgs (T Zle n(Ei;)) + O(1).

Dividing both sides by p, and takmg limits, we conclude the result. O

8.2. Thurston’s obstruction. Let f : C — C be a rational map with
post-critical set Pr. Let Py C U be a forward invariant set, i.e., f(U) C U.
A simple closed curve ¢ on C — U is essential if it does not bound a disk
inC-U , and a curve is peripheral if it encloses a single point of U. Two
simple curves are parallel if they are homotopic in C — U.
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A curve system ¥ = {o;} in C — U is a finite nonempty collection of
disjoint simple closed curves, each essential and non-peripheral, and no two
parallel. A curve system determines a transition matriz A(X) : R® — R

by the formula
1

AUT:za:deg(f:a%T)

where the sum is taken over components o of f~!(7) isotopic to o.

Let A(X) > 0 denote the spectral radius of M(X). Since A(X) > 0, the
Perron-Frobenius theorem guarantees that A(X) is an eigenvalue for A(X)
with a non-negative eigenvector.

The same proof of [McM94, Theorem B.4] gives

Proposition 8.15. Let [f] € A be an eventually-golden-mean Siegel map.
Let Uy be the union of Siegel disks and valuable-attracting domains. Let X

be a curve system in C — Uy, then A\(Z) < 1.

Curve system for edges of 7. Let U, be the union of Siegel disks and
valuable-attracting domains for f,, and let U, be the union of open pseudo-
Siegel disks and valuable-attracting domains for f,,. Note that U, is forward
invariant, and U,, C Z/A{n Let AE,n be the annulus associated to an edge F.

After passing to a subsequence, we may assume that for any a € ¥,
and any pseudo-Siegel disk or a valuable-attracting domain U( f,), the limit
A;k(U( fn)) exists. Since U(f,) are uniformly quasiconformal disks, the
limit is either a point or a quasiconformal disk. We say U(f,,) is trivial for
a if the limit is a point, and non-trivial otherwise.

The following lemma is the crucial step that we use the geometric control
of valuable-attracting domains and pseudo-Siegel disks.

Proposition 8.16. Let a € V. The singular set =, is disjoint from the clo-
sure of any non-trivial limits of pseudo-Siegel disks and valuable-attracting
domains in C,.

Proof. Let U = lim A;}Z(U(fn)) C C, be a non-trivial limit. It is easy to
see that the singular set is disjoint from U. Now suppose x € E, N oU.
Since z is a singular point, there exists a sequence of pseudo-Siegel disk or
a valuable-attracting domain W (f,) with lim A;%(W( frn)) = x. Without
loss of generality, we assume « is fixed. Since there is a critical point on the
boundary of U, R, has degree at least 2. Therefore, C, contains at least
two non-trivial limit of pseudo-Siegel disks or a valuable-attracting domains.
Consider a small arc v C C, — U with 9y C 90U that encloses . Then the
corresponding arc with end points in OU(f,,) for f,, is non-peripheral and

its extremal width goes to infinity as n — oo. This is a contradiction to
Theorem [7.11 O

As a corollary, we have

Corollary 8.17. For sufficiently large n, the core curve og, of Agn, is a
curve in C —ﬁn - C - U,,.
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Let
Y, ={opn: E is an edge of T}.

Then 3, is a curve system in C — U, for all sufficiently large n.

Lemma 8.18. If E C F(E'), then for sufficiently large n, o, has a lift of
degree §(E") homotopic to ops ,, in C— Up,.

Proof. Let Ag, and Ag/, be annuli associated to E and E' respectively.
Modify the boundaries of Ag ,, if necessary, we may assume Ag , C fn(Ag n),
where the inclusion induces an isomorphism on the fundamental group.
So for sufficiently large n, there exists an essential simple closed curve
Y C Apg, that has a degree §(E) lift v;, C Apg/,. By Proposition
these v, and V;L are homotopic to core curves og , and o, in C —U,, and
the lemma follows. ([

Combining Proposition [8.14] and Lemma [8.18] we have

Proposition 8.19. Let 3, be the curve system associated with the edges of
T in C—U,. If T is not trivial, i.e. it contains more than one vertex, then
for sufficiently large n, the spectral radius A(X,) > 1.

