
C1 Dependence on Initial Conditions for ODE

First, two comments about section 3.9:

1. In section 3.9, one can use real Banach spaces in place of Banach spaces.

2. In the statement of Theorem 3.9.2, we should have written

f ′(a) is INVERTIBLE, with a bounded inverse.

(In fact, as we shall see in Chapter 12, any invertible map between Banach spaces, or real
Banach spaces, has a bounded inverse.)

We will need the following simple lemma.

Lemma 0.1 Let (X, d1) and (Y, d2) be metric spaces. Form the metric space (X × Y, d) where
d ((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2). Suppose that for each x ∈ X we have a function
ux ∈ Cb(Y ), the space of bounded continuous functions from Y to Rl. (Here l is fixed.) Suppose
moreover that for each x0 ∈ X,

lim
x→x0

‖ux − ux0
‖ = 0.

(Here ‖‖ denotes sup norm on Y .) For x ∈ X, y ∈ Y , put u(x, y) = ux(y). Then h : X×Y → Rl

is continuous.

Proof Say ǫ > 0. If (x0, y0) ∈ X × Y , then, since ux0
∈ Cb(y), we may find δ2 > 0 such that if

d2(y, y0) < δ2, then
|u(x0, y) − u(x0, y0)| < ǫ/2.

By hypothesis we can also select δ1 > 0 such that, if d1(x, x0) < δ1, then

‖ux − ux0
‖ < ǫ/2.

It then follows that if d1(x, x0) < δ1 and d2(y, y0) < δ2, then

|u(x, y) − u(x0, y0)| < ǫ,

as desired.

We next observe that the implicit function theorem has a direct extension for Banach spaces
(or real Banach spaces).
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If X and Y are Banach spaces (or real Banach spaces), with norms ‖‖X and ‖‖Y respectively,
we may define a norm ‖ ‖ on X × Y by setting

‖(x, y)‖ = ‖x‖X + ‖y‖Y .

It is very easy to check that X × Y is a Banach space (or a real Banach space) with this norm.
Note that the metric obtained from this norm on X × Y is the same as the metric one obtains
through the procedure described in Lemma 0.1.

The linear maps T : X × Y → Y are precisely the maps of the form

T (x, y) = Ax + By (1)

where A : X → Y and B : Y → Y are linear. In fact, given such A and B, T as defined in (1) is
clearly linear. Conversely, given T : X × Y → Y linear, we may define linear maps A : X → Y
and B : Y → Y by Ax = T (x, 0), By = T (0, y), and then (1) clearly holds. In fact, we had no
choice here in the definition of A,B; it is forced by (1). Let us write T = (A B).

We then have the following extension of the Implicit Function Theorem for Banach spaces:

Theorem 0.2 Implicit Function Theorem for Banach spaces Let X,Y be Banach spaces,
or real Banach spaces. Suppose U ⊆ X × Y is open, F : U → Y , F ∈ C1(U). Say (x0, y0) ∈ U ,

F (x0, y0) = 0

and the derivative of F at (x0, y0) is
(A B)

(here A : X → Y , B : Y → Y ). Finally suppose

B is INVERTIBLE, with a bounded inverse.

Then x0 has an open neighborhood V , and there exists h0 ∈ C1(V ), h0 : V → Y , such that

h0(x0) = y0

and
F (x, h0(x)) = 0

for all x ∈ V .
Further, (x0, y0) has an open neighborhood U1 ⊆ U so that

[(x, y) ∈ U1, F (x, y) = 0] ⇐⇒ [x ∈ V, y = h0(x)].

To prove this one needs to make only minor modifications in the proof of Theorem 3.8.2.
One defines G : X × Y → X × Y by G(x, y) = (x, F (x, y)), and notes that the derivative of G
at (x0, y0) equals T , where T (x, y) = (x,Ax + By). T is invertible, with a bounded inverse (in
fact its inverse is T−1, where T−1(x, y) = (x,−B1Ax + B−1y).) One then proceeds to prove the
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theorem just as in the proof of Theorem 3.8.2.

Let us now look at some important examples of differentiable maps between real Banach spaces.

