MAT 544 - Second Midterm — Fall 2006

1. Recall that the distance between two disjoint, nonempty sets S,7 C R" is
d(S,T) =1inf{|s —t| : s € S;t € T}.

Suppose that d(S,T") > 0. Show that m.(SUT) = m.(S)+m.(T). (Here m. denotes outer
Lebesgue measure.)

Solution Since m, is finitely subadditive, we surely have m.(SUT) < m(S)+m.(T). We
need to show that m.(SUT) > m.(S) + m.(T). Let V be any open set containing S U T
it suffices to show that m (V') > m.(S) +m.(T); the desired result then follows if one takes
the inf over all possible V. It suffices to show the following claim: that there are disjoint
open sets Vi, Vo with S C V4, T' C V,. For then

m(V) Zm((VnVi)u(Vny)) =m(V Vi) +m(V V) = me(S) +me(T),

as needed. (Here we have used, first, the monotonicity of m; then the disjointness of V NV}
and V' N Va; and then the fact that SCV NV, T CV NV,

To prove the claim, let § = d(S,T) > 0. Let V; = {x : d(z,5) < §/2}, Vo ={z: d(z,T) <
d/2}. (Here, for instance, d(z, S) = inf{|z — s| : s € S}.) It is easy to see that these Vi, V3
work.

(Note: we did the case where S, T were disjoint compact sets in the book, by the same
method.)

2. Suppose E C R is Lebesgue measurable, and that m(E) > 0. Show that for every e with
0 < e < 1, there is an open interval I C R with

m(ENI)

m(l) >1—ce.

Solution First note that we may assume that m(E) < co. For otherwise, for n € Z, we
could let £, = EN(n,n+ 1), and note that m(E) = >, m(E,). Thus we must have
m(E,) > 0 for some n. If we could prove the result for F, in place of E, then for some

we would have
m(ENI)

m([)

m(E, N 1)

m(l) >1—c¢

>



and we would be done. In short: by replacing £ by some FE,, if necessary, we may assume
that m(E) < oc.

We argue by contradiction; say the conclusion is false. Then for some ¢ with 0 < e < 1, we
have that
m(ENI)<(l—em(l)

for every open interval I. Let U C R be any open set of finite measure, with £ C U. As
usual, write U as the disjoint union of open intervals; call the set of those intervals Z.
Then

m(E)=m(ENU)= Y mEND < (1-¢ S m) < (1 - em(U).

1€y Iely
Taking the inf over all such U we find m(E) < (1 — ¢)m(F), contradiction.

. Let ¢ denote the Lebesgue measure of the open unit ball in R".

(a) Show that the Lebesgue measure of any open ball of radius » > 0 is ¢r™. (Only use
techniques from chapter 4.)

(b) Show that the Lebesgue measure of any closed ball of radius r > 0 is also ¢r™. (Again,
only use techniques from Chapter 4.)

(c) Suppose that U C R" is open, and that m(U) < co. Show that for any € > 0, one can
select a finite collection of disjoint closed balls By, ..., By C U such that

m(U \ U;VZIB]) < €.

Solution (a) Since Lebesgue measure is invariant under translation, it suffices to prove
this for balls centered at the origin. Let B denote the open unit ball.

If S CR" and r > 0, define rS = {rxz : x € S}. It suffices to show that, if U C R" is
open, then m(rU) = r"m(U) (for then we could let U = B). Of course, if [ is a rectangle,
then m(rl) = r™m(I). Now rU is the disjoint union of the cubes I (as I ranges over Dy).

Thus

m(rU) = > m(rl) = > r"m(I)=r"m(U),

IeDy IeDy

as desired.
(b) Again we may assume that the ball is centered at the origin; call its measure ¢. For
any positive integer k, this ball contains (r — 1/k)B and is contained in (r + 1/k)B, so
c(r —1/k)" <t < c¢(r+ 1/k)" for any k. Passing to the limit as k — oo, we find that
t=cr’.
(c) If U C R" is open, let us say that S is a subcluster of U if, for some finite collection of
disjoint closed balls By, ..., By C U, we have S = Uj-vlej. It suffices to show the following
claim: there exists 0 < r < 1 such that every open U C R", with finite measure, has a
subcluster S; with

m(U \ S1) <rm(U).



For we could then iterate: U \ Sj has a subcluster S, with
m(U\ (S1USy) =m((U\ S1)\ S2) <rm(U\ S1) < r*m(U),

and surely S; U S is a subcluster of U, since S; and S5 are disjoint. Proceeding recursively
we obtain disjoint subclusters Sy, Sa, ... of U, such that for any N, m(U \ Uf_;S;) <
r¥m(U). This will be less than € if N is sufficiently large. (In fact, we would find that
m(U\Up2,Sk) = 0, so that there is a countable collection of disjoint closed balls By, By ... C
U, with m(U \ U2, B;) = 0.)

To show the claim, we need only show that there exists 0 < s < 1, such that for every

open U C R", with finite measure, there is a finite collection of disjoint closed balls
Bi,...,By CU with

N
> m(B;) > sm(U).
j=1
For then we could set r = 1 — s. But this is easy to see: first use the dyadic cube
decomposition of U to select a finite collection of disjoint closed cubes I1,..., Iy C U with

Y m(l;) > 3m(U). For 1 < j < N, let B; be the closed ball with the same center as I
and whose radius is half the side length of I;, so B; C I;. By (b),

JZ_Zlm(Bj) = 5o 2 mlL) = 5oym(U).

This is what we want, with s = 55.

The method of solution of this problem (removing at least a fixed fraction of U at each
stage) is akin to the construction of Cantor sets.

. Show that there are open neighborhoods U,V of 0 in R? and a C! function ¢ : U — V,
with a C! inverse mapping V to U, with the following property:

Whenever F : V — R is C!, then for all (z,y) € U,

9, 2
5 (Fog)(@.y) = (52" +y + 1)(F 0 g)(x,y) + 2wyel” *V(Fy 0 g)(,y) and

9 .
gy (1 e 9@ y) = a(Frog)(w,y) + (@ + e (E,y 0 g)(x,y).
Here Fi(s,t) = %F(s,t), Fy(s,t) = %F(s,t), for all (s,t) € V.

Solution Let g(x,y) = (2° + zy + x, e®* ¥ — 1), Then ¢(0,0) = (0,0), and the Jacobian
of g at (0,0) is the identity matrix. Thus the existence of U,V and the C! inverse of g

are guaranteed by the inverse function theorem. The formulas for differentiating F' o g are
immediate from the chain rule.



