
Lebesgue-Stieltjes Integrals

When we defined the measure of an open set U ⊆ R as

m(U) =
∑

I∈IU

v(I), (1)

we mentioned that it would be how much U weighed, in grams, if it were made out of material
of linear density 1 g/cm. What if the density were not 1 g/cm, and was not even uniform? And
what if some points had nonzero weight?

As we know, if f : R → [0,∞) is Lebesgue measurable, we can define a new measure on R

by µ(E) =
∫
E fdx. (Here we assume E is Lebesgue measurable.) If

∫
f = 1, φ is the probability

measure with “density” f . We could also interpret f as linear density in the usual sense of the
word, and so µ(U) provides a partial answer to our question. However, whatever f is, in this
situation, the weight of any point would be zero.

Let us then look at the question differently. Can we describe all the inner regular volume
functions µ on R? Any such volume function is completely determined once we have specified
µ(I) for any open interval I, since any open set U is the countable disjoint union of the intervals
in IU .

To see how to do this, let us assume we have such an inner regular volume function and see
what we can find out about it. We know that there is an associated measure µ (it will be called
a Lebesgue-Stieltjes measure).

Fix a ∈ R, and, for x > a, define ga(x) to be µ((a, x)). Of course ga(x) must be a non-
decreasing function of x. Note that if x > a and xn ր x (by which we mean all xn < x, xn → x
and xn ր) , then

∪n(a, xn) = (a, x), (2)

so that we must have ga(xn) ր ga(x). This easily implies that ga must be continuous from the
left. On the other hand, if instead xn ց x, we have only

∩n(a, xn) = (a, x], (3)

so that ga(xn) ց µ((a, x]), which may not be ga(x) (and is not, if µ({x}) > 0).
It is therefore important for us to think about nondecreasing functions more carefully. One

has:

Proposition 0.1 Suppose F : (a,∞) → R is nondecreasing. Then:
(a) F has at most countably many discontinuites, and each is a jump discontinuity (i.e., for any
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c > a, F (c−) and F (c+) exist. (Here F (c−) = limx→c− F (x).) Of course, F (c−) ≤ F (c+).
(b) Define G : (a,∞) → R by G(x) = F (x−). Then G is nondecreasing and continuous from the
left. Moreover, for any c > a, G(c+) = F (c+).
(c) Similarly, if we define H : (a,∞) → R by H(x) = F (x+). Then H is nondecreasing and
continuous from the right. Moreover, for any c > a, H(c−) = F (c−).
(d) In addition, for any c > a, limx→c− F (x+) = F (c−), and limx→c+ F (x−) = F (c+).

Proof For (a), say c > a. Take any sequence {cn} with all cn > a, such that cn ր c. The
sequence {F (cn)} is nondecreasing and bounded above (by F (c)), so it has a limit, say L. We
claim that F (c−) = L. Indeed, given ǫ > 0, we may select m with F (cm) > L− ǫ. If cm < x < c,
we must have cm < x < cn for some n, so F (cm) < F (x) < F (cn), so L − ǫ ≤ F (x) ≤ L, as
desired.

Thus all the discontinuities are jump discontinuities. To see that there are only countably
many of them, it suffices to show that there are only countably many in any finite interval (a, b).
At a point of discontinuity c, let us say that the “jump” is F (c+) − F (c−). For each positive
integer n, let Jn denote the set of points of discontinuity in (a, b) where the jump exceeds 1/n.
It suffices to show that each Jn is a finite set (since the set of all points of discontinuity in (a, b)
is the union of the Jn). But in fact, Jn cannot have more than n[F (b)−F (a)] elements. Indeed,
if there were elements c1 < c2 < . . . < cN in Jn, where N > n[F (b) − F (a)], then we would have
the contradiction

F (b) − F (a) ≥ F (c+N ) − F (c−1 )

= [F (c+N ) − F (c−N)] + [F (c−N ) − F (c+N−1)] + [F (c+N−1) − F (c−N−1)] + . . . [F (c+1 ) − F (c−1 )]

≥
N−1∑

k=1

[F (c+k+1) − F (c−k )]

≥ N/n.

