MAT 544 - Test 1

1. (a) State (without proof) hypotheses under which it is justifiable to move a derivative past a summation sign. (Work on a real interval $I=(a, b)$; assume the summation is infinite.) (b) Suppose $U \subseteq \mathbf{R}^{n}$ is open. Let $\left\|\|\right.$ denote the sup norm on U. For $f \in C^{1}(U)$, let

$$
\|f\|_{C^{1}}=\|f\|+\sum_{k=1}^{n}\left\|\frac{\partial f}{\partial x_{k}}\right\|
$$

(Here $f: U \rightarrow \mathbf{R}$.) Let $C_{b}^{1}(U)=\left\{f \in C^{1}(U):\|f\|_{C^{1}}<\infty\right\}$. It is easy to see that $C_{b}^{1}(U)$ is a normed vector space with norm $\left\|\|_{C^{1}}\right.$. Show that this normed vector space is complete. (Hint: use (a)).
Solution (a) For example, if the F_{k} are continuously differentiable on I, and if $\sum F_{k}$ and $\sum F_{k}^{\prime}$ both converge uniformly on I, then $\left(\sum F_{k}\right)^{\prime}=\sum F_{k}^{\prime}$. (Of course, one can weaken these hypotheses, but this is all we need for (b).)
(b) Suppose $\sum_{m} f_{m}$ converges absolutely in $C^{1}(U)$; we need only show that this series converges in $C_{b}^{1}(U)$. Since $C_{b}(U)$ is complete, and since the series $\sum_{m} f_{m}$ converges absolutely in $C_{b}(U)$, it converges uniformly to a continuous function on U. Similarly, for any $k, \sum_{m} \frac{\partial f_{m}}{\partial x_{k}}$ converges uniformly to a continuous function on U. Restricting all the f_{m} to a line segment in a coordinate direction, and using (a), we see now that $\frac{\partial \sum_{m} f_{m}}{\partial x_{k}}=\sum_{m} \frac{\partial f_{m}}{\partial x_{k}}$. Thus $\sum_{m} f_{m}$ is in $C^{1}(U)$, with the series converging in $C_{b}^{1}(U)$, since as $N \rightarrow \infty$,

$$
\left\|\sum_{m=N+1}^{\infty} f_{m}\right\|+\sum_{k=1}^{n}\left\|\frac{\partial \sum_{m=N+1}^{\infty} f_{m}}{\partial x_{k}}\right\| \rightarrow 0
$$

2. Let P denote the orthogonal projection onto a closed subspace E of a Hilbert space \mathcal{H}. Assume $E \neq\{0\}$.
(a) Show that $\|P\|=1$.
(b) Let Q denote the orthogonal projection onto another closed subspace F of \mathcal{H}, such that $E \cap F=\{0\}$. Suppose also that \mathcal{H} is finite dimensional. Show that $\|P Q\|<1$.

Solution (a) For any $x \in \mathcal{H}$, since $P x$ and $(I-P) x$ are orthogonal, we have

$$
\|P x\|^{2}+\mid(I-P) x\left\|^{2}=\right\| x \|^{2} .
$$

Accordingly, for all $x \in \mathcal{H},\|P x\| \leq\|x\|$ (with equality if and only if $P x=x$); so $\|P\|=$ $\sup _{x \neq 0}\|P x\| /\|x\| \leq 1$. On the other hand, if $0 \neq x \in E$, then $P x=x$, so $\|P x\|=\|x\|$; so
$\|P\|=1$.
(b) Let $S=\{x:\|x\|=1\}$. Since \mathcal{H} is a finite-dimensional normed vector space, and S is closed and bounded, S is a compact set. Also the map taking x to $\|P Q x\|$ is continuous from S to \mathbf{R}, and hence achieves a maximum on S. Thus $\|P Q\|=\sup _{x \in S}\|P Q x\|=$ $\max _{x \in S}\|P Q x\|$. So it suffices to show that if $\|x\|=1$, then $\|P Q x\|<\|x\|$. But for any x, $\|P Q x\| \leq\|Q x\| \leq\|x\|$, with equality if and only if $P Q x=Q x=x$. In particular $\|P Q x\| \leq$ $\|x\|$ for all $x \in S$; we could only have $\|P Q x\|=\|x\|$, for some $x \in S$, if $P Q x=Q x=x$. Since $Q x \in F$ and $P Q x \in E$, this can happen only if $x=Q x=P Q x \in E \cap F=\{0\}$. Thus, if $\|P Q x\|=\|x\|$, then $x=0$ and $\|x\|$ cannot be 1 , as desired.
3. Suppose that $Y_{0} \in \mathbf{R}$. Let

$$
S=\left[t_{0}-h, t_{0}+h\right] \times\left[Y_{0}-R, Y_{0}+R\right] .
$$

Suppose $F_{1}, F_{2}: S \rightarrow \mathbf{R}$. (The domain of F_{1} and of F_{2} is precisely S.) Suppose that for $i=1,2, F_{i}$ is continuous, and that for some $K>0$ we have

$$
\left|F_{i}\left(t, Y_{1}\right)-F_{i}\left(t, Y_{2}\right)\right| \leq K\left|Y_{1}-Y_{2}\right|
$$

for all $\left(t_{1}, Y_{1}\right),\left(t_{1}, Y_{2}\right) \in S$.

