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Basic results on irregular varieties via
Fourier–Mukai methods

GIUSEPPE PARESCHI

Recently Fourier–Mukai methods have proved to be a valuable tool in the study
of the geometry of irregular varieties. The purpose of this paper is to illustrate
these ideas by revisiting some basic results. In particular, we show a simpler
proof of the Chen–Hacon birational characterization of abelian varieties. We
also provide a treatment, along the same lines, of previous work of Ein and
Lazarsfeld. We complete the exposition by revisiting further results on theta
divisors. Two preliminary sections of background material are included.

In recent years the systematic use of the classical Fourier–Mukai transform
between dual abelian varieties, and of related integral transforms, has proved
to be a valuable tool for investigating the geometry of irregular varieties. An
especially interesting point is the interplay between vanishing notions naturally
arising in the Fourier–Mukai context, as weak index theorems, and the generic
vanishing theorems of Green and Lazarsfeld. This naturally leads to the notion
of generic vanishing sheaves (GV-sheaves for short). The purpose of this paper
is to exemplify these ideas by revisiting some basic results.

To be precise, we focus on the theorem of Chen and Hacon [2001a] character-
izing (birationally) abelian varieties by means of the conditions q(X)= dim X
and h0(K X )= h0(2K X )= 1; this is stated as Lemma 4.2 below. We show that
the Fourier–Mukai/Generic Vanishing package, in combination with Kollár’s
theorems on higher direct images of canonical bundles, produces a surprisingly
quick and transparent proof of this result. Along the way, we provide a unified
Fourier–Mukai treatment of most of the results of [Ein and Lazarsfeld 1997],
where both the original and the present proof of the Chen–Hacon theorem
find their roots.1 We complete the exposition with a refinement of Hacon’s
cohomological characterization of desingularizations of theta divisors, as it fits
well in the same framework.

Although many of the results treated here have led to further developments
(see, for example, [Chen and Hacon 2002; Hacon and Pardini 2002; Jiang 2011;
Debarre and Hacon 2007]), we have not attempted to recover the latter with

1However, our treatment of the results of Ein and Lazarsfeld differs from the original arguments
only in some aspects.
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the present approach. However, we hope that the point of view illustrated in
this paper will be useful in the further study of irregular varieties with low
invariants. In particular, the main lemma used to prove the Chen–Hacon theorem
(see Lemma 4.2 and Scholium 4.3) is new, as far as I know, and can be useful
in other situations. Moreover the present version of Hacon’s characterization of
desingularized theta divisors (Theorem 5.1) improves slightly the ones appearing
in the literature.

The paper is organized as follows: there are two preliminary sections where
the background material is recalled and informally discussed at some length.
The first one is about the Fourier–Mukai transform, related integral transforms,
and GV-sheaves. The second one is on generic vanishing theorems, including
Hacon’s generic vanishing theorem for higher direct images of canonical sheaves,
which is already one of the most relevant applications of the Fourier–Mukai
methods in the present context. The last three sections are devoted respectively
to the work of Ein and Lazarsfeld, to the Chen–Hacon characterization of abelian
varieties, and to Hacon’s characterization of desingularizations of theta divisors.

My view of the material treated in this paper has been largely influenced by
my collaboration with Mihnea Popa. I also thank M. A. Barja, J. A. Chen, C.
Hacon, M. Lahoz, J. C. Naranjo, and S. Tirabassi.

1. Fourier–Mukai transform, cohomological support loci, and GV-sheaves

Unless otherwise stated, in this paper we will deal with smooth complex projective
varieties (but, as it will be pointed out in the sequel, some results work more
generally for complex Kähler manifolds and some others for smooth projective
varieties on any algebraically closed field). By sheaf we will mean always
coherent sheaf.

Given a smooth complex projective variety X , its irregularity is

q(X) := h0(�1
X )= h1(OX )=

1
2 b1(X),

and X is said to be irregular if q(X) > 0. Its Albanese variety

Alb X := H 0(�1
X )
∗/H1(X,Z)

is a q(X)-dimensional complex torus which, since X is assumed to be projective,
is an abelian variety. The Albanese morphism alb : X → Alb X is defined by
making sense of x → (ω 7→

∫ x
x0
ω), where x0 is a fixed point of X . Note that

alb is defined up to translation in Alb X . The Albanese morphism is a universal
morphism of X to abelian varieties (or, more generally, complex tori). The
Albanese dimension of X is the dimension of the image of its Albanese map.
It is easily seen that the Albanese dimension of X is positive as soon as X is
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irregular (we refer to [Ueno 1975, §9] for a thorough treatment of the Albanese
morphism). X is said of maximal Albanese dimension if dim alb(X)= dim X .

The dual abelian variety of the Albanese variety is

Pic0 X = H 1(OX )/H 1(X,Z).

The exponential sequence shows that Pic0 X parametrizes those line bundles on X
whose first Chern class vanishes [Griffiths and Harris 1978, p. 313]. Hence Pic0 X
is a (smooth and compact) space of deformations of the structure sheaf of X . So
all sheaves F on X have a common family of deformations: {F⊗α}α∈Pic0 X . Since
Riemann it has been natural to consider, rather than the cohomology H∗(X,F)

of F, the full family {H∗(X,F⊗ α)}α∈Pic0 X . For example, a good part of the
geometry of curves is captured by the Brill–Noether varieties W r

d (C) = {α ∈
Pic0C | h0(L⊗α)≥ r+1}, where L is a line bundle on C of degree d [Arbarello
et al. 1985]. In fact, it is often convenient to do a related thing. Since Pic0 X is a
fine moduli space; i.e., X×Pic0 X carries a universal line bundle P , the Poincaré
line bundle, one can consider the integral transform

Rq∗(p∗( · )⊗ P) : D(X)→ D(Pic0 X),

where p and q are respectively the projections on X and Pic0 X . Given a sheaf F,
the cohomology sheaves of Rq∗(p∗(F)⊗P) are isomorphic to Ri q∗(p∗(F)⊗P).
They are naturally related to the family of cohomology groups H i (X,F ⊗

α)α∈Pic0 X via base change (see 1.3 below).
The pullback map alb∗ : Pic0(Alb X)→ Pic0 X is an isomorphism [Griffiths

and Harris 1978, p. 332], and, via this identification, the Poincaré line bundle on
X ×Pic0 X is the pullback of the Poincaré line bundle on Alb X ×Pic0(Alb X).
Therefore the above transform should be thought as a tool for studying the part
of the geometry of X coming from its Albanese morphism.

Integral transform associated to the Poincaré line bundle, cohomological sup-
port loci, GV−k-sheaves. In practice it is convenient to consider an integral
transform as above for an arbitrary morphism from X to an abelian variety.

Definition 1.1 (Integral transforms associated to Poincaré line bundles). Let X be
a projective variety of dimension d , equipped with a morphism to a q-dimensional
abelian variety

a : X→ A.

Let P (script) be a Poincaré line bundle on A×Pic0 A. We will denote

Pa = (a× idPic0 A)
∗(P)
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and p, q the two projections of X ×Pic0 A. Given a sheaf F on X , we define

8Pa (F)= q∗(p∗(F)⊗ Pa).

