Parametrized Surfaces

In these notes, we look more closely at surfaces in \mathbf{R}^{n}. As we discussed in section 3.8, a surface S is often given in the form $F(x)=0$, where $F \in C^{1}$, but we must be careful here. First of all, this is only assumed to be true locally, so that if p is on S, there is an open neighborhood U of p and a C^{1} function $F: U \rightarrow \mathbf{R}$, such that $S \cap U=\{x \in U: F(x)=0\}$. Secondly, in section 3.8 we discussed the significance of the condition $\partial F / \partial x_{m} \neq 0$ at a point on the surface; it enables us to locally solve for this x_{m} on S, in terms of the other x_{k}. We will need to demand that this condition be true at each point for some m, in other words, that at each point of $S \cap U$, $\operatorname{grad} F \neq 0$. With this condition, since we can locally write $x_{m}=u\left(x_{1}, \ldots, x_{m-1}, x_{m+1}, \ldots, x_{n}\right)$ for some C^{1} function u, S is, locally, the graph of a C^{1} function. Without this condition, many kinds of pathologies can arise. For example, if $F\left(x_{1}, x_{2}\right)=x_{1} x_{2}$, then F does not saisfy this condition at $(0,0)$, and $\{x: F(x)=0\}$ is a pair of straight lines intersecting at 0 .

A local parametrization of S is a C^{1} map $g: V \rightarrow \mathbf{R}^{n}$, where $V \subseteq \mathbf{R}^{n-1}$ is open, and where for some open set $U \subseteq \mathbf{R}^{n}, g(V)=S \cap U$, and where, for each point in V, the rank of g^{\prime} is $n-1$. That is, we demand that the columns of the matrix of g^{\prime} be linearly independent at each point of V. Thus, we would not consider $\left(x_{1}, x_{2}\right)=\left(s^{3}, s^{3}\right)(s \in \mathbf{R})$ to be an acceptable parametrization of the surface $\left\{x: x_{2}=x_{1}\right\}$ in \mathbf{R}^{2}. The reason for this requirement is that we would like the conclusion of Exercise 0.1 below to hold.

Say now for instance that $\partial F / \partial x_{n} \neq 0$ at a point in S. Then, near that point, by the implicit function theorem, we can parametrize S in the form $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)=\left(s_{1}, \ldots, s_{n-1}, u\left(s_{1}, \ldots, s_{n-1}\right)\right)$, and this is clearly an acceptable local parametrization. Therefore, local parametrizations will always exist; but this one may not be the most desirable or convenient. For example, in \mathbf{R}^{2}, one could parametrize the unit circle $\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}=1$, for $x_{2}>0$, as $\left(x_{1}, x_{2}\right)=\left(s_{1}, \sqrt{1-\left(s_{1}\right)^{2}}\right)$, for $-1<s_{1}<1$. But it is usually more convenient to parametrize it as $\left(x_{1}, x_{2}\right)=g(\theta)=(\cos \theta, \sin \theta)$.

Note that in the latter situation, $g^{\prime}(\theta)=(-\sin \theta, \cos \theta)$ is always tangent to the circle. In general one has:

* Exercise 0.1 Suppose that a surface S is locally given in the form $F(x)=0$, where $F \in C^{1}$. In other words, there is an open neighborhood U of p and a C^{1} function $F: U \rightarrow \mathbf{R}$, such that $S \cap U=\{x \in U: F(x)=0\}$. Suppose that at each point of $S \cap U$, gradF $\neq 0$. Suppose that $S \cap U$ is also given parametrically as $\{g(s): s \in V\}$, for a C^{1} function $g: V \rightarrow \mathbf{R}^{n}$ (here $V \subseteq \mathbf{R}^{n-1}$ is open). Suppose $p=g\left(s_{0}\right) \in S \cap U$. Show that the tangent plane to S at p is the affine space $p+V_{1}$, where V_{1} is the span of the columns of $g^{\prime}\left(s_{0}\right)$. (Of course, we are assuming those columns are linearly independent).

Solution First we need to verify that $\operatorname{grad} F(p)$ is normal to the tangent plane at p. We know that some partial $F_{j}:=\partial F / \partial x_{j}$ does not vanish at p; for each in notation, assume $F_{n}=\partial F / \partial x_{n}(p) \neq$ 0 . The implicit function theorem tells us that, for some neighborhood W of p in \mathbf{R}^{n}, and some neighborhood W_{0} of $p^{\prime}:=\left(p_{1}, \ldots, p_{n-1}\right)$ in \mathbf{R}^{n-1}, there is a C^{1} function $f: W_{0} \rightarrow W$ such that

$$
S \cap W=\left\{x \in W: x_{n}=f\left(x_{1}, \ldots, x_{n-1}\right)\right\} .
$$

The tangent plane at p therefore has the form

$$
x_{n}-p_{n}=\sum_{j=1}^{n-1} a_{j}\left(x_{j}-p_{j}\right)
$$

where each

$$
a_{j}=\left(\partial f / \partial x_{j}\right)\left(p^{\prime}\right) .
$$

Thus the vector $\left(-a_{1}, \ldots,-a_{n-1}, 1\right)$ lies in the normal direction to the plane. Now, on W_{0}, we have

$$
F\left(x_{1}, x_{2}, \ldots, x_{n-1}, f\left(x_{1}, \ldots, x_{n-1}\right)\right) \equiv 0
$$

Differentiating this equation with respect to $x_{j}(1 \leq j \leq n-1)$, and setting $\left(x_{1}, \ldots, x_{n-1}\right)=$ $\left(p_{1}, \ldots, p_{n-1}\right)$, we find

$$
F_{j}(p)+F_{n}(p) a_{j}=0 .
$$

Accordingly

$$
\operatorname{grad} F(p)=F_{n}(p)\left(\frac{F_{1}(p)}{F_{n}(p)}, \ldots, \frac{F_{n-1}(p)}{F_{n}(p)}, 1\right)=\left(-a_{1}, \ldots,-a_{n-1}, 1\right)
$$

is normal to the tangent plane at p, as claimed.
Now, on $V, F(g(s)) \equiv 0$. Using the chain rule to differentiate this, and setting $s=s_{0}$, we see that $F^{\prime}(p) g^{\prime}\left(s_{0}\right)=0$. Of course $F^{\prime}(p)$ is the $1 \times n$ matrix $\left(F_{1}(p) \ldots F_{n}(p)\right)$, so we now see that the columns of $g^{\prime}\left(s_{0}\right)$ are orthogonal to the vector $n:=\operatorname{grad} F(p)$. Since that vector is orthogonal to the tangent plane to S at p, that tangent plane has the equation $n \cdot(x-p)=0$. In other words, the tangent plane to S is the affine space $p+V_{2}$, where V_{2} is the set of all vectors $v \in \mathbf{R}^{n}$ which are orthogonal to n. Then surely $V_{1} \subseteq V_{2}$; but by the linear independence assumption, V_{1} is $n-1$ dimensional. V_{2} cannot be n-dimensional, so $V_{2}=V_{1}$, and we are done.