Show that for some $P>0$, there is a unique continuous function $y:\left(t_{0}-P, t_{0}+P\right) \rightarrow \mathbf{R}$ satisfying

$$
y(t)=Y_{0}+\left[\int_{t_{0}}^{t} F_{1}(s, y(s)) d s\right]\left[\int_{t_{0}}^{t} F_{2}(u, y(u)) d u\right] .
$$

Proof Choose $M>0$ so that $\left|F_{i}(t, Y)\right| \leq M$ for all $(t, Y) \in S, i=1,2$. We may assume $K>0$. We claim that we may take $P=\min \left(\frac{\sqrt{R}}{M}, \frac{1}{2 M K}, h\right)$. Say $0<r<P$; we first solve the equation on $\left(t_{0}-r, t_{0}+r\right)$. Let $I=\left(t_{0}-r, t_{0}+r\right)$. Let
$V_{0}=\left\{\right.$ continuous functions $f: I \rightarrow \mathbf{R}:\left\|f-Y_{0}\right\| \leq R$, and $\left.f\left(t_{0}\right)=Y_{0}\right\}$.
Since F_{1}, F_{2} are only defined on $S=\left[t_{0}-h, t_{0}+h\right] \times\left[Y_{0}-R, Y_{0}+R\right]$, it follows that any solution of the equation on I must lie in V_{0}. So we shall look for our solution within V_{0}; we shall find it by using the Contraction Mapping Principle.
V_{0} is a complete metric space (with the uniform metric). For $f \in V_{0}$, define new functions $T_{1} f, T_{2} f, T f$ on I by

$$
\left(T_{i} f\right)(t)=\int_{t_{0}}^{t} F(s, f(s)) d s
$$

for $i=1,2$ (we may do this, since $s \in I$ implies $(s, f(s)) \in S$ by the definition of V_{0}), and

$$
(T f)(t)=Y_{0}+\left[\left(T_{1} f\right)(t)\right]\left[\left(T_{2} f\right)(t)\right]
$$

We are looking for $y \in V_{0}$ with

$$
T y=y
$$

Note that for any $t \in I$, if $i=1,2$, then

$$
\begin{aligned}
& \left|\left(T_{i} f\right)(t)\right|=\left|\int_{t_{0}}^{t} F_{i}(s, f(s)) d s\right| \leq\left|\int_{t_{0}}^{t}\right| F_{i}(s, f(s))|d s| \\
& \leq\left|\int_{t_{0}}^{t} M d s\right|=M\left|t-t_{0}\right|<M P \leq \sqrt{R}
\end{aligned}
$$

so $\left\|T_{i} f\right\| \leq \sqrt{R}$. Also, if $y_{1}, y_{2} \in V_{0}$, then for $i=1,2, t \in I$, we have

$$
\begin{aligned}
\left|\left(T_{i} y_{2}\right)(t)-\left(T_{i} y_{1}\right)(t)\right| & =\left|\int_{t_{0}}^{t}\left[F_{i}\left(s, y_{2}(s)\right)-F_{i}\left(s, y_{1}(s)\right)\right] d s\right| \\
& =\leq\left|\int_{t_{0}}^{t}\right| F_{i}\left(s, y_{2}(s)\right)-F_{i}\left(s, y_{1}(s)\right)|d s| \\
& =\leq\left|\int_{t_{0}}^{t} K\right| y_{2}(s)-y_{1}(s)|d s| \\
& =\leq\left\|y_{2}-y_{1}\right\|\left|\int_{t_{0}}^{t} K d s\right| \\
& =\left\|y_{2}-y_{1}\right\| K\left|t-t_{0}\right| \\
& \leq(r K)\left\|y_{2}-y_{1}\right\| .
\end{aligned}
$$