We consider the derived functor of the functor 8Pa :

R8Pa : D(X)→ D(Pic0 A). (1)

Sometimes we will have to consider the analogous derived functor R8P−1
a
:

D(X)→D(Pic0 A) as well. Since P−1 ∼= (1A× (−1)Pic0 A)
∗P, there is not much

difference between the two:

R8P−1
a
= (−1Pic0 A)

∗R8Pa (2)

Finally, when the map a is the Albanese map of X , denoted by alb : X→Alb X ,
the map alb∗ identifies Pic0(AlbX) with Pic0 X and the line bundle Palb is identi-
fied with the Poincaré line bundle on X ×Pic0 X . We will simply set Palb := P .
When X is an abelian variety then its Albanese morphism is (up to translation) the
identity. In this case the transform R8P is called the Fourier–Mukai transform
(see below).

In the sequel, we will adopt the following notation: given a line bundle
α ∈ Pic0 A, we will denote [α] the point of Pic0 A parametrizing α (via the
Poincaré line bundle P). In other words α = P|A×[α].

Definition 1.2 (Cohomological support loci). Given a coherent sheaf F on X ,
its i-th cohomological support locus with respect to a is

V i
a (X,F)= {[α] ∈ Pic0 A | hi (X,F⊗ a∗α) > 0}

In the special case when a is the Albanese map of X , we omit the reference to
the map, writing

V i (X,F)= {[α] ∈ Pic0 X | hi (X,F⊗α) > 0}.

As is customary for cohomology groups, when possible we will omit the variety
X in the notation, writing simply V i

a (F) or V i (F) instead of V i
a (X,F) and

V i (X,F).

Finally, we will adopt the notation

R1(F)= RHom(F, ωX ).

1.3 (Hyper)cohomology and base change. Given a sheaf, or more generally, a
complex of sheaves G on X , the sheaf Ri8Pa (G) is said to have the base change
property at a given point [α] of Pic0 X if the natural map Ri8Pa (G)⊗C([α])→

H i (X,G ⊗ a∗α) is an isomorphism, where C([α]) denotes the residue field
at the point [α] ∈ Pic0 X . We will frequently use the following well-known
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base-change result (applied to our setting): given a sheaf (or, more generally, a
bounded complex) G on X , if hi+1(X,G⊗ a∗α) is constant in a neighborhood
of [α],2 then both Ri+18Pa (G) and Ri8Pa (G) have the base-change property in
a neighborhood of [α]. When G is a sheaf this is well known; see [Mumford
1970, Corollary 2, p. 52], for instance. For the general case of complexes see
[EGA 1963, §7.7, pp. 65–72]. It follows that, if F is a sheaf, then Ri8Pa (F) and
Ri8Pa (R1F) vanish for i > dim X , and both Rd8Pa (F) and Rd8Pa (R1F)

have the base change property at all [α] ∈ Pic0 A.

The following basic result, whose proof will be outlined in the next page,
compares two types of vanishing notions. The first one is generic vanishing of
cohomology groups i.e., roughly speaking, that certain cohomological support
loci V i (F) are proper closed subsets of Pic0 A. The second one is the vanishing
of cohomology sheaves of the transform of the derived dual of F:

Theorem 1.4 [Pareschi and Popa 2011a, Theorem A; Pareschi and Popa 2009,
Theorem 2.2]. For F a sheaf on X and k a nonnegative integer, equivalence
holds between3

(a) codimPic0 A V i
a (F)≥ i − k for all i ≥ 0

and

(b) Ri8Pa (R1F)= 0 for all i 6∈ [d − k, d].

Definition 1.5 (GV−k-sheaves). When one of the two equivalent conditions of
Theorem 1.4 holds, the sheaf F is said to be a GV−k-sheaf with respect to the
morphism a. When possible, we will omit the reference to the morphism a.

GV-sheaves. We focus on the special case k = 0 in Theorem 1.4. For sake of
brevity, a GV0-sheaf will be simply referred to as a GV-sheaf (with respect to the
morphism a). Note that in this case it follows from condition (a) of Theorem 1.4
that, for generic α ∈ Pic0 A, the cohomology groups H i (F⊗ a∗α) vanish for all
i > 0. The second equivalent condition of Theorem 1.4 says that, for a GV-sheaf
F, the full transform R8Pa (R1(F)) is a sheaf concentrated in degree d= dim X :

R8Pa (R1F)= Rd8Pa (R1F)[−d]

(in the terminology of Fourier–Mukai theory, “R1F satisfies the weak index
theorem with index d”). In this situation one usually writes

Rd8Pa (R1F)= R̂1F.

2By semicontinuity, this holds if hi+1(X,G⊗ a∗α)= 0.
3If V 1

a (F) is empty we declare that its codimension is∞.
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The following proposition provides two basic properties of the sheaf R̂1F.

Proposition 1.6. Let F be a GV-sheaf on X , with respect to a.

(a) The rank of R̂1F equals χ(F).

(b) Ext i
OPic0 A

(R̂1F,OPic0 A)
∼= (−1Pic0 A)

∗Ri8Pa (F).

Proof. (a) By Serre duality and base change, the rank of R̂1F at a general point
is the generic value of h0(F⊗ a∗α), which coincides with χ(F⊗ a∗α) (the
higher cohomology vanishes for generic α ∈ Pic0 X ). Then (a) follows from the
deformation invariance of the Euler characteristic.
(b) In the context of Definition 1.1, Grothendieck duality says that

RHom(R8Pa (F),OPic0 A)
∼= R8P−1

a
(R1F)[d]; (3)

see [Pareschi and Popa 2011a, Lemma 2.2]. Therefore Theorem 1.4(b), combined
with (2), yields

RHom(R8Pa (F),OPic0 A)
∼= (−1Pic0 X )

∗ R̂1F

Since RHom( · ,OPic0 X ) is an involution on D(Pic0 X), we have also

R8Pa (F)
∼= (−1Pic0 X )

∗RHom(R̂1F,OPic0 X ) (4)

which proves (b). �

Outline of proof of Theorem 1.4. The implication (b)⇒ (a) of Theorem 1.4 in
the case k = 0 is proved as follows. Recall that, by the Auslander–Buchsbaum–
Serre formula, if G is a sheaf on Pic0 A, then the support of Ext i (G,OPic0 A)

has codimension ≥ i in Pic0 A (see [Okonek et al. 1980, Lemma II.1.1.2], for
instance). Applying this to the sheaf R̂1F, from Proposition 1.6(b) (which is a
consequence of hypothesis (b) of Theorem 1.4) we get that

codimPic0 A Supp Ri8Pa (F)≥ i for all i ≥ 0. (5)

To show that (5) is equivalent to Theorem 1.4(a), we argue by descending
induction on i . For i = d this is immediate since Rd8Pa (F) has the base-change
property. Now suppose that codim V ī

a (F) < ī for a given ī < d, and let [α] be
a general point of a component of V ī

a (F) achieving the dimension. Because
of (5) it must be that R ī8Pa (F) does not have the base-change property in
the neighborhood of [α]. Hence, by 1.3, such component has to be contained
in V ī+1

a (F). Therefore codim V ī+1
a (F) < ī , violating the inductive hypothesis.

