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Abstract. We prove that the lowest nonzero piece in the Hodge filtration of
a mixed Hodge module is always weakly positive in the sense of Viehweg.

Foreword

“Once upon a time, there was a group of seven or eight beginning graduate students

who decided they should learn algebraic geometry. They were going to do it the traditional

way, by reading Hartshorne’s book and solving some of the exercises there; but one of them,

who was a bit more experienced than the others, said to his friends: ‘I heard that a famous

professor in algebraic geometry is coming here soon; why don’t we ask him for advice.’

Well, the famous professor turned out to be a very nice person, and offered to help them

with their reading course. In the end, four out of the seven became his graduate students

. . . and they are very grateful for the time that the famous professor spent with them!”

1. Introduction

1.1. Weak positivity. The purpose of this article is to give a short proof of
the Hodge-theoretic part of Viehweg’s weak positivity theorem.

Theorem 1.1 (Viehweg). Let f : X → Y be an algebraic fiber space, meaning
a surjective morphism with connected fibers between two smooth complex projective
algebraic varieties. Then for any ν ∈ N, the sheaf f∗ω

ν
X/Y is weakly positive.

The notion of weak positivity was introduced by Viehweg, as a kind of birational
version of being nef. We begin by recalling the – somewhat cumbersome – definition.
Let F be a torsion-free coherent sheaf on a smooth algebraic variety X. We shall
denote by Sn(F ) the n-th symmetric power of F , and by Ŝn(F ) its reflexive hull.
A more concrete definition is that

Ŝn(F ) = j∗S
n(j∗F ),

where j is the inclusion of the maximal open subset over which F is locally free.
The formula holds because the complement has codimension at least two in X.
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2 CHRISTIAN SCHNELL

Definition 1.2. A torsion-free coherent sheaf F is weakly positive on an open
subset U ⊆ X if, for every ample line bundle L on X, and for every m ∈ N, the
restriction morphism

H0
(
X, Ŝmn(F )⊗ L⊗n

)
→ Ŝmn(F )⊗ L⊗n

∣∣
U

is surjective for all sufficiently large n ∈ N.

If we think of Ŝmn(F ) ⊗ L⊗n as being the mn-th symmetric power of the
(non-existent) object F ⊗ L⊗1/m, then the definition means the following: after
tensoring F by an arbitrarily small fraction of an ample line bundle, all sufficiently
large symmetric powers are generated over U by their global sections.

Example 1.3. Weak positivity on X is equivalent to nefness. For line bundles,
being weakly positive is the same thing as being pseudo-effective.

The most notable application of the weak positivity theorem is Viehweg’s proof
of the Iitaka conjecture over a base of general type. Let f : X → Y be an algebraic
fiber space, with general fiber F ; Iitaka’s conjecture predicts that

κ(X) ≥ κ(Y ) + κ(F ).

Viehweg proved the conjecture when Y is of general type. Roughly speaking, he uses
the weak positivity of f∗ω

ν
X/Y , together with the fact that ωY is big, to produce

sufficiently many global sections of ωνX . They survey article [Vie83] contains a
nicely written account of these matters.

1.2. Related results. The idea of using methods from Hodge theory to prove
the positivity of certain sheaves goes back at least to Fujita and Kawamata. To
put Viehweg’s theorem in context, let me briefly mention a few other positivity
theorems for the direct image of ωX/Y and its powers:

(1) Kawamata [Kaw81] proved that if the fiber space f : X → Y is “nice”,
then f∗ωX/Y is locally free and nef. Nice means, roughly speaking, that
the singularities of f should occur over a normal crossing divisor, and that
the local monodromy should be unipotent. The proof uses Hodge theory.

(2) Viehweg deduced from Kawamata’s result that f∗ωX/Y is always weakly
positive; by studying certain well-chosen branched coverings of X, he
obtained the same result for f∗ω

ν
X/Y with ν ≥ 2.

(3) Kollár gave a simpler proof of Viehweg’s theorem using his vanishing the-
orem for higher direct images of dualizing sheaves.