For (b), it is evident that G is nondecreasing, since if a < b < c, we may take sequences
bn ր b and cn ր c with bn ∈ (a, b) for all n and cn ∈ (b, c) for all n. Thus bn < cn for all n,
which implies that G(b) = F (b−) ≤ F (c−) = G(c).

To see that G is continuous from the left, we need only note that G equals F except at at most
countably many points. Thus, if c > a, we can find a sequence cn ր c such that G(cn) = F (cn)
for all n. Accordingly

G(c−) = lim
n→∞

G(cn) = lim
n→∞

F (cn) = F (c−) = G(c),

Similarly, by choosing a sequence cn ց c such that G(cn) = F (cn) for n, we find that G(c+) =
F (c+), as desired.

The proof of (c) is similar to that of (b). For (d), we note that if x < c, then F (x−) ≤
F (x+) ≤ F (c−). Thus limx→c− F (x+) = F (c−) follows from the squeeze rule and (b). Similarly,
using (c), we see that limx→c+ F (x−) = F (c+). This completes the proof.

Continuing now with our analysis from before the proposition: say a < b < x. We have

gb(x) = µ((b, x)) = µ((a, x)) − µ((a, b]) = ga(x) − ga(b
+).
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This shows in particular that the functions ga and gb differ only by a constant on (b,∞) (the
intersection of their domains). Say now a < b < 0. Then if a < b < x we have gb(x) − ga(x) =
gb(0) − ga(0), whence gb(x) − gb(0) = ga(x) − ga(0). For any x ∈ R we may therefore define

ψ(x) = ga(x) − ga(0)

for any a < min(0, x); the definition does not depend on the choice of a. We find:
(i) ψ is a nondecreasing function on R, which is continuous from the left; and
(ii) whenever b < x, µ((b, x)) = ψ(x) − ψ(b+).

This describes, then, conditions which our assumed inner regular volume function µ must satisfy.
We claim that these conditions are both necessary and sufficient. That is:

Suppose ψ : R → R satisfies (i); then there is a unique inner regular volume function µ satisfying
µ((b, x)) = ψ(x) − ψ(b+) whenever b < x.

Associated to this µ, then, is a measure µ, which is called the Lebesgue-Stieltjes measure as-
sociated to ψ. Equivalently:

Theorem 0.2 Suppose that φ : R → R is nondecreasing. Then there exists a unique inner
regular volume function µ such that µ((b, x)) = φ(x−) − φ(b+) whenever −∞ < b < x <∞.

The measure associated to this µ is called the Lebesgue-Stieltjes measure associated to φ.

This appears more general than (*), but it really is not. If we knew (*), then to prove the
theorem we need only define ψ by ψ(x) = φ(x−), and let µ be the Lebesgue-Stieltjes measure
associated to ψ. (We used Proposition 0.1.)

To prove Theorem 0.2, we proceed as follows. If I = (a, b) ⊆ [−∞,∞] is an open interval, we
define w(I) = φ(b−) − φ(a+). (This will have to turn out to be in the end to be µ(I), even if a
or b is not finite. For instance, if a is finite, µ((a,∞)) will have to be limN→∞[φ(N−)−φ(a+)] =
φ(∞−)−φ(a+), since for any N , φ(N − 1) ≤ φ(N−) ≤ φ(∞−) and we can use the squeeze rule.)

If J ⊆ R is any interval (not necessarily open), we set

w(J) = inf w(I) (4)

where the inf is taken over all open intervals containing I. (This will have to turn out to be
µ(J), since µ is to be outer regular. (In fact, µ(J) will be inf µ(U), where the inf is taken over
all open sets containing J ; but if U ⊇ J then some interval I in IU must contain J , since J is
connected; so in fact we can take the inf over all open intervals containing J and get the same
answer, by the majorization principle for infs).