Hence codim V i
a (F)≥ i for all i ≥ 0. This proves the implication (b)⇒ (a) for

k = 0. For arbitrary k one uses the same argument, replacing Proposition 1.6(b)
with the spectral sequence arising from (4).
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The implication (a)⇒ (b) can be proved, with more effort, using the same
ingredients (Grothendieck duality, Auslander–Buchsbaum–Serre formula and
base change; see [Pareschi and Popa 2009, Theorem 2.2]). �

A peculiar property of GV-sheaves is the following:

Lemma 1.7 [Hacon 2004, Corollary 3.2]. Let F be a GV-sheaf on X , with
respect to a. Then

V d
a (F)⊆ · · · ⊆ V 1

a (F)⊆ V 0
a (F).

Proof. Let i > 0 and assume that

[α] ∈ V i
a (F)=−V d−i

a (R1(F))

(the equality follows from Serre duality). Since Rd−i8Pa (R1(F))= 0, it follows
by base change that [α] ∈ −V d−i+1

a (R1F)= V i−1
a (F). �

The usefulness of the concept of GV-sheaf stems from the fact that some
features of the cohomology groups H i (F ⊗ a∗α) and of the cohomological
support loci V i

a (F) can be detected by local and sheaf-theoretic properties of
the transform R̂1F. The following simple example will be repeatedly used in
Sections 3 and 4.

Lemma 1.8 [Pareschi and Popa 2011a, Proposition 3.15]4. Let F be a GV-sheaf
on X with respect to a, let W be an irreducible component of V 0

a (F), and let
k = codimPic0 A W . Then W is also a component of V k

a (F). Therefore dim X ≥ k.
In particular, if [α] is an isolated point of V 0

a (F) then [α] is also an isolated
point of V q

a (F) (here q = dim A). Therefore dim X ≥ dim A.

Proof. Since R̂1F has the base-change property, it is supported at V d
a (R1F)=

−V 0
a (F). Hence −W is a component of the support of R̂1F. Let [α] be a

general point of W . Since

Ri8Pa (F)= (−1Pic0 A)
∗Ext i (R̂1F,OPic0 A),

from well-known properties of Ext’s it follows that, in a suitable neighborhood
in Pic0 A of [α], Ri8Pa (F) vanishes for i < k and is supported at W for i = k.
Therefore, by base change (see 1.3), W is contained in V k

a (F) (and in fact it is a
component since, again by Theorem 1.4, codim V k

a (F)≥ k). �

From the previous lemma it follows that, if F is a GV-sheaf, then either
V 0

a (F)= Pic0 A or there is a positive i such that codim V i
a (F)= i , i.e., such that

equality is achieved in condition (a) of Theorem 1.4. This can be rephrased as
follows:

4In that reference, this result appears with an unnecessary hypothesis.
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Corollary 1.9. (a) If F is a nonzero GV-sheaf , there exists i ≥ 0 such that
codim V i

a (F)= i .

(b) Let F be any sheaf on X. Then either V i
a (F)=∅ for all i ≥ 0 or there is an

i ≥ 0 such that codim V i
a (F)≤ i .

Proof. (a) follows immediately from the previous lemma.

(b) If not all of the cohomological support loci of F are empty then either
F is a GV-sheaf, in which case part (a) applies, or there is an i such that
codim V i

a (F) < i . �

Lemma 1.8 is a particular instance of a wider and more precise picture. In fact
the condition that the cohomological support loci V 0

a (F) is a proper subvariety
of Pic0 A is equivalent, by Serre duality and base change, to the fact that the
generic rank of R̂1F is zero; i.e., R̂1F is a torsion sheaf on Pic0 A. Under
this condition Lemma 1.8 says that there is an i > 0 achieving the bound of
Theorem 1.4(a), i.e., such that codim V i (F)= i . There is the following converse
(which will be in use in the proof of Hacon’s characterization of theta divisors
in Section 5). In what follows we will say that a sheaf has torsion if it is not
torsion-free.

Theorem 1.10 [Pareschi and Popa 2009, Corollary 3.2; 2011b, Proposition 2.8].
Let F be a GV-sheaf on X. The following are equivalent:

(a) There is an i > 0 such that codim V i
a (F)= i .

(b) R̂1F has torsion.

Proof. We start by recalling a general commutative algebra result. Let G be a
sheaf on a smooth variety Y . Then G is torsion-free if and only if

codimY Supp(Ext i
Y (G,OY )) > i for all i > 0 (6)

(see, for example, [Pareschi and Popa 2009, Proposition 6.4] or [Pareschi and
Popa 2011b, Lemma 2.9]). We apply this to the sheaf R̂1F on the smooth
variety Pic0 X . From (6) and Proposition 1.6(b) it follows that: R̂1F has torsion
if and only if there exists an i > 0 such that

codimPic0(X) Supp(Ri8Pa F)= i. (7)

By base change (see §1.3), condition (7) implies that there exists a i > 0 such
that codim V i

a (F)≤ i . Hence, since F is GV, codim V i
a (F)= i . Conversely, the

same argument as in the indication of proof of Theorem 1.4 proves that if (a)
holds, then in any case there is a j ≥ i such that codim Supp(R j8Pa F) = j .
Therefore, by (6), R̂1F has torsion. �
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Mukai’s equivalence of derived categories of abelian varieties. Nonvanishing.
Assume that X coincides with the abelian variety A (and the map a is the
identity). In this special case, according to Notation 1.1, the Poincaré line bundle
on A× Pic0 A is denoted by P. A well known theorem of Mukai asserts that
R8P is an equivalence of categories. More precisely, set q = dim A and denote
the “opposite” functor Rp∗(q∗( · )⊗P) by

R9P : D(Pic0 A)→ D(A).

Theorem 1.11 [Mukai 1981, Theorem 2.2]. Let A be an abelian variety (over
any algebraically closed field k). Then

R9P ◦R8P = (−1A)
∗
[−q], R8P ◦R9P = (−1Pic0 A)

∗
[−q].

Mukai’s theorem can be used to provide nonvanishing criteria for spaces of
global sections. Here are some immediate ones:

Lemma 1.12 (nonvanishing). Let F be a nonzero sheaf on an abelian variety X.

(a) If F is a GV-sheaf then V 0(F) is nonempty.

(b) If codim V i (F) > i for all i > 0, then V 0(F)= Pic0 X.

Proof. (a) By base change, R̂1F= Rd8P(R1F) is supported at−V 0(F). There-
fore if V 0(F)=∅ then Rd8P(R1F) is zero, i.e., by Theorem 1.4, R8P(R1F)

is zero. Then, by Mukai’s theorem, R1F is zero. Therefore F itself is zero,
since R1 is an involution on the derived category.

(b) If V 0(F) is a proper subvariety of Pic0 X then, by Lemma 1.8, there is at
least one i > 0 such that codim V i (F)= i . �

In the context of irregular varieties, Mukai’s theorem is frequently used via
the following proposition, whose proof is an exercise.

Proposition 1.13. In the notation of Definition 1.1,

R8Pa
∼= R8P ◦Ra∗.