(4) Earlier this year, Fujino, Fujisawa, and Saito [FFS13] proved a general
nefness theorem for mixed Hodge modules that has Kawamata’s theorem
as a special case.

There are many other results of this type; the list above contains only those
that are most closely related to the topic of this paper.

1.3. Main theorem. Let H be a polarizable variation of Hodge structure on
a the complement of a divisor D in a smooth projective algebraic variety X, and
let p ∈ Z be the largest integer for which the Hodge bundle F pH is nontrivial.
The general philosophy that emerges from Kawamata’s work [Kaw81] is that F pH
extends in a canonical way to a nef vector bundle on X, provided that D is a
normal crossing divisor and H has unipotent local monodromy. (Without these
assumptions, there are examples [FFS13, Remark 4.6(v)] where nefness fails.) The
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analogy with Viehweg’s theorem suggests that, without these assumptions, there
should still be a canonical extension of F pH that is weakly positive.

This expectation turns out to be correct, if one takes for the extension of F pH
the one given by Saito’s theory of mixed Hodge modules. Here is the result, proved
in collaboration with Mihnea Popa.

Theorem 1.4. Let M be a mixed Hodge module on a smooth complex projective
variety X. If the underlying filtered D-module satisfies Fk−1M = 0, then the
coherent sheaf FkM is weakly positive on the open subset where M is a variation
of mixed Hodge structure.

Viehweg’s theorem (in the case ν = 1) is an immediate consequence. Given a
morphism f : X → Y as in Theorem 1.1, we let M be the direct image of the trivial
Hodge module on X; to be precise, M = H0f∗QHX [dimX], in Saito’s notation.
Setting k = dimY − dimX, it can be shown that

Fk−1M = 0 and FkM' f∗ωX/Y ,
and Theorem 1.4 implies that this sheaf is weakly positive on the smooth locus of f .
The weak positivity of f∗ω

ν
X/Y for ν ≥ 2 follows as in Viehweg’s original argument

by considering certain branched coverings of X.

2. Mixed Hodge modules

Although it looks more general, Theorem 1.4 is not really a new result, because
it could be deduced from Kawamata’s theorem. The point of presenting it is that
mixed Hodge modules appear to be the natural setting: as we will see towards the
end of the talk, the proof of the theorem is extremely short. This may be only of
academic interest in this case, where we are basically reproving an existing result –
but in other situations, the use of mixed Hodge modules may allow us to go much
further than existing methods.1

Before explaining the proof of Theorem 1.4, I would like to say a few words
about mixed Hodge modules and their applications to algebraic geometry; I will
also try to motivate their use with a specific example. To simplify the discussion,
let me concentrate on the case of pure Hodge modules.

2.1. Variations of Hodge structure. Hodge modules are a generalization of
variations of Hodge structure. For applications to algebraic geometry, the essential
features of a variation of Hodge structure H are the following:

(1) A holomorphic vector bundle H with a flat connection ∇ : H → Ω1
X ⊗H;

(2) a Hodge filtration F •H by holomorphic subbundles, subject to the relation

∇(F pH) ⊆ Ω1
X ⊗ F p−1H,

called Griffith transversality (by everyone except Griffiths, who calls it the
infinitesimal period relation).

In practice, there are various pieces of additional data: a rational structure; a
polarization; a weight filtration (in the mixed case); etc. But the vector bundles H
and F •H and their properties are what matters most for algebraic geometers.

Variations of Hodge structure are “smooth” objects, arising for example from
families of smooth projective varieties. One can include objects with singularities

1At this point in the lecture, Wilfried Schmid interjected, “I think it’s fair to say that mixed
Hodge modules have really been greatly underused.”
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by generalizing vector bundles with flat connection to D-modules. In fact, (H,∇)
is a special case of a regular holonomic D-module. The connection gives rise to
an action by tangent vector fields (= linear differential operators of order one),
according to the formula

ξ · s = ∇ξ(s) for ξ ∈ Γ(U,TX) and s ∈ Γ(U,H).