To show that there exists a unique $y \in V_{0}$ satisfying $T y=y$, we need only show that the key hypothesis of the contraction mapping principle holds, namely, we must show:
$T: V_{0} \rightarrow V_{0}$ is a contraction.
Of course, if $f \in V_{0}$, then $(T f)\left(t_{0}\right)=Y_{0}$. Moreover, for any $t \in I$,

$$
\left|(T f)(t)-Y_{0}\right|=\left|\leq\left|\left(T_{1} f\right)(t)\right|\right|\left(T_{2} f\right)(t) \mid \leq \sqrt{R} \sqrt{R}=R,
$$

so, in fact, $T: V_{0} \rightarrow V_{0}$.
Moreover, if $y_{1}, y_{2} \in V_{0}$; then for $t \in I$,

$$
\begin{aligned}
\left|\left(T y_{1}\right)(t)-\left(T y_{1}\right)(t)\right| & =\left|\left(T_{1} y_{1}\right)(t)\left(T_{2} y_{1}\right)(t)-\left(T_{1} y_{2}\right)(t)\left(T_{2} y_{2}\right)(t)\right| \\
& =\mid\left(T_{1} y_{1}\right)(t)\left[\left(T_{2} y_{1}\right)(t)-\left(T_{2} y_{2}\right)(t)\right]+\left[\left(T_{1} y_{1}\right)(t)-\left(\left(T_{1} y_{2}\right)(t)\right]\left(T_{2} y_{2}\right)(t) \mid\right. \\
& \leq\left\|T_{1} y_{1}\right\|\left|\left(T_{2} y_{1}\right)(t)-\left(T_{2} y_{2}\right)(t)\right|+\left|\left(T_{1} y_{1}\right)(t)-\left(T_{1} y_{2}\right)(t)\right|\left\|T_{2} y_{2}\right\| \\
& \leq(2 M r K)\left\|y_{2}-y_{1}\right\| .
\end{aligned}
$$

Put $\tau=2 M r K$; then $\tau<1$ (since r is strictly less than $1 / 2 M K$), and $\left\|T y_{2}-T y_{1}\right\| \leq$ $\tau\left\|y_{2}-y_{1}\right\|$ for all $y_{1}, y_{2} \in V_{0}$. So T is a contraction, as desired.

We have now seen that that there's a unique solution on $\left(t_{0}-r, t_{0}+r\right)$ for any $r<P$. If $0<r_{1}<r_{2}<P$, and y_{1} is the solution on $\left(t_{0}-r_{1}, t_{0}+r_{1}\right)$, and y_{2} is the solution on $\left(t_{0}-r_{2}, t_{0}+r_{2}\right)$, then $y_{1}=y_{2}$ on $\left(t_{0}-r_{1}, t_{0}+r_{1}\right)$. Clearly, then, we may find the desired solution on $\left(t_{0}-P, t_{0}+P\right)$, simply by requiring that it be equal to the solution on $\left(t_{0}-r, t_{0}+r\right)$ for any $0<r<P$. This completes the proof.
4. Suppose that \mathcal{H} is a real Hilbert space, that $(A, B) \subseteq \mathbf{R}$, and that $v:(A, B) \rightarrow \mathcal{H}$ is differentiable. Assume also that v^{\prime} is continuous. Suppose $[a, b] \subseteq(A, B)$. Show that, for every $\epsilon>0$, there exists $\delta>0$ such that whenever $|h|<\delta$ and $t, t+h \in[a, b]$, then

$$
\left\|v(t+h)-v(t)-v^{\prime}(t) h\right\| \leq \epsilon|h| .
$$

(Hint: first explain why v^{\prime} is uniformly continuous on $[a, b]$.)
Solution The proof of Proposition 1.4.4 (c) in the book shows in fact that if V is a normed vector space and $f:[a, b] \rightarrow V$ is continuous, then f is uniformly continuous on $[a, b[$. (In fact this is true if V is merely known to be a Hausdorff space.) Select $\delta>0$ such that if $t, t+h \in[a, b]$, and $|h|<\delta$, then $\left\|v^{\prime}(t)-v^{\prime}(t+h)\right\|<\epsilon$.
For any $u \in \mathcal{H},\|u\|=\sup _{\|y\|=1}|(u, y)|$. Thus it suffices to show that for any fixed $y \in \mathcal{H}$ with $\|y\|=1$, we have that

$$
\left\|\left(v(t+h)-v(t)-v^{\prime}(t) h, y\right)\right\| \leq \epsilon|h|
$$

whenever $|h|<\delta$ and $t, t+h \in[a, b]$. Define $f:(A, B) \rightarrow \mathbf{R}$ by $f(t)=(v(t), y)$, so that $f^{\prime}(t)=\left(v^{\prime}(t), y\right)$. We then have that

$$
\begin{aligned}
\left\|\left(v(t+h)-v(t)-v^{\prime}(t) h, y\right)\right\| & =\left|f(t+h)-f(t)-f^{\prime}(t) h\right| \\
& =\left|f^{\prime}(t+k) h-f^{\prime}(t) h\right| \\
& =\left|\left(\left[v^{\prime}(t+k)-v^{\prime}(t)\right], y\right)\right||h| \\
& \leq\left\|v^{\prime}(t+k)-v^{\prime}(t)\right\||h| \\
& <\epsilon|h|
\end{aligned}
$$

as desired. (In the second line, we used the Mean Value Theorem; k is some number between 0 and h. In the fourth line, we used Cauchy-Schwarz.)