Going back to Mukai’s Theorem 1.11, the key point of its proof is the verifi-
cation of the statement for the one-dimensional skyscraper sheaf at the identity
point, namely that

R8P(R9P(k(0̂)))= k(0̂)[−q].

Since R9P(k(0̂))= OA, this amounts to proving that R8P(OA)= k(0̂)[−q], or
equivalently

Ri8P(OA)= 0 for i < q and Rq8P(OA)= k(0̂). (8)

Since V i (OA) = {0̂} for all i such that 0 ≤ i ≤ q, the first part follows from
easily from Theorem 1.4. Concerning the second part of (8), it does not follow



388 GIUSEPPE PARESCHI

from base change, and has to be proved with a different argument. Over the
complex numbers this can be done easily using the explicit description of the
Poincaré line bundle on an abelian variety (see [Kempf 1991, Theorem 3.15] or
[Birkenhake and Lange 2004, Corollary 14.1.6]). In arbitrary characteristic it is
proved in [Mumford 1970, p. 128]. Another proof can be found in [Huybrechts
2006, p. 202].

Now let X be an irregular variety of dimension d. The next proposition is a
generalization of the second part of (8) to any smooth variety and is proved via
an argument similar to Mumford’s.

Proposition 1.14 [Barja et al. 2012, Proposition 6.1]. Let X be a smooth projec-
tive variety (over any algebraically closed field k), equipped with a morphism to
an abelian variety a : X→ A such that the pullback map a∗ : Pic0 A→ Pic0 X is
an embedding. Then

Rd8Pa (ωX )∼= k(0̂).

Notes 1.15. (1) All results in this section work in any characteristic. They work
for compact Kähler manifolds as well.

(2) The implication (b)⇒ (a) of Theorem 1.4 and also Lemma 1.7 were already
observed by Hacon [Hacon 2004, Theorem 1.2 and Corollary 3.2]. While the
converse implication of Theorem 1.4 makes the picture conceptually more clear —
and is also useful in various applications as Proposition 2.4 below — the careful
reader will note that in the proof of the Chen–Hacon theorem we are only using
the implication (b)⇒ (a).

(3) Theorem 1.10 is a particular case of a much more general statement: the
sheaf R̂1F is not a k-syzygy sheaf if and only if there is a i > 0 such that
codim V i (F)= i + k. An example of an application of these ideas is the higher
dimensional Castelnuovo–de Franchis inequality [Pareschi and Popa 2009].

(4) The result about k-the syzygy sheaves mentioned in the previous note, together
with Theorems 1.4 and 1.10, hold in a much more general setting. In the first
place they work not only for sheaves, but also for objects in the bounded derived
category of X . Secondly, they are not specific to the transforms (1) but they
work for all integral transforms 8P :D(X)→D(Y ) whose kernel P is a perfect
object of D(X × Y ), where X is a Cohen–Macaulay equidimensional perfect
scheme and Y is a locally noetherian scheme, both defined over a field k. A
thorough analysis of the implications at the derived category level of these results
is carried out in [Popa 2009].

(5) The hypothesis of Lemma 1.12(b), also called M-regularity, has many ap-
plications to global generation properties. In fact more than the conclusion
of Lemma 1.12(b) holds: besides V0(F) being the whole Pic0 X , F is also
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continuously globally generated. A survey on M-regularity and its applications
is [Pareschi and Popa 2008]. A more recent development where the concept of
M-regularity is relevant is the result of [Barja et al. 2012] on the bicanonical
map of irregular varieties.

2. Generic vanishing theorems for the canonical sheaf and its higher
direct images

Kollár’s theorems on higher direct images of canonical sheaves. The follow-
ing theorems will be of ubiquitous use in what follows.

Theorem 2.1 [Kollár 1986a, Theorem 2.1; 1986b, Theorem 3.1]. Let X and Y
be complex projective varieties of dimension d and d− k, with X smooth, and let
f : X→ Y a surjective map. Then:

(a) Ri f∗ωX is torsion-free for all i ≥ 0.

(b) Ri f∗ωX = 0 if i > k.

(c) Let L be an ample line bundle on Y . Then

H j (L ⊗ Ri f∗ωX )= 0 for all i ≥ 0 and j > 0;

(d) in the derived category of Y ,

R f∗ωX ∼=

k⊕
i=0

Ri f∗ωX [−i].

In the next section, Theorem 2.1 will be used in the following variant, which
is also a very particular case of more general formulations in [Kollár 1986b, §3].

Variant 2.2. In the hypothesis and notation of Theorem 2.1, ωX can be replaced
by ωX ⊗β, where [β] is a torsion point of Pic0 X.

Generic vanishing theorems: Green–Lazarsfeld and Hacon. According to the
previous terminology, a generic vanishing theorem is the statement that a certain
sheaf is a GV−k-sheaf. Within such terminology, the Green–Lazarsfeld generic
vanishing theorem [Green and Lazarsfeld 1987], arisen independently of the
theory of Fourier–Mukai transforms, can be stated as follows

Theorem 2.3 [Green and Lazarsfeld 1987, Theorem 1; Ein and Lazarsfeld 1997,
Remark 1.6]. Let a : X → A be a morphism from X to an abelian variety A,
and let k = dim X − dim a(X). Then ωX is a GV−k-sheaf (with respect to a). In
particular, if a is generically finite onto its image then ωX is a GV-sheaf.

In fact Theorem 2.3 is sharp, as shown by the next proposition.
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Proposition 2.4 [Barja et al. 2012, Proposition 2.7] (a similar result appears
in [Lazarsfeld and Popa 2010, Proposition 1.2 and Remark 1.4]). With the
hypothesis and notation of Theorem 2.3, ωX is a GV−k-sheaf and it is not a
GV−(k−1)-sheaf.

Proof. By the Green–Lazarsfeld generic vanishing theorem, ωX is a GV−k-sheaf.
The fact that ωX is not a GV−(k−1)-sheaf means that there is a j ≥ 0 (in fact a
j ≥ k) such that

codim V j (ωX )= j − k. (9)

By Theorem 2.1(b,d), H d(ωX ) = ⊕
k
i=0 H d−i (Ri a∗ωX ). Since H d(ωX ) 6= 0, it

follows that H d−k(Rka∗ωX ) 6= 0. Hence, by Corollary 1.9, there is a ī ≥ 0 such
that

codim V ī (Rka∗ωX )≤ ī . (10)

Again by Theorem 2.1(b),(d), and projection formula

H i (X, ωX ⊗ a∗α)=
min{i,k}⊕

h=0

H i−h(A, Rha∗ωX ⊗α) (11)

Therefore

V ī+k
a (X, ωX )⊇ V ī (A, Rka∗ωX ).

