
Parametrized Surfaces

In these notes, we look more closely at surfaces in R
n. As we discussed in section 3.8, a

surface S is often given in the form F (x) = 0, where F ∈ C1, but we must be careful here. First
of all, this is only assumed to be true locally, so that if p is on S, there is an open neighborhood
U of p and a C1 function F : U → R, such that S ∩ U = {x ∈ U : F (x) = 0}. Secondly, in
section 3.8 we discussed the significance of the condition ∂F/∂xm 6= 0 at a point on the surface;
it enables us to locally solve for this xm on S, in terms of the other xk. We will need to demand
that this condition be true at each point for some m, in other words, that at each point of S∩U ,
gradF 6= 0. With this condition, since we can locally write xm = u(x1, . . . , xm−1, xm+1, . . . , xn)
for some C1 function u, S is, locally, the graph of a C1 function. Without this condition, many
kinds of pathologies can arise. For example, if F (x1, x2) = x1x2, then F does not saisfy this
condition at (0, 0), and {x : F (x) = 0} is a pair of straight lines intersecting at 0.

A local parametrization of S is a C1 map g : V → R
n, where V ⊆ R

n−1 is open, and where
for some open set U ⊆ R

n, g(V ) = S ∩U , and where, for each point in V , the rank of g′ is n− 1.
That is, we demand that the columns of the matrix of g′ be linearly independent at each point of
V . Thus, we would not consider (x1, x2) = (s3, s3) (s ∈ R) to be an acceptable parametrization
of the surface {x : x2 = x1} in R

2. The reason for this requirement is that we would like the
conclusion of Exercise 0.1 below to hold.

Say now for instance that ∂F/∂xn 6= 0 at a point in S. Then, near that point, by the implicit
function theorem, we can parametrize S in the form (x1, . . . , xn−1, xn) = (s1, . . . , sn−1, u(s1, . . . , sn−1)),
and this is clearly an acceptable local parametrization. Therefore, local parametrizations will
always exist; but this one may not be the most desirable or convenient. For example, in R

2, one

could parametrize the unit circle (x1)
2 + (x2)

2 = 1, for x2 > 0, as (x1, x2) = (s1,
√

1 − (s1)2), for

−1 < s1 < 1. But it is usually more convenient to parametrize it as (x1, x2) = g(θ) = (cos θ, sin θ).
Note that in the latter situation, g′(θ) = (− sin θ, cos θ) is always tangent to the circle. In

general one has:

*Exercise 0.1 Suppose that a surface S is locally given in the form F (x) = 0, where F ∈ C 1.
In other words, there is an open neighborhood U of p and a C1 function F : U → R, such that
S∩U = {x ∈ U : F (x) = 0}. Suppose that at each point of S∩U , gradF 6= 0. Suppose that S∩U
is also given parametrically as {g(s) : s ∈ V }, for a C1 function g : V → R

n (here V ⊆ R
n−1

is open). Suppose p = g(s0) ∈ S ∩ U . Show that the tangent plane to S at p is the affine space
p+V1, where V1 is the span of the columns of g′(s0). (Of course, we are assuming those columns
are linearly independent).
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Solution First we need to verify that gradF (p) is normal to the tangent plane at p. We know that
some partial Fj := ∂F/∂xj does not vanish at p; for each in notation, assume Fn = ∂F/∂xn(p) 6=
0. The implicit function theorem tells us that, for some neighborhood W of p in R

n, and some
neighborhood W0 of p′ := (p1, . . . , pn−1) in R

n−1, there is a C1 function f : W0 → W such that

S ∩ W = {x ∈ W : xn = f(x1, . . . , xn−1)}.

The tangent plane at p therefore has the form

xn − pn =
n−1
∑

j=1

aj(xj − pj)

where each
aj = (∂f/∂xj)(p

′).

Thus the vector (−a1, . . . ,−an−1, 1) lies in the normal direction to the plane. Now, on W0, we
have

F (x1, x2, . . . , xn−1, f(x1, . . . , xn−1)) ≡ 0.

Differentiating this equation with respect to xj (1 ≤ j ≤ n − 1), and setting (x1, . . . , xn−1) =
(p1, . . . , pn−1), we find

Fj(p) + Fn(p)aj = 0.

Accordingly

gradF (p) = Fn(p)(
F1(p)

Fn(p)
, . . . ,

Fn−1(p)

Fn(p)
, 1) = (−a1, . . . ,−an−1, 1)

is normal to the tangent plane at p, as claimed.
Now, on V , F (g(s)) ≡ 0. Using the chain rule to differentiate this, and setting s = s0, we see

that F ′(p)g′(s0) = 0. Of course F ′(p) is the 1 × n matrix (F1(p) . . . Fn(p)), so we now see that
the columns of g′(s0) are orthogonal to the vector n := gradF (p). Since that vector is orthogonal
to the tangent plane to S at p, that tangent plane has the equation n · (x − p) = 0. In other
words, the tangent plane to S is the affine space p + V2, where V2 is the set of all vectors v ∈ R

n

which are orthogonal to n. Then surely V1 ⊆ V2; but by the linear independence assumption, V1

is n − 1 dimensional. V2 cannot be n-dimensional, so V2 = V1, and we are done.
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