
MAT 544 – Test 1

1. (a) State (without proof) hypotheses under which it is justifiable to move a derivative past
a summation sign. (Work on a real interval I = (a, b); assume the summation is infinite.)
(b) Suppose U ⊆ R

n is open. Let ‖ ‖ denote the sup norm on U . For f ∈ C1(U), let

‖f‖C1 = ‖f‖ +
n∑

k=1

‖ ∂f

∂xk

‖

(Here f : U → R.) Let C1
b (U) = {f ∈ C1(U) : ‖f‖C1 < ∞}. It is easy to see that C1

b (U) is
a normed vector space with norm ‖ ‖C1. Show that this normed vector space is complete.
(Hint: use (a)).
Solution (a) For example, if the Fk are continuously differentiable on I, and if

∑
Fk and∑

F ′
k both converge uniformly on I, then (

∑
Fk)

′ =
∑

F ′
k. (Of course, one can weaken

these hypotheses, but this is all we need for (b).)
(b) Suppose

∑
m fm converges absolutely in C1(U); we need only show that this series

converges in C1
b (U). Since Cb(U) is complete, and since the series

∑
m fm converges abso-

lutely in Cb(U), it converges uniformly to a continuous function on U . Similarly, for any
k,

∑
m

∂fm

∂xk

converges uniformly to a continuous function on U . Restricting all the fm to a

line segment in a coordinate direction, and using (a), we see now that
∂
∑

m
fm

∂xk

=
∑

m
∂fm

∂xk

.

Thus
∑

m fm is in C1(U), with the series converging in C1
b (U), since as N → ∞,

‖
∞∑

m=N+1

fm‖ +
n∑

k=1

‖∂
∑∞

m=N+1 fm

∂xk

‖ → 0.

2. Let P denote the orthogonal projection onto a closed subspace E of a Hilbert space H.
Assume E 6= {0}.
(a) Show that ‖P‖ = 1.
(b) Let Q denote the orthogonal projection onto another closed subspace F of H, such that
E ∩ F = {0}. Suppose also that H is finite dimensional. Show that ‖PQ‖ < 1.

Solution (a) For any x ∈ H, since Px and (I − P )x are orthogonal, we have

‖Px‖2 + |(I − P )x‖2 = ‖x‖2.

Accordingly, for all x ∈ H, ‖Px‖ ≤ ‖x‖ (with equality if and only if Px = x); so ‖P‖ =
supx6=0 ‖Px‖/‖x‖ ≤ 1. On the other hand, if 0 6= x ∈ E, then Px = x, so ‖Px‖ = ‖x‖; so
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‖P‖ = 1.
(b) Let S = {x : ‖x‖ = 1}. Since H is a finite-dimensional normed vector space, and S is
closed and bounded, S is a compact set. Also the map taking x to ‖PQx‖ is continuous
from S to R, and hence achieves a maximum on S. Thus ‖PQ‖ = supx∈S ‖PQx‖ =
maxx∈S ‖PQx‖. So it suffices to show that if ‖x‖ = 1, then ‖PQx‖ < ‖x‖. But for any x,
‖PQx‖ ≤ ‖Qx‖ ≤ ‖x‖, with equality if and only if PQx = Qx = x. In particular ‖PQx‖ ≤
‖x‖ for all x ∈ S; we could only have ‖PQx‖ = ‖x‖, for some x ∈ S, if PQx = Qx = x.
Since Qx ∈ F and PQx ∈ E, this can happen only if x = Qx = PQx ∈ E ∩ F = {0}.
Thus, if ‖PQx‖ = ‖x‖, then x = 0 and ‖x‖ cannot be 1, as desired.

3. Suppose that Y0 ∈ R. Let

S = [t0 − h, t0 + h] × [Y0 − R, Y0 + R].

Suppose F1, F2 : S → R. (The domain of F1 and of F2 is precisely S.) Suppose that for
i = 1, 2, Fi is continuous, and that for some K > 0 we have

|Fi(t, Y1) − Fi(t, Y2)| ≤ K|Y1 − Y2|

for all (t1, Y1), (t1, Y2) ∈ S.

Show that for some P > 0, there is a unique continuous function y : (t0 − P, t0 + P ) → R

satisfying

y(t) = Y0 + [
∫ t

t0

F1(s, y(s))ds][
∫ t

t0

F2(u, y(u))du].

Proof Choose M > 0 so that |Fi(t, Y )| ≤ M for all (t, Y ) ∈ S, i = 1, 2. We may assume

K > 0. We claim that we may take P = min(
√

R
M

, 1

2MK
, h). Say 0 < r < P ; we first solve

the equation on (t0 − r, t0 + r). Let I = (t0 − r, t0 + r). Let

V0 = {continuous functions f : I → R : ‖f − Y0‖ ≤ R, and f(t0) = Y0}.
Since F1, F2 are only defined on S = [t0 − h, t0 + h] × [Y0 − R, Y0 + R], it follows that any
solution of the equation on I must lie in V0. So we shall look for our solution within V0;
we shall find it by using the Contraction Mapping Principle.