Example 1 Let (a, b) ⊆ R be an interval. Let (X, d) be a metric space. Let Cb(X) denote, as
usual, the real Banach space of bounded continuous functions from X to Rl (for some fixed l).
What would it mean for a map G : (a, b) → Cb(X) to be differentiable at a point s0 ∈ (a, b)? The
only linear maps from R to a real Banach space Y are of the form T (h) = yh for some y ∈ Y
(indeed, y = T (1)). We would need, then, that for some y ∈ Cb(X),

‖G(s0 + h) − G(s0) − yh‖ = o(h) (2)

Here ‖ ‖ denotes sup norm on X. If s ∈ (a, b), then G(s) ∈ Cb(X); if x ∈ X, write G(s, x) =
[G(s)](x). We see that for all x ∈ X,

|G(s0 + h, x) − G(s0, x) − y(x)h| = o(h),

so that y could only be ∂G/∂s, evaluated at s = s0. Thus this partial exists and is in Cb(X),
and we have the uniformity

‖G(s0 + h) − G(s0) −
∂G

∂s
|s=s0

h‖ = o(h) (3)

Suppose now that G is differentiable at each point s0 ∈ (a, b). Since (∂G/∂s)|s=s0
is bounded,

(3) implies that
‖G(s0 + h) − G(s0)‖ = O(h).

As a consequence of this and Lemma 0.1, we see that G(s, x) is a continuous function of (s, x) ∈
(a, b) × X.

What then would it mean for G : (a, b) → Cb(X) to be C1? As we said above, the only
linear maps from R to a real Banach space Y are of the form T (h) = yh for some y ∈ Y ; clearly
‖T‖ = ‖y‖. The derivative of G at h is the linear transformation h → (∂G/∂s)t. So to say that
G is C1 is to say that, for all s0 ∈ (a, b), (∂G/∂s)|s=s0

is in Cb(X), (3) holds, and

‖
∂G

∂s
|s=r −

∂G

∂s
|s=s0

‖ → 0 (4)

as r → s0. Lemma 0.1 and (4) now show that ∂G/∂s is also continuous as a function of
(s, x) ∈ (a, b) × X.

*Exercise 0.3 Let U ⊆ Rn be open, and again let (X, d) be a metric space. Suppose that
G : U → Cb(X).
(a) What exactly does it mean for G to be differentiable at a point s0 ∈ U? Show that, if it is,
then all partials ∂G/∂si exist at s0 and are in Cb(X).
(b) If G is differentiable at every s ∈ U , show that G is continuous as a function of (s, x) ∈ U×X.
(c) What exactly does it mean for G to be C1 on U? Show that, if it is, then all partials ∂G/∂si

are continuous as functions of (s, x) ∈ U × X.
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Solution (a) Every linear map T from Rn to a real Banach space Y is of the form T (h) =
∑

yihi

for certain y1, . . . , yn ∈ Y . We would need, then, that for some y1, . . . , yn ∈ Cb(X),

‖G(s0 + h) − G(s0) −
n∑

i=1

yihi‖ = o(h). (5)

Here ‖ ‖ denotes sup norm on X. If s ∈ U , then G(s) ∈ Cb(X); if x ∈ X, write G(s, x) =
[G(s)](x). We see that for all x ∈ X, if Txh =

∑
yi(x)hi, then

|G(s0 + h, x) − G(s0, x) − Txh| = o(h).

Thus Tx must be the derivative of G at s0, and consequently yi must be ∂G/∂si, evaluated at
s = s0. Thus this partial exists and is in Cb(X), and we have the uniformity

‖G(s0 + h) − G(s0) −
∑

i

∂G

∂si

|s=s0
hi‖ = o(h) (6)

(b) Since each (∂G/∂si)|s=s0
is bounded, (6) implies that

‖G(s0 + h) − G(s0)‖ = O(h).

(b) now follows at once from Lemma 0.1.
(c) As we said above, the only linear maps from Rn to a real Banach space Y are of the form
T (h) =

∑
i yihi for certain y1, . . . , yn ∈ Y . We have

max(‖y1‖, . . . , ‖yn‖) ≤ ‖T‖ ≤ nmax(‖y1‖, . . . , ‖yn‖). (7)

Indeed, if ei = (0, . . . , 0, 1, 0, . . . , 0) with the “1” in the ith slot, T (ei) = yi, so that ‖T‖ ≥ ‖yi‖
for all i. But for any h, ‖T (h)‖ ≤

∑
|hi|‖yi‖ ≤ (

∑
‖yi‖)|h| ≤ nmax(‖y1‖, . . . , ‖yn‖)|h|. This

proves (7).
The derivative of G at s is the linear transformation h →

∑
i(∂G/∂si)hi. So to say that G is

C1 is to say that, for all s0 ∈ U , and for all i, (∂G/∂si)|s=s0
is in Cb(X); that (6) holds; and (by

(7)), that for any i,

‖
∂G

∂si

|s=r −
∂G

∂si

|s=s0
‖ → 0 (8)

as r → s0. Lemma 0.1 and (4) now show that each ∂G/∂si is also continuous as a function of
(s, x) ∈ U × X.