Hence (10) yields codim V ī+k
a (ωX ) ≤ ī = (ī + k)− k. In fact equality holds,

since ωX is a GV−k-sheaf. Therefore (9) is proved. �

In the argument of [Green and Lazarsfeld 1987] the GV−k condition is verified
by proving condition (a) of Theorem 1.4, i.e., the bound on the codimension of
the cohomological support loci V i

a (ωX ). This is achieved via an infinitesimal
argument, based on Hodge theory. In fact, the Green–Lazarsfeld theorem holds,
more generally, in the realm of compact Kähler varieties. Using the theory of
Fourier–Mukai transforms, Hacon extended Theorem 2.3 to higher direct images
of dualizing sheaves (in the case of smooth projective varieties). Hacon’s result
can be stated in several slightly different variants. A simple one, which is enough
for the application of the present paper, is this:

Theorem 2.5 [Hacon 2004, Corollary 4.2]. Let X be a smooth projective variety
and let a : X → A be a morphism to an abelian variety. Then Ri a∗ωX is a
GV-sheaf on A for all i ≥ 0.

In fact, the Green–Lazarsfeld theorem follows from Hacon’s via Kollár’s
theorems:
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Proof that Theorem 2.5 implies Theorem 2.3. It follows from (11) that

V i
a (X, ωX )=

min{i,k}⋃
h=0

V i−h(A, Rha∗ωX ). (12)

By Theorem 2.5, codim V i−h(Rha∗ωX )≥ i − h ≥ i − k. �

Hacon’s generic vanishing theorem will also be used in a variant form:

Variant 2.6 [Hacon and Pardini 2005, Theorem 2.2]. Theorem 2.5 (hence also
Theorem 2.3) still holds if ωX is replaced by ωX ⊗β, where [β] is a torsion point
of Pic0 X.

Let us describe briefly the proof of Theorem 2.5, which is completely different
from the arguments of Green and Lazarsfeld. Hacon’s approach consists in
reducing a generic vanishing theorem to a vanishing theorem of Kodaira–Nakano
type. Interestingly enough this is done by verifying directly condition (b) of
Theorem 1.4, rather than condition (a), the dimensional bound for the cohomo-
logical support loci. The argument is as follows. Let L be an ample line bundle
on Pic0 A and consider, for a positive n, the locally free sheaf on A obtained as
the “converse” Fourier–Mukai transform of Ln:

R9PLn
= R09PLn

(see the notation above concerning the Fourier–Mukai transform), where the
above equality follows from Kodaira vanishing. With an argument similar to
the proof of Grauert–Riemenschneider vanishing, Hacon shows that, given a
sheaf F on A, the condition (b) of Theorem 1.4 (namely Ri8P(R1F)= 0 for
0 6= dim X ) is equivalent to the fact that there exist an n0 such that, for all n ≥ n0,

H i (A, (R1F)⊗ R09PLn)= 0 for all i < q, whereq = dim A.

By Serre duality, this is equivalent to

H i (F⊗ (R09PLn)∗)= 0 for all i > 0. (13)

On the other hand, it is well known that, up to an isogeny, R09PLn is the direct
sum of copies of negative line bundles. More precisely, let φLn : Pic0 A→ A be
the polarization associated to Ln . Then (see [Mukai 1981, Proposition 3.11(1)],
for example)

φ∗Ln (R09PLn)∼= H 0(Pic0 A, Ln)⊗ L−n (14)

Therefore, putting together (13) and (14) it turns out that, to prove that F is a
GV-sheaf, it is enough to prove that, for n big enough,

H i (Pic0 A, φ∗Ln (F)⊗ Ln)= 0 for all i > 0. (15)
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Condition (15) is certainly satisfied by the sheaves F enjoying the following
property: for each isogeny π : B→ A, and for each ample line bundle N on B,
H i (B, π∗F⊗ N )= 0 for all i > 0. Such property is satisfied by a higher direct
image of a canonical sheaf since, via étale base extension, its pullback via an
étale cover is still a higher direct image of a canonical sheaf, so that Kollár’s
Theorem 2.1(c) applies.

Notes 2.7. In [Pareschi and Popa 2011a] it is shown that Hacon’s approach
works in greater generality, and does not need the ambient variety to be an
abelian variety. This yields other “generic vanishing theorems”. For example,
Green–Lazarsfeld’s result (Theorem 2.3) works also for line bundles of the form
ωX ⊗ L , with L nef (see loc. cit. Corollary 5.2 and Theorem 5.8 for a better
statement). In loc. cit. (Theorem A) is also shown that a part of Hacon’s approach
works in the setting of arbitrary integral transforms.

The subtorus theorems of Green, Lazarsfeld and Simpson. The geometry of
the loci V i

a (ωX ) is described by the Green–Lazarsfeld subtorus theorem, with an
important addition due to Simpson.

Theorem 2.8 [Green and Lazarsfeld 1991, Theorem 0.1; Ein and Lazarsfeld
1997, Proof of Theorem 3, p. 249; Simpson 1993]. Let X be a compact Kähler
manifold, and W a component of V i (ωX ) for some i . Then
(a) There exists a torsion point [β] and a subtorus B of Pic0 X such that W =
[β] + B.
(b) Let g := π ◦ alb : X→ Pic0 B, where π : Alb X→ Pic0 B is the dual map of
the embedding B ↪→ Pic0 X. Then dim g(X)≤ dim X − i .

Simpson’s result (conjectured by Beauville and Catanese) is that [β] is a torsion
point. In [Simpson 1993] there are also, among other things, other different
proofs of part (a) of the theorem. It is worth mentioning that, admitting part
(a), the dimensional bound (b) is a direct consequence of the generic vanishing
theorem:
Proof of (b). By Theorem 2.8(a) it follows that V i

g (ωX ⊗β)= Pic0(Pic0 B)= B.
Therefore, by definition, ωX ⊗β is a GV−h-sheaf with h ≥ i , with respect to g.
Hence, by Variant 2.6, dim X − dim g(X)≥ i . �

Notes 2.9. (a) One defines the loci V i
m(F)= {[α] ∈ Pic0 A | hi (X,F⊗α)≥ m}

and the Green–Lazarsfeld–Simpson result (Theorem 2.8) holds more generally
for these loci as well. As noted in [Hacon and Pardini 2005, Theorem 2.2(b)],
this implies that Theorem 2.8(a) holds replacing ωX with higher direct images
of Ri f∗ωX , where f is a morphism f : X→ Y , where Y is a smooth irregular
variety (for example, an abelian variety).
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(b) An explicit description and classification of all possible (positive-dimensional)
components of the loci V i (ωX ) is known only for i = dim X − 1, by [Beauville
1992, Corollary 2.3]. Note that in this case, by Theorem 2.3(b), the image g(X)
is a curve.

3. Some results of Ein and Lazarsfeld

The content of this section is composed of four basic results of L. Ein and R.
Lazarsfeld. We provide their proofs with the tools described here, both for sake
of self-containedness, and also because they are good examples of application
of the general principles of the previous section. The first two of them will be
basic steps in the proof of the Chen–Hacon theorem appearing in the next section
(they appear also in the original argument), while the last two will be used in the
characterization of desingularizations of theta divisors (Section 5).