Proof of Theorem [8.1. Suppose for contradiction that Theorem [8.1] does not
hold. Then there exists a sequence [f,] € & with Wiy, (Xy,) — 00. After
passing to a subsequence, [f,] converges to a degree d rational map (F, R)
on (7,C”) by Theorem Since [f,] — oo in Mgy, the tree J is
not trivial. By Proposition [8.19, the curve system 3., has spectral radius

A(X,) > 1 for all sufficiently large n. This is a contradiction to Proposition
a

The same proof also gives Theorem [I.4] and Theorem [A]

Proof of Theorem[1.4} Since the arc degeneration is uniformly bounded, f,
converges to a degree d rational map (F,R) on (7,C”) by Theorem [8.4
Suppose for contradiction that [f,] diverges, then the tree 7 is non-trivial.
Therefore, Wioop(Xf,) — 0o which is a contradiction. Since the degenera-
tion is uniformly bounded, the psuedo-Siegel disks and valuable-attracting
domains do not collide. So [f] has 2d — 2 non-repelling cycles. O

Proof of Theorem[A] It suffices to show that the marked hyperbolic com-
ponent H is bounded. Note that #H is identified with D7 X ... X Dog_o. It
suffices to realize the multiplier (A, ..., Aag_2) € (D1 X ... x Dyy_o) by a map
[f] € OH. Let [f,] € OH be a sequence of eventually-golden-mean maps with
the corresponding multipliers (A1, ..., A2g—2.,) converging to (Ai, ..., Aag—2)
strongly (see Definition .

By Theorem [4.1] the pulled-off constant is uniformly bounded in this case.
By Theorem [fn] has uniformly bounded degeneration, so [f,] — [f] €
Mg by Theorem By construction, the corresponding multiplier profile
of fis (A1, ..., Aag—2), and the theorem follows. O
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APPENDIX A. DEGENERATIONS OF RIEMANN SURFACES

In this section, we introduce some terminologies to study degenerations
of Riemann surfaces using extremal length and extremal width. There is a
wealth of sources containing background material on this topic (see [AhI73],
[KahO6] or [KL09, Appendix 4]). We will briefly summarize the necessary
minimum.

A.1l. Arcs and simple closed curves. Let X be a compact Riemann
surface with boundary. An arc v of X is a continuous map

h:[0,1] — X

with h(0),h(1) € 0X. We shall not differentiate the continuous map with
its image v in X.

We say two arcs 7,1 are homotopic, denoted by =y ~ 71, if there exists
a continuous path in the space of all arcs that connects vy and ;. This
means that there exists a continuous map

H:[0,1] % [0,1] — X

with H(t,0) = vo(t), H(t,1) =v1(t), H(0,s),H(1,s) € 0X.

We remark that this is different from homotopy relative to 90X, as we
allow the homotopy to slide points on the boundary 0X.

An arc « is said to be peripheral if it is a homotopic to an arc that is
contained in a boundary component of X. Note that each component of 0.X
is a circle and an arc is peripheral if and only if it is homotopic to a point.

Similarly, a closed curve o of the Riemann surface X is a continuous map

h:S'— X.

We do not differentiate the continuous map with its image o in X. Two
closed curves are homotopic if the two continuous maps are homotopic. We
denote this by ap ~ ;. It is said to be simple if h is an embedding.

For simplicity, we refer to both arc and closed curve as curves.

A.2. Extremal length and extremal width. Let F be a family of curves
on X. Given a (measurable) conformal metric p = p(z)|dz| on X, let

L(F.p) := inf L(v,p),

where L(vy, p) stands for the p-length of 7. The extremal length of F is

L(F,p)?
Lx(F) :=sup )
( ) p A(X7 p)
where A(U, p) is the area of X with respect to the measure p?, and the
supremum is taken over all p subject to the condition 0 < A(X,p) < co.
The extremal width of F is defined as the inverse of the extremal length:

1
Lx(F)

Wx (F) =
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A.2.1. Series law and parallel law. One of the key properties of the extremal
width is that it behaves like resistance in an electric circuit.