By the results of Proposition 0.1, we see that w([a, b)) = φ(b−) − φ(a−), w((a, b]) = φ(b+) −
φ(a+), and w([a, b]) = φ(b+) − φ(a−), (the latter holding even if a = b ∈ R, in which case
[a, b] means {a}.) (To see these facts, note that, for instance, if I ⊇ [a, b] is open, then w(I) ≥
φ(b+)− φ(a−) always, and, for I suitable, is as close to φ(b+)−φ(a−) as desired.) The results of
Proposition 0.1 now show that, if I is any interval, then

w(I) = supw(J), (5)
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the sup being taken over all compact intervals J ⊆ I.
If U ⊆ R is open, we set (and, in fact, must set)

µ(U) =
∑

I∈IU

w(I).

In order to show that this is an inner regular volume function, we simply imitate our proof that
m is an inner regular volume function:
1. We define the Riemann-Stieltjes integral of a step function on a closed interval R, showing it
is independent of choice of partition.
2. We use this to prove the Rectangle Lemma with w in place of v. This then shows, by the
arguments of Lemma 4.2.12, that µ is a volume function.
3. We show that this volume function is inner regular.

For #1, if s is a step function on R for the partition P = (x0, . . . , xn), and s = ak on the
interval Ik = (xk−1, xk) of P , we define

Iφ(s, P ) =
n∑

k=1

aiw(Ik) +
n∑

j=0

s(xj)w({xj}). (6)

(If we extend s outside R to be zero there, this is what
∫
sdµ would have to be.) We need to

show that this is independent of the choice of partition. As in the proof of Proposition 4.1.2, we
only need show that Iφ(s, P ) = Iφ(s,Q) for a partition Q of R which has exactly one more point
than P . Say that point is t, and it lies in the intervsl Im. Then, to evaluate Iφ(s,Q), we need
only replace the term amw(Im) in the right side of (6) by am[w((xm−1, t)) +w({t}) +w((t, xm))];
but this is

am([φ(x−m) − φ(t+)] + [φ(t+) − φ(t−)] + [φ(t+) − φ(x+

m−1)]) = am[φ(x−m) − φ(x+

m−1)] = amw(Im)

as desired. We then define
∫
R sdφ = Iφ(s, P ), and note, that for step functions s, t on R,∫

R(s+ t)dφ =
∫
R sdφ+

∫
R tdφ, and if s ≤ t, then

∫
R sdφ ≤

∫
R tdφ.

For #2, in this situation we shall also need to allow our rectangles (i.e. real intervals)
to be half-infinite or infinite in extent. We modify the second paragraph of the proof of the
rectangle lemma as follows: For each k, we let Iǫ

k be any compact interval contained in Ik
with w(Iǫ

k) ≥ (1 − ǫ)w(Ik) (here we use (5)). Choose a finite open interval (A,B) ⊇ ∪N
k=1I

ǫ
k.

For each l, we let Kǫ
l be an open interval containing Jl with w(Kǫ

l ) ≤ (1 + ǫ)w(Jl), and let
J ǫ

l = Kǫ
l ∩ (A,B). Then w(J ǫ

l ) ≤ (1 + ǫ)w(Jl), and ∪N
k=1I

ǫ
k ⊆ ∪lJ

ǫ
l . The proof is now concluded

as for the usual rectangle lemma, except that we use w in place of v and the
∫
R dφ in place of∫

R dx; here R = [A,B]. The fact that µ is a volume function now follows just as in the proof of
Lemma 4.2.12, except that we use the IU instead of the DU .

For #3, we note that, for any interval J , µe(J) = w(J), by (4) and the connectedness of J .
Thus, by (5), every open interval is µ-inner regular. This shows, by Lemma 4.4.2, that every
open set is µ-inner regular, since it is a countable disjoint union of open intervals. Thus the
volume function µ is inner regular, as desired.

Lebesgue-Stieltjes integrals occur frequently in probability and in physics.
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