A theorem of Kawamata [1981], conjectured in [Ueno 1975], asserts that the
Albanese map of a complex projective variety X of Kodaira dimension is zero
is surjective and has connected fibers. As a consequence, one has Kawamata’s
characterization of abelian varieties as varieties of Kodaira dimension zero such
that q(X) = dim X . Subsequently Kollár [1986a; 1993; 1995] addressed the
problem of giving effective versions of such results, replacing the hypothesis
on the Kodaira dimension with the knowledge of finitely many plurigenera. In
fact, he proved that the surjectivity conclusion of Kawamata’s theorem and
the characterization of abelian varieties held under the weaker assumption that
pm(X) := h0(ωm

X )= 1 for some m ≥ 3, and conjectured that m = 2 would suffice.
The surjectivity part of Kawamata’s theorem was settled by Ein and Lazarsfeld in
the result quoted below as Theorem 3.1(b), while the characterization of abelian
varieties is the content of the Chen–Hacon theorem (see the next section).5

Theorem 3.1 [Ein and Lazarsfeld 1997, Theorem 4]. Let X be a smooth projec-
tive variety such that p1(X)= p2(X)= 1.

(a) (Kollár) There is no positive-dimensional subvariety Z of Pic0 X such that
both Z and −Z are contained in V 0(ωX ).

(b) The Albanese map of X is surjective.

Proof. (a) (This is as in [Kollár 1993, Theorem 17.10]; the proof is included here
for self-containedness). Assume that there is a positive-dimensional subvariety
Z of Pic0 X as in the statement. The images of the multiplication maps of global
sections

H 0(ωX ⊗ γ )⊗ H 0(ωX ⊗ γ
−1)→ H 0(ω2

X )

5Concerning an effective version of the connectedness part of Kawamata’s theorem, recently
Zhi Jiang has proved that if p1(X)= p2(X)= 1 then the Albanese morphism has connected fibers
[Jiang 2011, Theorem 1.3]. The proof uses also the theorem of Chen and Hacon.
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are nonzero for all γ ∈ T . Therefore h0(ω2
X ) > 1, since otherwise the only

effective divisor in |ω2
X | would have infinitely many components.

(b) By hypothesis, the identity point 0̂ of Pic0 X belongs to V 0(ωX ). It must
be an isolated point, since otherwise, by Theorem 2.8, a positive-dimensional
component Z of V 0(ωX ) containing 0̂ would be a subtorus, thus contradict-
ing (a). Therefore 0̂ is also an isolated point of V 0(Alb X, alb∗ ωX ). Since
alb∗ ωX is a GV-sheaf on Alb X (Theorem 2.5), 0̂ is also a isolated point of
V q(X)(Alb X, alb∗ ωX ) (Lemma 1.8). In particular Hq(X)(Alb X, alb∗ ωX ) is
nonzero. Therefore alb, the Albanese map of X , is surjective. �

Next, we provide a different proof of the following characterization of abelian
varieties. The same type of argument will be applied in the characterization of
theta divisors of Section 5.

Theorem 3.2 (Ein and Lazarsfeld; see [Chen and Hacon 2001a, Theorem 1.8]).
Let X be a smooth projective variety of maximal Albanese dimension such that
dim V 0(ωX )= 0. Then X is birational to an abelian variety.

Proof. By Theorem 2.3, ωX is a GV-sheaf (with respect to the Albanese
morphism). By Lemma 1.8, the hypothesis yields that dim X = q(X) and
V 0(ωX ) = {0̂}. Using Proposition 1.14, C(0̂) = Rq8P(ωX ). Therefore, by
Proposition 1.6, Extq(ÔX ,OPic0 X )= C(0̂). Moreover, since ÔX is supported at a
finite set, Ext i (ÔX ,OPic0 X )= 0 for i < q. Summarizing: R1(ÔX )= C(0̂)[−q].
Since the functor R1 is an involution, ÔX = C(0̂). In conclusion

R8P(OX )= C(0̂)[−q].

By Proposition 1.13 this means that R8P(R alb∗ OX ) = C(0̂)[−q]. Then, by
Mukai’s inversion theorem (Theorem 1.11), R alb∗ OX = OAlb X . In particular
alb∗ OX = OAlb X . Since alb is assumed to be generically finite, this means that it
is birational onto Alb X . �

The next result concerns varieties for which the Albanese dimension is maxi-
mal and χ(ωX )= 0. Similarly to Theorem 3.1, here the proof is only partially
different from the original argument of [Ein and Lazarsfeld 1997].

Theorem 3.3 [Ein and Lazarsfeld 1997, Theorem 3]. Let X be a smooth pro-
jective variety of maximal Albanese dimension such that χ(ωX )= 0. Then the
image of the Albanese map of X is fibered by translates of abelian subvarieties
of Alb X.

Proof. Since ωX is GV, the condition χ(ωX ) = 0 is equivalent to the fact
that V 0(ωX ) is a proper subvariety of Pic0 X (Proposition 1.6(a)). Hence, by
Lemma 1.8, there is a positive k such that V k(ωX ) has a component W of
codimension k. At this point the proof is that of Ein and Lazarsfeld: the subtorus
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theorem (Theorem 1.10) says that W = [β]+T , where T is a subtorus of Pic0 X ,
and provides the diagram

X
alb //

g

$$

Alb X

π

��
B = Pic0 T

,

where dim g(X)≤ dim X − k, π is surjective, and the fibers of π are translates
of k-dimensional subtori of Alb X . Since alb is generically finite, it follows that
dim g(X)= dim X − k and that a generic fiber of g surjects onto a generic fiber
of π . �

Notes 3.4. (a) We recall that Theorem 3.3 settled a conjecture of Kollár, asserting
that a variety X of general type and maximal Albanese dimension should have
χ(ωX ) > 0. Ein and Lazarsfeld in [Ein and Lazarsfeld 1997] disproved the
conjecture, producing a threefold X of general type, maximal Albanese dimension
and χ(ωX )= 0. But, at the same time, with Theorem 3.3, they showed that if
χ(ωX ) = 0 then (a desingularization of) the Albanese image of X can’t be of
general type. However, the structure of varieties of general type and maximal
Albanese dimension X with χ(ωX )= 0 still remain mysterious. Results in this
direction are due to Chen and Hacon [2001b; 2004].

(b) Corollary 5.1 of [Pareschi and Popa 2009] extends Theorem 3.3 to varieties
with low χ(ωX ) as follows: let X be a variety of maximal Albanese dimension.
Then the image of the Albanese map of X is fibered by h-codimensional sub-
varieties of subtori of AlbX , with h ≤ χ(ωX ) (see loc. cit. for a more precise
statement). The proof uses k-syzygy sheaves and the Evans–Griffith syzygy
theorem.

(c) Theorems 3.2 and 3.3, as well as the extension mentioned in (b) above, work
also in the compact Kähler setting. Moreover, the present proof of Theorem 3.2
is algebraic, so that the results holds over any algebraically closed field.

We conclude with Ein–Lazarsfeld’s result on the singularities of theta divisors.
Here the difference with the original argument is that adjoint ideals are not
invoked.

Theorem 3.5 [Ein and Lazarsfeld 1997, Theorem 1]. Let 2 be an irreducible
theta divisor of a principally polarized abelian variety A. Then 2 is normal with
rational singularities.