*Exercise 0.4 Let I = [A,B] be a closed interval, and U ⊆ Rn is open. Let C(I;U) denote the
set of continuous functions with domain I and range contained in U .
(a) Show that C(I;U) is an open subset of C(I) (the normed vector space of continuous functions
from I to Rn.)
(b) Suppose that F : I × U → Rn is continuous. Suppose that for all (t, Y ) ∈ I × U , all partials
∂F/∂Yi exist, and that these partials are also continuous on I ×U . Say t0 ∈ I. For y ∈ C(I;U),
define Ty ∈ C(I) by

Ty(t) =
∫ t

t0
F (s, y(s))ds.

Show that T : C(I;U) → C(I) is differentiable, and compute its derivative.
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Solution (a) This is evident if U = Rn, for then C(I;U) = C(I). So say U 6= Rn, and suppose
y ∈ C(I;U). Let K1 equal the range of y, a compact subset of U . Let δ = dist(K1, U

c); then
0 < δ < ∞. Let V = {f ∈ C(I) : ‖f − y‖ < δ}; to prove (a), we need only show that V is
contained in C(I;U) (since it is an open neighborhood of y, an arbitrary element of C(I;U)).
But if f ∈ V , then for any t ∈ I, |f(t) − y(t)| < δ. Since y(t) ∈ K1, we must have f(t) ∈ U . So
f : I → U as desired.
(b) For i = 1, . . . , n, let F i denote ∂F/∂Yi. For s ∈ I, define Fs : U → Rn by Fs(Y ) = F (s, Y ).
Then, for fixed s, the columns of the matrix of F ′

s(Y ) are F i(s, Y ).
Fix y ∈ C(I;U). For h = (h1, . . . , hn) ∈ C(I), define Qh ∈ C(I) by

Qh(t) =
∫ t

t0
F ′

s(y(s))h(s) ds. (9)

(Here, F ′

s(y(s))h(s) =
∑n

i=1
F i(s, y(s))hi(s).) It is enough to show that Q is the derivative of T

at y. Choose K1, δ for y as in the solution of (a). Let K be the compact set defined by

K = {x ∈ Rn : dist(x,K1) ≤ δ/2}.

Then K is a compact subset of U . Moreover, if Y ∈ K1 then the open ball of radius δ/2,
centered at Y , is contained in K. In particular, if Y ∈ K1, H ∈ Rn and |H| < δ/2, then the line
segment joining Y to Y +H is completely contained in K. In addition, for any i, F i is uniformly
continuous on I×K. Thus, although K is not necessarily convex, the proof of Exercise 3.6.16, as
applied to this K, shows this uniformity: for every ǫ > 0, there exists η > 0 such that whenever
a ∈ K1, |H| < η and s ∈ I, we have |Fs(Y + H) − Fs(Y ) − F ′

s(Y )H| ≤ ǫ
B−A

|H|. Accordingly, if
h ∈ C(I) and ‖h‖ < η, we have that for any t ∈ I,

|[T (y + h) − Ty − Qh](t)| = |
∫ t

t0
[Fs([y + h](s)) − Fs(y(s)) − F ′

s(y(s))h(s)]ds|

≤ |
∫ t

t0
|Fs([y + h](s)) − Fs(y(s)) − F ′

s(y(s))h(s)|ds

≤ |
∫ t

t0

ǫ

B − A
‖h‖ds |

≤ ǫ‖h‖.

Thus ‖T (y + h) − Ty − Qh‖ ≤ ǫ‖h‖, as desired.

We may now establish an important result that states that the solution of an ODE depends
in a C1 manner on the initial conditions. We shall work in the situation of the Fundamental
Local Existence theorem for ODE (Theorem 2.2.2), but we shall assume the stronger condition
that for all i, ∂F/∂Yi exists and is continuous on [t0 − h, t0 + h]×U , where U ⊆ Rn is open and
contains BR(Y0). As we shall review in a moment, this implies that F is Lipschitz in Y on the
set S of (2.6), in the sense of (2.7).
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Theorem 0.5 C1 dependence on initial conditions for solutions of ODE Say t0 ∈ R,
Y0 ∈ Rn, R > 0. Let

S = [t0 − h, t0 + h] × BR(Y0) (10)

where BR(Y0) is the closed ball of radius R > 0 about Y0.
Suppose:

(i) The domain of F (t, Y ) contains a set S1 = [t0 − h, t0 + h] × U , where U ⊆ Rn is open
and contains BR(Y0);
(ii) The range of F (t, Y ) is contained in Rn;
(iii) F is continuous on S;
(iv) For i = 1, . . . , n, the function F i = ∂F/∂Yi exists and is continuous on S1.