We say a family of curves F overflows another family of curves G if every
curve v € F contains a subcurve 7/ € G. By definition, if F overflows G,
then

Wx (F) < Wx(9).
We say F disjointly overflows two families Gi,Go if any curve v € F

contains the disjoint union 1 L~2 of two curves 7; € G; (see Figure [A.1)). If
F disjointly overflows G1, Ga, then the Grotzsch inequality states that

Wx (F) < Wx(G1) D Wx(Ga), (A.1)

where z @ Y= T is the harmonic sum. We shall refer to Equation |A.1
z Ty
the series law.
g1
F
o F
g1
G2

FIGURE A.1. An illustration of the series law on the left and
parallel law on the right.

On the other hand, if 7 C G; UGy, i.e., every curve in F is either a curve
in G or a curve in Gy (see Figure [A.1]), then

Wx (F) < Wx (G1) + Wx (G2). (A.2)
We shall refer to Equation the parallel law.

A.2.2. Extremal width between two sets. Let I,J C X be subsets of X.
By an arc connecting I and J in X, we mean an arc parameterized by a
continuous map v : [0,1] — X with v(0) € I, v(1) € J and 7((0,1)) C
X - UlJ).

We use Wx (I, J) to denote the conformal widths of the family of arcs
connecting I and J in X. When the underlying Riemann surface X = (E,
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we will sometimes omit the subindex, and simply write
W(I,J):= W@(I, J).

A.3. Euclidean rectangles and (topological) rectangles. A Fuclidean
rectangle is a rectangle F, := [0, z] x [0,1] C C, where:
e (0,0),(x,0),(x,1),(0,1) are four vertices of Ey,
e O"E, =[0,2] x {0,1} is the horizontal boundary of E,,
o 0"VE, :=[0,z] x {0} is the base of E,,
e O"E, == [0,x] x {1} is the roof of Ey,
e 0'E, ={0,2} x [0,1] is the vertical boundary of E,,
e 3'E, = {0} x [0,1], 8"PE, = {a} x [0,1] is the left and right
vertical boundaries of F,;
o F(E;) = {{t} x[0,1] | t € [0, ]} is the vertical foliation of E,,
o FIUl(E) := {7 :[0,1] = E, | (0) € 3"°E,, ~(1) € "' E,} is the
full family of curves in E;
e W(E,) = W(F(E,)) = W(FMYE,)) = z is the width of E,,
e mod (E;) =1/W(E,;) = 1/z the extremal length of E,.

By a (topological) rectangle in a Riemann surface we mean a closed Jordan
disk R together with a conformal map g : R — E,. We call the preimage
O"OR of [0,] x {0} the base, and the preimage 'R of [0,z] x {1} the
roof. We denote the horizontal boundaries by

"R == "R U IR,
Similarly, we denote the vertical boundaries by
'R = 9""RUI"'R.
The width of a rectangle R is
W(R) := Wg ("R, 0MR) = z.
A K-buffer of a rectangle R is the image ¢([0, K] x [0,1]U [z — K, z] x [0, 1]).
The collection of vertical arcs
For i={g({t} x [0,1]) : £ € [0, 2]}

is called the wertical foliation of the rectangle R. Similarly, the horizontal
foliation of R is the collection

Frr = {g([0,2] x {t}) : t € [0,1]}.

Abusing the notations, when we say remove K-buffers for the vertical folia-
tion, we mean the foliation

Fo={g({t} x [0,1]) : t € [K,z — K]}.

A genuine subrectangle of E, is any rectangle of the form E' = [z, 2] X
[0,1], where 0 < x1 < z9 < z; it is identified with the standard Euclidean
rectangle [0,x9 — z1] x [0,1] via z — 2z — x;. A genuine subrectangle of a
topological rectangle is defined accordingly.
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A.4. Arc and loop degenerations. Let 7 be a non-peripheral arc of X,
and F () be the family of arcs homotopic to v. We define the degeneration
for v as the extremal width

W(y) == W(F()).

Since majority of wide rectangles do not intersect (see, for example, [Kah(0,
§3]), there are only finitely many homotopy classes of non-peripheral arcs
v with W(v) > 2. In fact, this number is bounded by the topological
complexity of X. We define the arc degeneration for X as

WMC(X): Z W(’Y)

YW(7)>2

Similarly, if Z is a component of 9.X, we defined

W(zy=" >, Wm+2 >, W>)
yET1:W(7)>2 yET2:W(7)>2

where T'; (or T'y) contains homotopy classes of non-peripheral arcs with
exactly one endpoint (or two endpoints) on Z. Note that by definition,

Ware( X) = 3 WIE(2),
Z
where the sum is over all boundary components of X.