This makes H into a left D-module: on the one hand, ∇ satisfies the Leibniz rule

∇ξ(fs) = (ξf)s+ f ∇ξ(s),

which amounts to the relation [ξ, f ] = ξf ; on the other hand, ∇ flat means that

∇ξ
(
∇η(s)

)
−∇η

(
∇ξ(s)

)
= ∇[ξ,η](s),

which amounts to the relation ξη − ηξ = [ξ, η]. This gives H the structure of a
left module over the sheaf of linear differential operators DX . The Hodge filtration
defines a filtration of H that is compatible with the order of differential operators.
Indeed, if we set FkH = F−kH to get an increasing filtration, then we have

TX · FkH ⊆ Fk+1H

because of Griffiths transversality. The resulting D-module is regular holonomic; its
so-called characteristic variety, a subset of the cotangent bundle T ∗X, is precisely
the zero section. This corresponds to the fact that, locally on X, solutions to the
equation ∇s = 0 can be analytically continued in every direction.

2.2. Hodge modules. Now letX be a smooth quasi-projective variety; Hodge
modules can be defined much more generally, including on singular varieties, but we
shall focus on this case because it simplifies the discussion. The essential features
of a Hodge module are then the following:

(1) A regular holonomic DX -module M;
(2) a compatible filtration F•M by coherent OX -submodules that is “good”,

meaning that TX · FkM⊆ Fk+1M, with equality for k � 0.

As in the case of variations of Hodge structure, there are several additional pieces
of data, such as a polarization; a rational structure (in the form of a perverse sheaf
with coefficients in Q); a weight filtration (in the mixed case); etc. There is also a
long list of axioms that need to be satisfied in order for the pair (M, F•M) to be
called a Hodge module.

A basic fact is that every variation of Hodge structure defines a Hodge module;
we saw already more or less how this works. In the other direction, every Hodge
module is generically a variation of Hodge structure.

Example 2.1. In the situation of Theorem 1.4, there is a Zariski-open subset
over which M is a variation of mixed Hodge structure. Under the indexing con-
ventions explained above, the condition Fk−1M = 0 translates into F−k+1H = 0,
and the coherent sheaf FkM in the theorem is an extension of the Hodge bundle
F−kH. Note that the theorem allows the possibility that SuppM 6= X: in that
case, H = 0 and the assertion about weak positivity becomes trivial.
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2.3. Hyperplane sections and residues. Instead of boring the reader with
a list of axioms, let me motivate the use of D-modules by an example. The example
is the residue description for the cohomology of hyperplane sections, something that
I though about a lot for my dissertation. This is a good place to acknowledge the
great influence that Herb has had on my mathematical interests: I basically learned
about mixed Hodge modules by trying to understand some of his constructions with
residues and differential operators.

Let X be a smooth projective variety of dimension n, and let Y ⊆ X be a
smooth and very ample divisor in X. According to the Lefschetz theorems, the
cohomology groups Hk(Y ) = Hk(Y,C) are determined by those of X, with the
exception of the so-called variable part

Hn−1
ev (Y ) = ker

(
Hn−1(Y )→ Hn+1(X)(1)

)
,

defined as the kernel of the Gysin morphism. The variable part can be described
very nicely by residues. We denote by ΩkX(∗Y ) the sheaf of meromorphic k-forms on
X that are holomorphic on X \Y , but may have poles along Y . By Grothendieck’s
theorem, the hypercohomology of the algebraic de Rham complex[

OX(∗Y ) Ω1
X(∗Y ) · · · ΩnX(∗Y )

]
→d →d →d

computes H∗(X \ Y ); this is a consequence of the fact that X \ Y is affine. From
the long exact cohomology sequence

· · · → Hn−2(Y )(−1)→ Hn(X)→ Hn(X \ Y )→ Hn−1(Y )(−1)→ Hn+1(X)→ · · ·
we obtain a short exact sequence

0 Hn
0 (X) Hn(X \ Y ) Hn−1

ev (Y )(−1) 0

H0
(
X,ΩnX(∗Y )

)
→ → → →

→ →

ResY

The arrow labeled ResY is the so-called residue mapping ; under our assumptions
on Y , it is surjective. Carlson and Griffiths [CG80] have shown that, if the line
bundle OX(Y ) is sufficiently ample, then the Hodge filtration on Hn−1

ev (Y ) is the
filtration by pole order. More precisely, their result is that

ResY : H0
(
X,ΩnX(kY )