Proof. Let a : X → 2 be a resolution of singularities of X . It is well known
that, under our hypotheses, the fact that 2 is normal with rational singularities is
equivalent to the fact that the trace map t : a∗ωX → ω2 is an isomorphism. We
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have that a∗ωX is a GV-sheaf on A (this follows by Hacon’s generic vanishing
or, more simply, by the Green–Lazarsfeld generic vanishing and the fact that,
by Grauert–Riemenschneider vanishing, V i (X, ωX )= V i (A, a∗ωX )). Moreover,
an immediate calculation with the adjunction formula shows that V i (ω2)= {0̂}
for all i > 0. We consider the exact sequence (the trace map t is injective)

0→ a∗ωX
t
→ ω2→ coker t→ 0. (16)

Tensoring with α ∈ Pic0 A and taking cohomology it follows that

codim V i (A, coker t) > i for all i > 0.

By Lemma1.12(b), it follows that if coker t 6= 0 then V 0(A, coker t)= Pic0 A, or
again, by Proposition 1.6(a), that χ(coker t) > 0. Then, since χ(ω2)= 1, from
(16) it follows that χ(a∗ωX )= 0, that is, χ(ωX )= 0. At this point one concludes
as in [Ein and Lazarsfeld 1997]. In fact, by Theorem 3.3, 2 would be fibered by
subtori of A, which is not the case since 2 is ample and irreducible. �

In [Ein and Lazarsfeld 1997] there are also results on the singularities of
pluri-theta divisors, extending previous seminal results of Kollár in [Kollár 1993].
These, together with Theorem 3.5, have been extended to other polarizations of
low degree, especially in the case of simple abelian varieties, by Debarre and
Hacon [2007].

4. The Chen–Hacon birational characterization of abelian varieties

The goal of this section is to supply a new proof of the Chen–Hacon characteri-
zation of abelian varieties. We refer to the previous section for a short history
and motivation.

Theorem 4.1 [Chen and Hacon 2001a]. Let X be smooth complex projective
variety. Then X is birational to an abelian variety if and only if q(X)= dim X ,
and h0(ωX )= h0(ω2

X )= 1.

Via the approach of Kollár and Ein–Lazarsfeld, the Chen–Hacon theorem will
be a consequence of the following:

Lemma 4.2. Let X be a projective variety of maximal Albanese dimension. If
dim V 0(ωX ) > 0 then there exists a positive-dimensional subvariety Z of Pic0 X
such that both Z and −Z are contained in V 0(ωX ).

Proof of Theorem 4.1. Let X be a smooth projective variety such that p1(X)=
p2(X)= 1 and q(X)= dim X . By Theorem 3.1(b) the Albanese map of X is sur-
jective, hence generically finite. By Lemma 4.2, combined with Theorem 3.1(a),
it follows that dim V 0(ωX )=0. Therefore, thanks to the characterization provided
by Theorem 3.2, X must be birational to an abelian variety. �
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Proof of Lemma 4.2. Let W be a positive-dimensional component of V 0(ωX ). If
W contains the identity point then it is a subtorus by Theorem 2.8(a), and the
conclusion of the Lemma is obviously satisfied. If W does not contain the identity
point then, again by Theorem 2.8(a), W = [β] + T where [β] is a torsion point
of Pic0 X and T is a subtorus of Pic0 X not containing [β]. To prove Lemma 4.2
it is enough to show then that there is a positive-dimensional subvariety Z of
[β−1
] + B which is contained in V 0(ωX ).

Let d = dim X , q = q(X), and k = codimPic0 X W . We have the diagram

X
alb //

g

$$

Alb X

π

��
B = Pic0 T

and, as in the proof of Theorem 3.3,

dim g(X)= d − k. (17)

Next, we claim that
Rk g∗(ωX ⊗β) 6= 0. (18)

Indeed, by Kollár splitting (Variant 2.2(d)) and the projection formula, we
have (replacing g(X) with B) that for all α ∈ T = Pic0 B,

H k(X, ωX ⊗β⊗ g∗α)=
k⊕

i=0

H k−i (B, Ri g∗(ωX ⊗β)⊗α) (19)

We know that H k(X, ωX ⊗ β ⊗ g∗α) > 0 for all α ∈ Pic0 B (in other words:
[β] + g∗ Pic0 B is contained in V k(X, ωX )). By (19), this means that

Pic0 B =
k⋃

i=0

V k−i (B, Ri g∗(ωX ⊗β)).

But, by Hacon’s generic vanishing theorem (as in Variant 2.6), all sheaves
Ri g∗(ωX ⊗ β) are GV-sheaves (on B). In particular their V k−i ( ) are proper
subvarieties of Pic0 B for k − i > 0. Therefore T = Pic0 B must be equal to
V 0(B, Rk g∗(ωX ⊗ β)). This implies (18). By Kollár’s torsion-freeness result
(Variant 2.2(a)), Rk g∗(ωX ⊗β) is torsion-free on g(X).

Let X
f
→ Y

a
→ g(X) be the Stein factorization of the morphism g. It follows

from (18) that Rk f∗(ωX ⊗β) 6= 0. Therefore, denoting F a general fiber of f ,
H k(ωF ⊗β) > 0. Since, by (17), the dimension of a general fiber F of f is k,
[β] must belong to the kernel of the restriction map Pic0 X→ Pic0 F . Hence so
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does [β−1
]. Therefore Rk f∗(ωX ⊗β

−1) is nonzero (in fact, again by Variant 2.2,
it is torsion-free on Y ). Hence

Rk g∗(ωX ⊗β
−1) 6= 0.

Finally, we claim that

dim V 0(B, Rk g∗(ωX ⊗β
−1)) > 0 (20)

(in fact it turns out that V 0(B, Rk g∗(ωX⊗β
−1)) has no isolated point). Granting

(20) for the time being, we conclude the proof. By (19) with β−1 instead
of β, the positive-dimensional subvariety V 0(B, Rk g∗(ωX ⊗ β

−1)) induces a
positive-dimensional subvariety, say Z , of [β−1

] + B, which is contained in
V k(X, ωX )

6. By base change (Lemma 1.7), Z is contained in V 0(X, ωX ). This
proves Lemma 4.2.

It remains to prove (20). Again by Hacon’s generic vanishing (Variant 2.6),
Rk g∗(ωX ⊗ β

−1) is a GV-sheaf on B. Therefore, by the nonvanishing re-
sult of Lemma 1.12, the variety V 0(B, Rk g∗(ωX ⊗ β

−1)) is nonempty. If
V 0(B, Rk g∗(ωX ⊗β

−1)) had an isolated point, say [ᾱ], then [ᾱ] would belong
also to V q−k(A, Rk g∗(ωX ⊗β

−1)) (Lemma 1.8, recalling that dim B = q − k).
It would follow that d − k = q − k, and so d = q. Hence

H d−k(A, Rk g∗(ωX ⊗β
−1)⊗ ᾱ) 6= 0.

Once again, by Kollár splitting as in (19), it would follow that

H d(X, ωX ⊗β
−1
⊗ g∗ᾱ) > 0,

implying that the line bundle β−1
⊗ g∗ᾱ is trivial. But this is impossible since

β−1 does not belong to B = g∗ Pic0 A. �

It is perhaps worth mentioning that slightly more has been proved:

Scholium 4.3. Let X be a variety of maximal Albanese dimension such that
dim V 0(ωX ) > 0. Given a positive-dimensional component [β] + B of V 0(ωX ),
where [β] is of order n > 1 and B is a subtorus of Pic0 X , then, for all k =
1, . . . , n− 1 coprime with n, there is a positive-dimensional subtorus Ck of B
such that [βk

] +Ck is contained in V 0(ωX ).