Similarly, let @ be a homotopically non-trivial simple closed curve, and
let G be the family of simple closed curves isotopic to . We remark here
that the curve « is allowed to be homotopic to a boundary component of
X. We define the degeneration for a of X as the extremal width

W(a) :==W(G).
We define the loop degeneration for X as

Wloop(X) = Z W(a) :
a:W(a)>2

A.5. The Thin-Thick Decomposition. Here, we summarize a few vari-
ations of the fundamental fact that wide families of curves are supported
within finitely many pairwise disjoint wide rectangles. We refer the readers
to |[Lyul §7.6] for more details.

Let I,J C 0X be two intervals. Let Fx(I,J) be the family of arcs
connecting I and J in X. Then the Thin-Thick Decomposition of X rel the
pair I, J says that, up to O,(x)(1), we can replace the family Fx(I,J) by
a finitely many disjoint rectangles. More precisely, there exist finitely many
pairwise disjoint non-homotopic rectangles Rq, ..., Rs connecting I and J,
ie,

"R, cT and ™R, C
such that

Z W(Rz) = WX(L J) - Ox(X)(1)7 (AS)
=1
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FIGURE A.2. An illustration of arc and loop degenerations.
Here X is a genus 0 Riemann surface with 5 boundary com-
ponents. Arc and loop degenerations are indicated by dark
and light grey respectively.

where x(X) is the Euler characteristic of X. We remark that since the
rectangle are disjoint and non-homotopic, s is bounded by the topological
complexity of the surface X.

The Thin-Thick Decomposition of X says that there are finitely many
pairwise disjoint non-homotopic rectangles and annuli in X

Tx = (R1,Ra, ..., Ri, A1, Az, ... Ay), "R cC X

such that

o families
FO) FarelX), Fare2)
for the corresponding
W), Ware(X), Wclﬁ*cc(Z)

introduced in §A.4| are supported, up to O, (x)(1), within finitely
rectangles from Ty,
e the family Foop(X) (for Wigep(X)) is formed by the annuli from Tx.

Given a component Z of X, the covering annuli A(X,Z) of X with
respect to Z is obtained by opening up all loops except Z; see [DL23], §3.3.3]
for a more detailed description. Then the family F(A(X, Z)) of curves in
A(X, Z) connecting its boundary components is, up to O,x)(1), supported
in the univalent lifts R} C A(X, Z), 7 € {0,1} of the rectangles R; from Tx
with

o 7 =0if "'R; C Z,
o T=1if O"'R; C Z.
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In particular, this means that

W(AX,2)) = Z W(R]) + Oy(x)(1) (A.4)
= > WI(R;) + > W(R;) + Oy x)(1)
RiETx,ahvoRiCZ RiETx,ahleiCZ

= Ware(Z) + Oy () (1)

APPENDIX B. SIEGEL 9°®-QL MAPS AND PSUEDO-SIEGEL DISKS

In this appendix, we summarize pseudo-Siegel bounds from [DL22] adopted
to 1°*-ql maps.

We recall that ¢-quadratic-like maps were introduced in [Kah06]. They
generalize the notion of quadratic-like maps with the goal of explicitly relat-
ing the geometry of various renormalizations of quadratic polynomials. It
is essential for the theory that the post-critical set of the map is ¢-proper
(see §B.1). In [KahO6], it is assumed that the filled-in Julia set itself is
t-proper in the definition of -ql maps. In this appendix, we will consider
1°®-ql Siegel maps with the requirement that the closed Siegel disk (and its
iterated preimages) is t-proper. We refer to [DL23] for a related notion of
1°*-gl “bush” maps. For technical reasons, we require in Item that ¢ is
a covering onto its image in the complement of the Siegel disk.

B.1. ¢°*-ql Siegel maps. A map ¢: A — B between open Riemann sur-
faces is called an immersion if every x € X has a neighborhood U, such
that ¢: U, — (Up) is a conformal isomorphism. Immersions arising in
applications are compositions of covering maps and embeddings in various
orders. A compact subset S € B is called t-proper if ¢ | t71(S) — S is a
homeomorphism.

