
MAT 544 - Second Midterm – Fall 2006

1. Recall that the distance between two disjoint, nonempty sets S, T ⊆ R
n is

d(S, T ) = inf{|s − t| : s ∈ S, t ∈ T}.

Suppose that d(S, T ) > 0. Show that me(S∪T ) = me(S)+me(T ). (Here me denotes outer
Lebesgue measure.)
Solution Since me is finitely subadditive, we surely have me(S∪T ) ≤ me(S)+me(T ). We
need to show that me(S ∪ T ) ≥ me(S) + me(T ). Let V be any open set containing S ∪ T ;
it suffices to show that m(V ) ≥ me(S)+me(T ); the desired result then follows if one takes
the inf over all possible V . It suffices to show the following claim: that there are disjoint
open sets V1, V2 with S ⊆ V1, T ⊆ V2. For then

m(V ) ≥ m((V ∩ V1) ∪ (V ∩ V2)) = m(V ∩ V1) + m(V ∩ V2) ≥ me(S) + me(T ),

as needed. (Here we have used, first, the monotonicity of m; then the disjointness of V ∩V1

and V ∩ V2; and then the fact that S ⊆ V ∩ V1, T ⊆ V ∩ V2.)

To prove the claim, let δ = d(S, T ) > 0. Let V1 = {x : d(x, S) < δ/2}, V2 = {x : d(x, T ) <
δ/2}. (Here, for instance, d(x, S) = inf{|x− s| : s ∈ S}.) It is easy to see that these V1, V2

work.

(Note: we did the case where S, T were disjoint compact sets in the book, by the same
method.)

2. Suppose E ⊆ R is Lebesgue measurable, and that m(E) > 0. Show that for every ε with
0 < ε < 1, there is an open interval I ⊆ R with

m(E ∩ I)

m(I)
> 1 − ε.

Solution First note that we may assume that m(E) < ∞. For otherwise, for n ∈ Z, we
could let En = E ∩ (n, n + 1), and note that m(E) =

∑
n m(En). Thus we must have

m(En) > 0 for some n. If we could prove the result for En in place of E, then for some I
we would have

m(E ∩ I)

m(I)
≥

m(En ∩ I)

m(I)
> 1 − ε
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and we would be done. In short: by replacing E by some En if necessary, we may assume
that m(E) < ∞.

We argue by contradiction; say the conclusion is false. Then for some ε with 0 < ε < 1, we
have that

m(E ∩ I) ≤ (1 − ε)m(I)

for every open interval I. Let U ⊆ R be any open set of finite measure, with E ⊆ U . As
usual, write U as the disjoint union of open intervals; call the set of those intervals IU .
Then

m(E) = m(E ∩ U) =
∑

I∈IU

m(E ∩ I) ≤ (1 − ε)
∑

I∈IU

m(I) ≤ (1 − ε)m(U).

Taking the inf over all such U we find m(E) ≤ (1 − ε)m(E), contradiction.

3. Let c denote the Lebesgue measure of the open unit ball in R
n.

(a) Show that the Lebesgue measure of any open ball of radius r > 0 is crn. (Only use
techniques from chapter 4.)
(b) Show that the Lebesgue measure of any closed ball of radius r > 0 is also crn. (Again,
only use techniques from Chapter 4.)
(c) Suppose that U ⊆ R

n is open, and that m(U) < ∞. Show that for any ε > 0, one can
select a finite collection of disjoint closed balls B1, . . . , BN ⊆ U such that

m(U \ ∪N
j=1Bj) < ε.

Solution (a) Since Lebesgue measure is invariant under translation, it suffices to prove
this for balls centered at the origin. Let B denote the open unit ball.

If S ⊆ R
n, and r > 0, define rS = {rx : x ∈ S}. It suffices to show that, if U ⊆ R

n is
open, then m(rU) = rnm(U) (for then we could let U = B). Of course, if I is a rectangle,
then m(rI) = rnm(I). Now rU is the disjoint union of the cubes rI (as I ranges over DU ).
Thus

m(rU) =
∑

I∈DU

m(rI) =
∑

I∈DU

rnm(I) = rnm(U),

as desired.
(b) Again we may assume that the ball is centered at the origin; call its measure t. For
any positive integer k, this ball contains (r − 1/k)B and is contained in (r + 1/k)B, so
c(r − 1/k)n ≤ t ≤ c(r + 1/k)n for any k. Passing to the limit as k → ∞, we find that
t = crn.
(c) If U ⊆ R

n is open, let us say that S is a subcluster of U if, for some finite collection of
disjoint closed balls B1, . . . , BN ⊆ U , we have S = ∪N

j=1Bj . It suffices to show the following
claim: there exists 0 < r < 1 such that every open U ⊆ R

n, with finite measure, has a
subcluster S1 with

m(U \ S1) ≤ rm(U).
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For we could then iterate: U \ S1 has a subcluster S2 with

m(U \ (S1 ∪ S2)) = m((U \ S1) \ S2) ≤ rm(U \ S1) ≤ r2m(U),

and surely S1 ∪S2 is a subcluster of U , since S1 and S2 are disjoint. Proceeding recursively
we obtain disjoint subclusters S1, S2, . . . of U , such that for any N , m(U \ ∪N

k=1Sk) ≤
rNm(U). This will be less than ε if N is sufficiently large. (In fact, we would find that
m(U\∪∞

k=1Sk) = 0, so that there is a countable collection of disjoint closed balls B1, B2 . . . ⊆
U , with m(U \ ∪∞

j=1Bj) = 0.)

To show the claim, we need only show that there exists 0 < s < 1, such that for every
open U ⊆ R

n, with finite measure, there is a finite collection of disjoint closed balls
B1, . . . , BN ⊆ U with

N∑

j=1

m(Bj) ≥ sm(U).

For then we could set r = 1 − s. But this is easy to see: first use the dyadic cube
decomposition of U to select a finite collection of disjoint closed cubes I1, . . . , IN ⊆ U with∑N

j=1 m(Ij) > 1
2
m(U). For 1 ≤ j ≤ N , let Bj be the closed ball with the same center as Ij

and whose radius is half the side length of Ij, so Bj ⊆ Ij. By (b),

N∑

j=1

m(Bj) =
c

2n

N∑

j=1

m(Ij) ≥
c

2n+1
m(U).

This is what we want, with s = c
2n+1 .

The method of solution of this problem (removing at least a fixed fraction of U at each
stage) is akin to the construction of Cantor sets.

4. Show that there are open neighborhoods U, V of 0 in R
2 and a C1 function g : U → V ,

with a C1 inverse mapping V to U , with the following property:

Whenever F : V → R is C1, then for all (x, y) ∈ U ,

∂

∂x
(F ◦ g)(x, y) = (5x4 + y + 1)(F1 ◦ g)(x, y) + 2xye(x2+1)y(F2 ◦ g)(x, y) and

∂

∂y
(F ◦ g)(x, y) = x(F1 ◦ g)(x, y) + (x2 + 1)e(x2+1)y(F2 ◦ g)(x, y).

Here F1(s, t) = ∂
∂s

F (s, t), F2(s, t) = ∂
∂t

F (s, t), for all (s, t) ∈ V .

Solution Let g(x, y) = (x5 + xy + x, e(x2+1)y − 1). Then g(0, 0) = (0, 0), and the Jacobian
of g at (0, 0) is the identity matrix. Thus the existence of U, V and the C1 inverse of g
are guaranteed by the inverse function theorem. The formulas for differentiating F ◦ g are
immediate from the chain rule.
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