MAT 544 - Test 1

(a) State (without proof) hypotheses under which it is justifiable to move a derivative past a summation sign. (Work on a real interval I = (a, b); assume the summation is infinite.)
(b) Suppose U ⊆ Rⁿ is open. Let || || denote the sup norm on U. For f ∈ C¹(U), let

$$||f||_{C^1} = ||f|| + \sum_{k=1}^n ||\frac{\partial f}{\partial x_k}|$$

(Here $f: U \to \mathbf{R}$.) Let $C_b^1(U) = \{f \in C^1(U) : ||f||_{C^1} < \infty\}$. It is easy to see that $C_b^1(U)$ is a normed vector space with norm $|| ||_{C^1}$. Show that this normed vector space is complete. (Hint: use (a)).

Solution (a) For example, if the F_k are continuously differentiable on I, and if $\sum F_k$ and $\sum F'_k$ both converge uniformly on I, then $(\sum F_k)' = \sum F'_k$. (Of course, one can weaken these hypotheses, but this is all we need for (b).)

(b) Suppose $\sum_m f_m$ converges absolutely in $C^1(U)$; we need only show that this series converges in $C_b^1(U)$. Since $C_b(U)$ is complete, and since the series $\sum_m f_m$ converges absolutely in $C_b(U)$, it converges uniformly to a continuous function on U. Similarly, for any k, $\sum_m \frac{\partial f_m}{\partial x_k}$ converges uniformly to a continuous function on U. Restricting all the f_m to a line segment in a coordinate direction, and using (a), we see now that $\frac{\partial \sum_m f_m}{\partial x_k} = \sum_m \frac{\partial f_m}{\partial x_k}$. Thus $\sum_m f_m$ is in $C^1(U)$, with the series converging in $C_b^1(U)$, since as $N \to \infty$,

$$\left\|\sum_{m=N+1}^{\infty} f_m\right\| + \sum_{k=1}^{n} \left\|\frac{\partial \sum_{m=N+1}^{\infty} f_m}{\partial x_k}\right\| \to 0.$$

- 2. Let P denote the orthogonal projection onto a closed subspace E of a Hilbert space \mathcal{H} . Assume $E \neq \{0\}$.
 - (a) Show that ||P|| = 1.

(b) Let Q denote the orthogonal projection onto another closed subspace F of \mathcal{H} , such that $E \cap F = \{0\}$. Suppose also that \mathcal{H} is finite dimensional. Show that ||PQ|| < 1.

Solution (a) For any $x \in \mathcal{H}$, since Px and (I - P)x are orthogonal, we have

$$||Px||^{2} + |(I - P)x||^{2} = ||x||^{2}.$$

Accordingly, for all $x \in \mathcal{H}$, $||Px|| \leq ||x||$ (with equality if and only if Px = x); so $||P|| = \sup_{x \neq 0} ||Px|| / ||x|| \leq 1$. On the other hand, if $0 \neq x \in E$, then Px = x, so ||Px|| = ||x||; so

||P|| = 1.(b) Let $S = \{x : ||x|| = 1\}$. Since \mathcal{H} is a finite-dimensional normed vector space, and S is closed and bounded, S is a compact set. Also the map taking x to ||PQx|| is continuous from S to \mathbf{R} , and hence achieves a maximum on S. Thus $||PQ|| = \sup_{x \in S} ||PQx|| = \max_{x \in S} ||PQx||$. So it suffices to show that if ||x|| = 1, then ||PQx|| < ||x||. But for any x, $||PQx|| \le ||Qx|| \le ||x||$, with equality if and only if PQx = Qx = x. In particular $||PQx|| \le ||x||$ for all $x \in S$; we could only have ||PQx|| = ||x||, for some $x \in S$, if PQx = Qx = x. Since $Qx \in F$ and $PQx \in E$, this can happen only if $x = Qx = PQx \in E \cap F = \{0\}$. Thus, if ||PQx|| = ||x||, then x = 0 and ||x|| cannot be 1, as desired.