A pseudo®-quadratic-like Siegel map (“1)°-ql Siegel map”) is a pair of holo-
morphic maps

F=(f10): (UZy)=(V,Z), so ZvCfHZ)n(Z) (B1)
between two conformal disks U, V' with the following properties:

(I) f: U — V is a double branched covering with a unique critical point

Co;
(IT) ¢: U — V is an immersion such that

U\ f7N(Z0) — (U F71(Z0))
is a covering map;
(II1) Zy = Y(2) is t-proper; in particular, v: Zy — Z;
define inductively Ko = Z, K1y == ffl(Z), Ky = (K y), and, forn > 1

Koui=f"o@of)"(Z) and Ky=uKnu)=(cof)"(2);

(IV) for all n > 0, the restriction ¢: K,y — K, is a homeomorphism;
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(V) there exist neighborhoods Xy D Zy and X D Z with the following
property: ¢ : Xy — X is a conformal isomorphism such that
fx=fo(t| Xo) 1 X = f(Xy) =Y (B.2)
is a Siegel map: Z € X MY is the closed qc Siegel disk around the
fixed point o € Z = int Z with bounded-type rotation number.
Since ¢ is a conformal isomorphism in a neighborhood of Z, we will below
identify
Z~Zy=Zp andwrite F:(U,Z2)=(V,Z) or F:U=V.
Similarly, we identify K, ~ K, ¢.
The width of F is
WA(F) =WV \ Z).
If W*(F) < K, then Xy ~ X in Item can be selected so that
mod (X \ Z) > ¢(K). (B.3)
Thereofre, 1)*-ql Siegel maps f with W*(f) < K form a compact set.

Example B.1. Consider a quadratic rational map g € Oegm™,2, where H 2

is the hyperbolic component of z 22, see . Assume that g has closed
Siegel qc-disks Zo, Z~ at 0 and oo. We naturally obtain two 1*®-ql maps:

GO == (g7<_>) : (U0770) = (V(]vZO): Vb - @\7007 UO - g_l(‘/b)a
Goo = (9,=) 1 (Uso, Zoo) = (Vaos Zoo)s Voo = C\ Zo, Uso = g~ (Vao),

where the immersion 1 =“— 7" is an embedding. We have:
W*(Go) = W*(Goo) = W(C\ [Zo U Zw)).

B.2. ¢°®-ql renormalization. Consider a disjoint type hyperbolic compo-
nents H and an eventually-golden mean map [f] € JegmH; see Definitions
and The construction below is an adaptation of 1-ql renormalization
from [KahO6]; see also [DL23] §3].
Consider a periodic Siegel disk Z; = Z; ; of f with period p > 1. We will
now define a 1®*-ql map associated with Z. Write
X=C-UDi;-JZy; and X' :=fPX).
0,3 0,3
Since X’ C X, we obtain a correspondence:
(7, =): X' = X, (B.4)

where — is a natural embedding. Consider the covering XX opening up
all loops except 0Z; in particular, X is an annulus. Similarly, the covering
X' — X’ opens up all loops except (slightly thickened) 9(Z U Z'), where Z’
is the unique preperiodic fP-lift of Z attached to Z.

Then induces a correspondence

F=(f"1): X' =3 X,
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where f?is a 2 : 1 covering map and ¢ is an immersion obtained by lifting
“” (In fact, ¢ is a covering onto its image). Gluing X with Z and gluing
X' with Z U Z’, we obtain a 9°*-ql map

F=(ff): U=V (B.5)

The Thin-Thick Decomposition in or more precisely, the Equation
[A4] implies that
W*(F) = Wei(Z) + 0(1),

where W' is defined in Moreover, the rectangles in the Thin-Thick
Decomposition of X adjacent to Z lift univalently into the dynamical plane
of F'; their lifts are disjoint rectangles connecting 0V and 0Z with total

width being W(F') — O(1).

B.3. A priori-bounds for ¢*-ql Siegel maps. The definition of pseudo-
Sigel disks for 1°*-gl Siegel maps is the same as Definition (for maps in
Ocgm™) with no peripheral requirements as in §3.2.1| - every set in int V' is
peripheral rel Z. In other words, Property in §3.2.2| takes form:

(P*) The territory X(Z™) is a topological disk in V.

Let D D Z be a peripheral disk. We say a curve v in V' is vertical or non-
peripheral (vel D) if 7y connects 0D and OV in V, and we say it is peripheral
(rel D) if 9y C OD.