Then there exists P1 > 0, satisfying the following three properties:

(A) whenever |Y − Y0| < R/2, the equation dy/dt = F (t, y) has a unique solution yY (t) in
(t0 − P1, t0 + P1) with y(t0) = Y ;

(B) whenever |Y − Y0| < R/2, if 0 < r < P1, then yY (t) is also the unique solution of
dy/dt = F (t, y) in (t0 − r, t0 + r) with yY (t0) = Y ; and

(C) if we set y(Y, t) = yY (t) for |Y − Y0| < R/2, t ∈ (t0 − P1, t0 + P1), then y(Y, t) is a C1

function of Y, t.

Proof Let M be the maximum of |F (t, Y )| on S. We may assume M > 0. For t ∈ [t0−h, t0 +h],
define Ft : U → Rn by Ft(Y ) = F (t, Y ). Let K be the maximum of ‖F ′

t (Y )‖ for (t, Y ) ∈ S (unless
this maximum is zero, in which case take K = 1.) We claim that we may take P1 = min( R

2M
, 1

K
, h).

First note that F is Lipschitz in Y on S. Indeed, if (t, Y 1), (t, Y 2) ∈ S, then

|F (t, Y 1) − F (t, Y 2)| = |Ft(Y
1) − Ft(Y

2)| ≤ K|Y 1 − Y 2|,

by Proposition 3.6.11 (b).

Now say |Y −Y0| < R/2, and note [t0−h, t0 +h]×BR/2(Y ) ⊆ S. Then, by Theorem 2.2.2, Corol-
lary 2.2.4 and their proofs, the differential equation dy/dt = F (t, y), y(t0) = Y , has a unique
solution yY on (t0 − P1, t0 + P1). Moreover, if 0 < r < P1, then yY (t) is also the unique solution
of dy/dt = F (t, y) in (t0 − r, t0 + r) with yY (t0) = Y . Moreover, on the interval (t0 −P1, t0 +P1),
the range of yY is contained in BR/2(Y ).

Now, fix r with 0 < r < P1, and set J = [t0 − r, t0 + r]. Define T : Rn × C(J ;U) → C(J) by

(T (Y, f))(t) = Y +
∫ t

t0
F (s, f(s))ds − f(t)
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for (Y, f) ∈ Rn × C(J ;U). The proofs of Theorem 2.2.2 and Corollary 2.2.4 further show that
T (Y, yY ) = 0 whenever |Y − Y0| < R/2.

Pick any Y ′

0
with |Y ′

0
− Y0| < R/2. To complete the proof, we must establish conclusion (C),

and for this, it suffices to show that, for some open neighborhood V of Y ′

0
in Rn, y(Y, t) = yY (t)

is a C1 function of (Y, t) for (Y, t) ∈ V × J . Put y0 = yY ′

0
. Since the derivative of a sum is the

sum of the derivatives of the summands, by Exercise 0.4 we see that T is differentiable at y0,
with derivative (I Q − I), where Q is as in (9) (with y there replaced by y0).

We now want to use the implicit function theorem for Banach spaces, and for this we will
need to know that Q − I : C(J) → C(J) is invertible (with a bounded inverse). For this it
suffices to show that ‖Q‖ < 1. But if h ∈ C(J), then

|Qh(t)| = |
∫ t

t0
F ′

s(y0(s))h(s) ds|

≤ |
∫ t

t0
|F ′

s(y0(s))h(s)| ds|

≤ |
∫ t

t0
K‖h‖ ds|

≤ Kr‖h‖

Accordingly, ‖Qh‖ ≤ Kr‖h‖. Since Kr < 1, it follows that ‖Q‖ < 1, as claimed.
Surely T (Y ′

0
, y0) = 0, so the implicit function theorem for Banach spaces tells us that for

some open neighborhood V of Y ′

0
in Rn, there is a C1 mapping z : V → C(J ;U) such that

T (Y, z(Y )) = 0 for all Y ∈ V . Writing zY = z(Y ), we surely have zY (t0) = Y and dzY /dt =
F (t, zY ) on J ; so zY = yY . What we have gained by using the implicit function theorem is the
knowledge that the map z is C1. This implies, by the results of Exercise 0.3, that y(Y, t) is
continuous as a function of (Y, t) ∈ V × J , and that all (∂y/∂Yi)(Y, t) exist and are continuous
for (Y, t) ∈ V ×J . Finally (∂y/∂t)(Y, t) = F (t, y(Y, t)) is also continuous for (Y, t) ∈ V ×J . This
shows that y is C1 on V × J , as desired.
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