3. Suppose that $Y_0 \in \mathbf{R}$. Let

$$S = [t_0 - h, t_0 + h] \times [Y_0 - R, Y_0 + R].$$

Suppose $F_1, F_2 : S \to \mathbf{R}$. (The domain of F_1 and of F_2 is precisely S.) Suppose that for $i = 1, 2, F_i$ is continuous, and that for some K > 0 we have

$$|F_i(t, Y_1) - F_i(t, Y_2)| \le K|Y_1 - Y_2|$$

for all $(t_1, Y_1), (t_1, Y_2) \in S$.

Show that for some P > 0, there is a unique continuous function $y : (t_0 - P, t_0 + P) \rightarrow \mathbf{R}$ satisfying

$$y(t) = Y_0 + \left[\int_{t_0}^t F_1(s, y(s))ds\right]\left[\int_{t_0}^t F_2(u, y(u))du\right].$$

Proof Choose M > 0 so that $|F_i(t, Y)| \leq M$ for all $(t, Y) \in S$, i = 1, 2. We may assume K > 0. We claim that we may take $P = \min(\frac{\sqrt{R}}{M}, \frac{1}{2MK}, h)$. Say 0 < r < P; we first solve the equation on $(t_0 - r, t_0 + r)$. Let $I = (t_0 - r, t_0 + r)$. Let

 $V_0 = \{$ continuous functions $f : I \to \mathbf{R} : ||f - Y_0|| \le R$, and $f(t_0) = Y_0 \}.$

Since F_1, F_2 are only defined on $S = [t_0 - h, t_0 + h] \times [Y_0 - R, Y_0 + R]$, it follows that any solution of the equation on I must lie in V_0 . So we shall look for our solution within V_0 ; we shall find it by using the Contraction Mapping Principle.

 V_0 is a complete metric space (with the uniform metric). For $f\in V_0$, define new functions T_1f,T_2f,Tf on I by

$$(T_i f)(t) = \int_{t_0}^t F(s, f(s)) ds$$

for i = 1, 2 (we may do this, since $s \in I$ implies $(s, f(s)) \in S$ by the definition of V_0), and

$$(Tf)(t) = Y_0 + [(T_1f)(t)][(T_2f)(t)].$$

We are looking for $y \in V_0$ with

$$Ty = y$$
.

Note that for any $t \in I$, if i = 1, 2, then

$$\begin{aligned} |(T_i f)(t)| &= |\int_{t_0}^t F_i(s, f(s)) ds| \le |\int_{t_0}^t |F_i(s, f(s))| ds| \\ &\le |\int_{t_0}^t M ds| = M |t - t_0| < MP \le \sqrt{R}; \end{aligned}$$

so $||T_if|| \leq \sqrt{R}$. Also, if $y_1, y_2 \in V_0$, then for $i = 1, 2, t \in I$, we have

$$\begin{aligned} |(T_i y_2)(t) - (T_i y_1)(t)| &= |\int_{t_0}^t [F_i(s, y_2(s)) - F_i(s, y_1(s))]ds| \\ &= \leq |\int_{t_0}^t |F_i(s, y_2(s)) - F_i(s, y_1(s))|ds| \\ &= \leq |\int_{t_0}^t K|y_2(s) - y_1(s)|ds| \\ &= \leq ||y_2 - y_1|| |\int_{t_0}^t Kds| \\ &= ||y_2 - y_1||K|t - t_0| \\ &\leq (rK)||y_2 - y_1||. \end{aligned}$$

To show that there exists a unique $y \in V_0$ satisfying Ty = y, we need only show that the key hypothesis of the contraction mapping principle holds, namely, we must show:

 $T: V_0 \to V_0$ is a contraction.