Let A > 1 and let I be an interval on Z™. The families f;;:eT (1), f;gf:([)

and their corresponding widths W;{’:er(l ) Wig:f([ ) are defined accordingly
as in We remark that here + in the Supérsgript means that the curves
in the family have interior contained in in V — Z™.
Let Krp = W*®(F) be the width of F. We define the special transition
level mp for F' as follows.
o If Kip <1, we set mp = —2;
e Otherwise, we set mp to be the level satisfying
Im-Kr > 1, and
L < Kp < L . oT e
(. lnp +1 equivalently, lmp 1157 < 1.
We recall that [_; =1 and [y = dist(z, f(x)).
The following theorem is proved in [DL22, Theorem C.3].

Theorem B.2. Consider an eventually-golden-mean ¢*-gl map F (see
of width Kp = W*(F) and the transition level mp. Then there is an in-
creasing sequence of pseudo-Siegel disks Zm, m > —1 such that for every
grounded interval J C 0Z with ly+1 < |J| < by, the following holds:

(A) if m > mp, then

—+,ver m\ __ —+,per my
Wé\m (J ) = 0(1) and WlO,Em(J ) = 1,
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(B) if m < mp, then

+,ver m\ _ -+,per my __
W) = JIKp and - W (™) = O(1),

(C) if m = mp, then

W) = O(nKr)  and W (™) = O(VinKr).
Moreover, Z Vs M(KF)-qc disk; i.e. the dilatation of 771 is bounded in
terms of Kp.

We remark that in Cases and |(C)l we have |J|Kp, [, Kp > 1.
We also remark that in all three cases, we have the following bounds
L) = Ot K 4+ 1)

W (J™) = O(V I KF +1).

10,Zm

Remark B.3. In short, ¢*-formalism stated in Theorem takes care of
all scales except the special transition scale m = mp. Case says that
on deep scales, the geometry of F' is uniformly bounded, and the estimates
are equivalent to that of quadratic polynomials. Case says that on
shallow scales, vertical degeneration dominates peripheral and is uniformly
distributed at all intervals.

Theorem does not provide a satisfactory description of W and
WGP in Case |(C)} In our paper, such information comes from the global
analysis of pseudo-Core surface degenerations stated in Theorem [5.1] and

Theorem [6.1} see Remark [I.10]

(B.6)

For an explicit construction of “geodesic” pseudo-Siegel disks satisfying

Theorem see §B.5)

B.4. Localization of submergence. Let us say that a rectangle R sub-
merges into a pseudo-bubble Z; if

e "R is disjoint from X (Z;); and

e every curve v € F(R) intersects Z;.

Lemma B.4. Assume that a rectangle R with W(R) = K submerges into
a pseudo-bubble Z;. Then for every A > 2, there is
= 1
e a grounded interval J C 0Z; with |J| < 2 and
e sublamination Q C F(R) that overflows a lamination Q outside of
Z;i with W(Q) = K — O(ln \)
such that

e cither Q is a lamination from J to MR ; R
e or Q C FH(J,0Z;\[NJ]); i.e., Q is a lamination outside of Z; from
J to 0Z; \ (\J).
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FiGURE B.1. An illustration of a rectangle submerging into
a pseudo-bubble.

Proof. Let ~40,71,72 be the leftmost, middle and rightmost vertical arcs of
the rectangle R. We orient these arcs so that they connects the lower bound-
ary "R to 8™'R. Since R submerges into ZZ, 7; intersects Z;. Let a;
be the first time 7; enters Z;, and let v; € 7; be the sub arc connecting
OMOR and a;. Let Ag, A1 be the region bounded by Y0, 71, "R, dZ; and
V157925 OR, dZ; as illustrated in Figure I Since "R is disjoint from
X (Z;), at least one of the regions Ag, A; is dlSJOlIlt from O"'R. Without loss
of generality, we may assume Ag is disjoint from 9"R. Consider the left
rectangle R’ C R bounded by 7o, 71, "R, 8" R, and let I be the interval
on 8Z; bounded by ag,a1. Then for every vertical v arc connecting "R’
to O™I'R/,

e the first intersection of v with D is in I; and

o the last intersection of v with D is in I = 0D \ 1.