V0 is a complete metric space (with the uniform metric). For f ∈ V0 , define new functions
T1f, T2f, Tf on I by

(Tif)(t) =
∫ t

t0

F (s, f(s))ds

for i = 1, 2 (we may do this, since s ∈ I implies (s, f(s)) ∈ S by the definition of V0), and

(Tf)(t) = Y0 + [(T1f)(t)][(T2f)(t)].

2



We are looking for y ∈ V0 with

Ty = y.

Note that for any t ∈ I, if i = 1, 2, then

|(Tif)(t)| = | ∫ t
t0

Fi(s, f(s))ds| ≤ | ∫ t
t0
|Fi(s, f(s))|ds|

≤ | ∫ t
t0

Mds| = M |t − t0| < MP ≤
√

R;

so ‖Tif‖ ≤
√

R. Also, if y1, y2 ∈ V0, then for i = 1, 2, t ∈ I, we have

|(Tiy2)(t) − (Tiy1)(t)| = |
∫ t

t0

[Fi(s, y2(s)) − Fi(s, y1(s))]ds|

= ≤ |
∫ t

t0

|Fi(s, y2(s)) − Fi(s, y1(s))|ds|

= ≤ |
∫ t

t0

K|y2(s) − y1(s)|ds|

= ≤ ‖y2 − y1‖|
∫ t

t0

Kds|

= ‖y2 − y1‖K|t − t0|
≤ (rK)‖y2 − y1‖.

To show that there exists a unique y ∈ V0 satisfying Ty = y, we need only show that the
key hypothesis of the contraction mapping principle holds, namely, we must show:

T : V0 → V0 is a contraction.

Of course, if f ∈ V0, then (Tf)(t0) = Y0. Moreover, for any t ∈ I,

|(Tf)(t) − Y0| = | ≤ |(T1f)(t)||(T2f)(t)| ≤
√

R
√

R = R,

so, in fact, T : V0 → V0.

Moreover, if y1, y2 ∈ V0; then for t ∈ I,

|(Ty1)(t) − (Ty1)(t)| = |(T1y1)(t)(T2y1)(t) − (T1y2)(t)(T2y2)(t)|
= |(T1y1)(t)[(T2y1)(t) − (T2y2)(t)] + [(T1y1)(t) − ((T1y2)(t)](T2y2)(t)|
≤ ‖T1y1‖|(T2y1)(t) − (T2y2)(t)| + |(T1y1)(t) − (T1y2)(t)|‖T2y2‖
≤ (2MrK)‖y2 − y1‖.

Put τ = 2MrK; then τ < 1 (since r is strictly less than 1/2MK), and ‖Ty2 − Ty1‖ ≤
τ‖y2 − y1‖ for all y1, y2 ∈ V0. So T is a contraction, as desired.
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We have now seen that that there’s a unique solution on (t0 − r, t0 + r) for any r < P .
If 0 < r1 < r2 < P , and y1 is the solution on (t0 − r1, t0 + r1), and y2 is the solution
on (t0 − r2, t0 + r2), then y1 = y2 on (t0 − r1, t0 + r1). Clearly, then, we may find the
desired solution on (t0 − P, t0 + P ), simply by requiring that it be equal to the solution on
(t0 − r, t0 + r) for any 0 < r < P . This completes the proof.

4. Suppose that H is a real Hilbert space, that (A,B) ⊆ R, and that v : (A,B) → H is
differentiable. Assume also that v′ is continuous. Suppose [a, b] ⊆ (A,B). Show that, for
every ε > 0, there exists δ > 0 such that whenever |h| < δ and t, t + h ∈ [a, b], then

‖v(t + h) − v(t) − v′(t)h‖ ≤ ε|h|.

(Hint: first explain why v′ is uniformly continuous on [a, b].)
Solution The proof of Proposition 1.4.4 (c) in the book shows in fact that if V is a normed
vector space and f : [a, b] → V is continuous, then f is uniformly continuous on [a, b[. (In
fact this is true if V is merely known to be a Hausdorff space.) Select δ > 0 such that if
t, t + h ∈ [a, b], and |h| < δ, then ‖v′(t) − v′(t + h)‖ < ε.

For any u ∈ H, ‖u‖ = sup‖y‖=1 |(u, y)|. Thus it suffices to show that for any fixed y ∈ H
with ‖y‖ = 1, we have that

‖(v(t + h) − v(t) − v′(t)h, y)‖ ≤ ε|h|

whenever |h| < δ and t, t + h ∈ [a, b]. Define f : (A,B) → R by f(t) = (v(t), y), so that
f ′(t) = (v′(t), y). We then have that

‖(v(t + h) − v(t) − v′(t)h, y)‖ = |f(t + h) − f(t) − f ′(t)h|
= |f ′(t + k)h − f ′(t)h|
= |([v′(t + k) − v′(t)], y)| |h|
≤ ‖v′(t + k) − v′(t)‖ |h|
< ε|h|

as desired. (In the second line, we used the Mean Value Theorem; k is some number
between 0 and h. In the fourth line, we used Cauchy-Schwarz.)
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