Of course, if $f \in V_0$, then $(Tf)(t_0) = Y_0$. Moreover, for any $t \in I$,

$$|(Tf)(t) - Y_0| = | \le |(T_1f)(t)||(T_2f)(t)| \le \sqrt{R}\sqrt{R} = R,$$

so, in fact, $T: V_0 \to V_0$.

Moreover, if $y_1, y_2 \in V_0$; then for $t \in I$,

$$\begin{aligned} |(Ty_1)(t) - (Ty_1)(t)| &= |(T_1y_1)(t)(T_2y_1)(t) - (T_1y_2)(t)(T_2y_2)(t)| \\ &= |(T_1y_1)(t)[(T_2y_1)(t) - (T_2y_2)(t)] + [(T_1y_1)(t) - ((T_1y_2)(t)](T_2y_2)(t)| \\ &\leq ||T_1y_1||(T_2y_1)(t) - (T_2y_2)(t)| + |(T_1y_1)(t) - (T_1y_2)(t)|||T_2y_2|| \\ &\leq (2MrK)||y_2 - y_1||. \end{aligned}$$

Put $\tau = 2MrK$; then $\tau < 1$ (since r is strictly less than 1/2MK), and $||Ty_2 - Ty_1|| \le \tau ||y_2 - y_1||$ for all $y_1, y_2 \in V_0$. So T is a contraction, as desired.

We have now seen that that there's a unique solution on $(t_0 - r, t_0 + r)$ for any r < P. If $0 < r_1 < r_2 < P$, and y_1 is the solution on $(t_0 - r_1, t_0 + r_1)$, and y_2 is the solution on $(t_0 - r_2, t_0 + r_2)$, then $y_1 = y_2$ on $(t_0 - r_1, t_0 + r_1)$. Clearly, then, we may find the desired solution on $(t_0 - P, t_0 + P)$, simply by requiring that it be equal to the solution on $(t_0 - r, t_0 + r)$ for any 0 < r < P. This completes the proof.

4. Suppose that \mathcal{H} is a real Hilbert space, that $(A, B) \subseteq \mathbf{R}$, and that $v : (A, B) \to \mathcal{H}$ is differentiable. Assume also that v' is continuous. Suppose $[a, b] \subseteq (A, B)$. Show that, for every $\epsilon > 0$, there exists $\delta > 0$ such that whenever $|h| < \delta$ and $t, t + h \in [a, b]$, then

$$\|v(t+h) - v(t) - v'(t)h\| \le \epsilon |h|.$$

(Hint: first explain why v' is uniformly continuous on [a, b].)

Solution The proof of Proposition 1.4.4 (c) in the book shows in fact that if V is a normed vector space and $f : [a, b] \to V$ is continuous, then f is uniformly continuous on [a, b]. (In fact this is true if V is merely known to be a Hausdorff space.) Select $\delta > 0$ such that if $t, t + h \in [a, b]$, and $|h| < \delta$, then $||v'(t) - v'(t + h)|| < \epsilon$.

For any $u \in \mathcal{H}$, $||u|| = \sup_{\|y\|=1} |(u, y)|$. Thus it suffices to show that for any fixed $y \in \mathcal{H}$ with $\|y\| = 1$, we have that

$$||(v(t+h) - v(t) - v'(t)h, y)|| \le \epsilon |h|$$

whenever $|h| < \delta$ and $t, t + h \in [a, b]$. Define $f : (A, B) \to \mathbf{R}$ by f(t) = (v(t), y), so that f'(t) = (v'(t), y). We then have that

$$\begin{aligned} \|(v(t+h) - v(t) - v'(t)h, y)\| &= |f(t+h) - f(t) - f'(t)h| \\ &= |f'(t+k)h - f'(t)h| \\ &= |([v'(t+k) - v'(t)], y)| |h| \\ &\leq \|v'(t+k) - v'(t)\| |h| \\ &< \epsilon |h| \end{aligned}$$

as desired. (In the second line, we used the Mean Value Theorem; k is some number between 0 and h. In the fourth line, we used Cauchy-Schwarz.)