With this reduction, we can directly apply [DL22, Lemma 6.9], and the
lemma follows. O

B.4.1. From W™ to W™ || W;\“p . We need the following submergence
results in our main application to convert W™ -degeneration into WP
and W) P-degenerations.

Lemma B.5. Let Z be a pseudo-Siegel disk. Let R be a rectangle with
W(R) = K such that the I := O"OR is a grounded interval on Z, and 0™'R

is disjoint from X (Z ) Then for every A > 2, there is either

e a genuine subrectangle R1 of R with W(R1) = K such that Ry is
outside of int Z; or R
e a grounded interval J C dZ such that WP (J) = K — O(In \); in

1
particular, |J| < X if K> 1InA.
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Proof. Assume that there are no genuine subrectangle Ry of R with W(R1) =
W(R). Then a substantial part of F(R) submerges into int Z™ and we have
two cases:

e cither a substantial part of F(R) first submerges into int Z™ in

(A1)

e or a substantial part of F(R) first submerges into int Z™ in \*I.
In the first case, we take J := I. The second case follows from [DL22,
Corrolary 6.2] applied to either the pair I U L_, (A1) or to the pair I U
Ly, (N3I)¢, where L_, Ly are two intervals in (A3) \ I. O

B.5. Geodesic pseudo-Siegel disks. In this subsection, we summarize
an explicit construction of geodesic pseudo-Siegel disks Z satisfying Theo-
rem for an eventually-golden-mean °®-ql map F. We refer the readers
to [DL22, §C] for more discussions.

Choose an absolute but big constant M > 1, and let mpg be the transition
level defined in We set

M, ifm > mp,
M,, == { M+ e"EF if ;= mp, (B.7)
oo, ifm< mpg.
We say that a level m is near-parabolic if [, > My, l,11; otherwise m is

non-parabolic. Since F' is eventually-golden-mean, all sufficiently deep levels
m >r 1 are non-parabolic. In short, M,, will be a combinatorial threshold

[ N N
™ > M,,, then Z™" is regularized into Z™ at

for regularization: if

m—+41
depth eV*Mm  gee * otherwise 2™ := ZmH.A We remark that by our
definition of M,,, if m < mp, then we always set Z™ := Z™*!,

B.5.1. Construction of parabolic fjord F1 and SP™. Consider a parabolic
level m. Let I = [a,b] € D,, be an interval in the mth diffeo-tiling of 0Z.
Choose a,b’ € I with a < @’ <V’ < b such that

dist(a, ') = dist(¥,b) = ["M | [,

and set (7 to be the hyperbolic geodesic of V' \ Z connecting a’,b’. This
defines the parabolic fjord §Fr, see Figure 3.2l We remark that since the
level m is near-parabolic, we have
1] = dist(a,b) < by > Mypbyyr > (/M0 ] [,
To construct ST, we choose a sufficiently big v > 1 with the under-
standing that eV™Mm > v Choose a” € [a,a'] and b € [V, b] such that

\‘e\/lanJ

dist(a,a”) = dist(b",b) = b1 > bt (B.8)

this defines SI™, see Figure
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*
B.5.2. Construction of Ar and X 1. Let & be the rectangle from [a, a”] to
[b”,b] bounded by hyperbolic geodesics in V' \ Z; i.e.,

3h’0(’51 = [a, a”], 8h’1®[ = [b”, b]

and 8°® is the pair of hyperbolic geodesics. The condition that eV Mm >
v implies that (see [D1.22, §4])

W(S7) =< In (evlan/v) > 1.

We can now select a required rectangle X; conformally deep in &; (i.e.,
conformally close to 8;) so that its width is of the size A < v/In M,,. We

inn

can also select Aj separating X7 from S7™. In particular, we can assume
that the interval

[Ta,xp] = 0X T N1 with x4 € [a,d”], x, € [b",}]
is defined similar to (B.8§]):

e In M,
dist(a, x4) = dist(xp, b) = | —— | bnt1,
w

where w > v > 1 with the understanding that we still have eV MM s w.

B.5.3. Stability of Z™. Since eV™Mm > w, we see that the construction
6\/lan
guarantees that dist(ahXI,al ) = J lm+1 > Lpy1. Thus, by the

discussion in § we see that Z™ can be assumed to be T-stable for
arbitrarily large T' (see Remark .
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