5. On Hacon’s characterization of theta divisors

Let 2 be an irreducible theta divisor in a principally polarized abelian variety
A, and let X→2 be a desingularization. Thanks to the fact that 2 has rational
singularities (Theorem 3.5), V i (X, ωX ) = V i (2,ω2). Hence the following
conditions hold:

6In fact Z is a translate of a subtorus; see Note 2.9(a).
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(a) V i (X, ωX )= {0̂} for all i > 0.
(b) h0(ωX ⊗α)= 1 for all [α] ∈ Pic0 X such that [α] 6= 0̂.

In particular, it follows that χ(ωX )= 1 and codim V i (ωX ) > i + 1 for all i such
that 0< i < dim X .

The following refinement of a theorem of Hacon’s shows that desingularizations
of theta divisors can be characterized — among varieties such that dim X <

q(X)— by conditions (a) and (b). The proof illustrates in a simple case a prin-
ciple — already mentioned before Lemma 1.8 — often appearing in arguments
based on generic vanishing theorems and Fourier–Mukai transform: the interplay
between the size of the cohomological support loci V i (F), where F is a GV-
sheaf, and the sheaf-theoretic properties of transform R̂1F. The statement and
the argument provided here are modeled on Proposition 3.1 of [Barja et al. 2012].

Theorem 5.1. Let X be a smooth projective variety such that:
(a) χ(ωX )= 1;
(b) codim V i (ωX ) > i + 1 for all i such that 0< i < dim X ;
(c) dim X < q(X).
Then X is birational to a theta divisor.

Proof. Let us denote, as usual, d = dim X and q = q(X). Conditions (b) and (c)
imply that ωX is a GV-sheaf. Therefore the Albanese map of X is generically
finite (Proposition 2.4). Not only: (b) and (c) imply that codim V i (ωX ) > i for
all i > 0. Therefore, by Theorem 1.10, the sheaf ÔX is torsion-free. Since its
generic rank is χ(ωX )= 1, it has to be an ideal sheaf twisted by a line bundle
on Pic0 X :

ÔX = IZ ⊗ L .

Next, we claim that, for each (non-embedded) component W of Z

codimPic0 X W = d + 1 (21)

To prove this we note that, for i > 1,

Ext i (ÔX ,OPic0 X )= Ext i (IZ ⊗ L ,OPic0 X )
∼= Ext i+1(L ⊗OZ ,OPic0 X ) (22)

Let W be one such component of Z , and let j + 1 be its codimension. We have
that the support of Ext j+1(L ⊗OZ ,OPic0 X ) contains W . Hence, combining (22),
Grothendieck duality (Proposition 1.6(b)), and the Auslander–Buchsbaum–Serre
formula, it follows that R j8P(ωX ) is supported in codimension j + 1. This
implies, by base-change, that codim V j (ωX )≤ j +1. Because of hypothesis (b),
it must be that j = dim X . This proves (21). Next, we claim that

RHom(ÔX ,OPic0 X )= RHom(IZ ⊗ L ,OPic0 X )= C(0̂)[−d] and d = q − 1
(23)
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Indeed, arguing as in the proof of (21), from (21) it follows that Ext i (ÔX ,OPic0 X )

is zero for i < codimPic0 X Z = d + 1. By Proposition 1.6(b) again, this means
that Ri8P(ωX ) is zero for i < d + 1 = codimPic0 X Z . Since we know from
Proposition 1.14 that Rd8P(ωX ) ∼= C(0̂), we get the first part of (23). Since
the dualization functor is an involution, it follows that Z itself is the reduced
point 0̂ and that d = q − 1, completing the proof of (23). At this point the proof
is exactly as in [Barja et al. 2012, Proposition 3.1]. We report it here for the
reader’s convenience. By Proposition 1.13,

R8P(OX )= R8P(R alb∗ OX )= I0̂⊗ L[−q + 1].

Therefore, by Mukai’s inversion theorem (Theorem 1.11),

R9P(I0̂⊗ L)= (−1)∗Pic0 X R alb∗ OX [−1]. (24)

In particular,

R09P(I0̂⊗ L)= 0 and R18P(I0̂⊗ L)∼= alb∗ OX . (25)

Applying 9P to the standard exact sequence

0→ I0̂⊗ L→ L→ O0̂⊗ L→ 0, (26)

and using (25) we get

0→ R09P(L)→ OAlb X → alb∗ OX , (27)

whence R09P(L) is supported everywhere (since alb∗ OX is supported on a
divisor). It is well known that this implies that L is ample. Therefore Ri9P(L)=
0 for i > 0. Hence, by sequence (26), Ri9P(I0̂⊗ L)= 0 for i > 1. By (24) and
(25), this implies that Ri alb∗(OX )= 0 for i > 0. Furthermore, (27) implies easily
that h0(Pic0 X, L)= 1; that is, L is a principal polarization on Pic0 X . Therefore,
via the identification Alb(X)∼=Pic0(X) provided by L , we have R09P(L)∼= L−1

(see [Mukai 1981, Proposition 3.11(1)]). Since the arrow on the right in (27) is
onto, it follows that alb∗ OX = O2, where 2 is the only effective divisor in the
linear series |L|. As we already know that alb is generically finite, this implies
that alb is a birational morphism onto 2. �

Notes 5.2. (1) The cohomological characterization of theta divisors is due to
Hacon [2000], who proved it under some extra hypotheses, subsequently refined
in [Hacon and Pardini 2002]. A further refinement was proved in [Barja et al.
2012, Proposition 3.1] and [Lazarsfeld and Popa 2010, Proposition 3.8(ii)]. The
present approach is the one in [Barja et al. 2012].

(2) Concerning the significance of the hypothesis of the above theorem, note that,
removing the hypothesis dim X < q there are varieties nonbirational to theta



BASIC RESULTS ON IRREGULAR VARIETIES VIA FOURIER–MUKAI METHODS 401

divisors satisfying (a) and (b) (e.g., sticking to varieties of maximal Albanese
dimension, the double cover of a p.p.a.v. ramified on a smooth divisor D ∈ |22|).
Moreover products of (desingularized) theta divisors are examples of varieties
satisfying conditions (a) and (c), but not (b).

(3) Theorem 5.1 and its proof hold assuming, more generally, that X is compact
Kähler. The argument works also for projective varieties over any algebraically
closed field, except for the fact that Proposition 2.4 is used to ensure the maximal
Albanese dimension. Therefore, up to adding the hypothesis that X is of maximal
Albanese dimension and replacing condition (b) with the condition dim X <

dim Alb X , Theorem 5.1 holds in any characteristic.

(4) With the same argument one can prove the following characterization of
abelian varieties, valid in any characteristic: Assume that X is a smooth projective
variety of maximal Albanese dimension such that

(a) χ(ωX )= 0 and

(b) codim V i (ωX ) > i for all i such that 0< i < dim X.

Then X is birational to an abelian variety.
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