Problem 1. Find the volume of a hemisphere two ways:

(a) Use the disc method to find the volume of the "eastern" hemisphere formed by rotating the region under $y = \sqrt{1 - x^2}$ from x = 0 to x = 1 around the x axis.

(b) Use the shell method to find the volume of the "northern" hemisphere formed by rotating the region under $y = \sqrt{1 - x^2}$ from x = 0 to x = 1 around the y axis.

It may be helpful to recall that the curve $y = \sqrt{1 - x^2}$ is a semicircle of radius 1 centered at the origin.

Problem 2. Compute the arclength of curve $y = \sqrt{1 - x^2}$ from x = 0 to x = 1.

Problem 3. It is easy to check that $\frac{1}{x^2 + x} = \frac{1}{x} - \frac{1}{x+1}$. Use this fact to

(a) Compute
$$\int_{1}^{\infty} \frac{dx}{x^2 + x}$$

(b) Compute
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Problem 4.

(a) Which plot shows solution curves for the differential equation y' = x - y?

(b) Which is a solution to the differential equation y' = x - y?

(i)
$$y = x + \frac{1}{e^x} - 1$$

(ii) $y = \frac{x^2}{2} - x + 1$
(iii) $y = \sin(x)$
(iv) $y = e^x \cos(x)$

Problem 5. Use separation of variables to find the solution to

$$\frac{dy}{dx} = xe^y, \quad y(1) = 0.$$

Problem 6. Essay Question. Compare the exponential and logistic models for population growth. A full analysis will include a discussion of direction fields, sensitivity to initial conditions, asymptotic behavior, and the analytic solutions. **Problem 7**. Determine whether the following converge or diverge. Justify your answers completely.

(a)
$$\int_0^1 \frac{dx}{\sqrt{x}}$$

(b)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

(d)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(f)
$$\sum_{k=1}^{\infty} \frac{3n}{n^2 + 1}$$

(g)
$$\int_1^\infty \frac{x}{e^x} dx$$

Problem 8. Use Euler's method with a step size of $\frac{1}{3}$ to approximate $y\left(\frac{2}{3}\right)$ if y satisfies the differential equation

$$y' = y\left(2 - \frac{1}{2}y^2\right), \quad y(0) = 1.$$

Problem 9. True or False?

(a)
$$\int_0^\infty \frac{dx}{1+x^2} = \frac{\pi}{2}.$$

(b) For any constant
$$c, p = \frac{1}{1 + (c-1)e^{-t}}$$
 is a solution to $p' = p(1-p)$.

(c)
$$\frac{1}{1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\cdots} = 1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\frac{x^4}{4!}-+\cdots$$

(d) If
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 2$$
 then $\sum_{n=1}^{\infty} a_n$ diverges but $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ converges.

(e) If
$$\sum_{k=1}^{\infty} |a_k|$$
 diverges then $\sum_{k=1}^{\infty} a_k$ diverges also.

(f) Suppose $a_n > 0$ for all n and $\lim_{n \to \infty} na_n \to 3$. Then the series $\sum_{n=1}^{\infty} a_n$ converges.

(g)
$$\int f(x)g(x)dx = \left(\int f(x)dx\right)\left(\int g(x)dx\right).$$

(a) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \cdots$

(b)
$$\frac{\pi}{2} - \frac{\pi^3}{3! \cdot 2^3} + \frac{\pi^5}{5! \cdot 2^5} - + \cdots$$

(c)
$$1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

(d)
$$1 + 6\left(-\frac{1}{2}\right) + 15\left(-\frac{1}{2}\right)^2 + 20\left(-\frac{1}{2}\right)^3 + 15\left(-\frac{1}{2}\right)^4 + 6\left(-\frac{1}{2}\right)^5 + \left(-\frac{1}{2}\right)^6$$

Problem 11. Use power series to approximate

$$\int_0^1 x^2 \cos\left(x^{\frac{3}{2}}\right) \, dx$$

with an error less than $\frac{1}{(12)(720)}$.

Problem 12. Let $f(x) = \frac{x^2}{e^{2x}}$. Use power series to find $f^{(5)}(0)$, the fifth derivative of f at x = 0.

EXAM

Practice Final

Math 132

May 10, 2004