)
→ Fn−kHn−1

ev (Y )

is surjective. For k = 1, this recovers the familiar fact that Hn−1,0
ev (Y ) is generated

by residues of logarithmic n-forms on X.
The result of Carlson and Griffiths also works in families. Let L be a very

ample line bundle on X, and let P = |L| denote the linear system of its sections.
Each point p ∈ P corresponds to a hypersurface Yp ⊆ X; we denote by P0 ⊆ P the
set of points where Yp is smooth, and by j : P0 ↪→ P the inclusion. Let

Y =
{

(p, x) ∈ P ×X
∣∣ x ∈ Yp } ⊆ P ×X

be the incidence variety. Just as above, we can use residues to express the variable
part in the variation of Hodge structure Rn−1p1∗QY ; more precisely, what we get is
a description of the underlying flat vector bundle (Hev ,∇) and the Hodge filtration
F •Hev on it.
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2.4. Extension to singular hyperplane sections. It is an interesting ques-
tion whether the description from above can also tell us something about singular
hypersurfaces. The answer is that we can use residues to construct a natural exten-
sion of the bundle H from P0 to all of P ; this idea is due to Herb Clemens. Suppose
for a moment that we have a relative n-form

ω ∈ Γ
(
U ×X,ΩnP×X/P (∗Y )

)
with poles along Y , defined over an open subset of the form U ×X. At each point
p ∈ U ∩ P0, the hypersurface Yp is smooth, and so we have a well-defined residue

ResYp

(
ω
∣∣
{p}×X

)
∈ Hn−1

ev (Yp).

In this way, we obtain a holomorphic section of the bundle Hev over the open set
U ⊆ P ; for simplicity, we shall denote it by the symbol Res(ω). We can then define
a subsheafM⊆ j∗H by the following rule: its sections over an open subset U ⊆ P
are given by

Γ(U,M) =
{
s ∈ Γ(U∩P0,H)

∣∣∣ s = Res(ω) for some ω ∈ Γ
(
U ×X,ΩnP×X/P (∗Y )

}
.

It has a natural filtration F•M by pole order, defined as follows:

Γ(U,FkM) =
{
s ∈ Γ(U,M)

∣∣∣ s = Res(ω) for some ω ∈ Γ
(
U ×X,ΩnP×X/P (kY )

}
.

The point is that we consider only those sections of j∗H that are the residue of a
meromorphic form with poles along Y ; note that the meromorphic form needs to
be defined on all of U , including over points of P \ P0. This makes sense because
the incidence variety Y is actually a smooth hypersurface in P ×X.

Provided that the line bundle L is sufficiently ample, the theorem of Carlson
and Griffiths from above shows that we have

FkM
∣∣
P0
' Fk−nHev = Fn−kHev and M

∣∣
P0
' Hev .

NowM is naturally a left DP -module: differential operators on P act by differ-
entiating the coefficients of ω. More precisely, given a vector field ξ ∈ Γ(U,TP ), let
ξ′ ∈ Γ(U ×X,TP×X) denote the obvious lifting to the product; then if s = Res(ω),
we can take the Lie derivative and define

ξ · s = Res
(
Lξ′ω

)
.

Concretely, this means that we contract dω with ξ′, and then take the residue of the
resulting relative n-form. It is easy to see that the filtration F•M is compatible with
the order of differential operators – after all, differentiating k times will increase
the order of the pole by k. One can also compute the characteristic variety Ch(M)
and prove in this way thatM is holonomic. The characteristic variety turns out to
be closely related to the set

Y ′ =
{

(p, x) ∈ Y
∣∣ Yp is singular at x

}
of singular points in the fibers of p1 : Y → P ; this is not surprising, because those
are exactly the points where one cannot take a residue in the classical sense. Both
Y and Y ′ are projective bundles over X, of dimension dimX + dimP − 1 and
dimP − 1, respectively; they naturally embed into the projectivization of T ∗P .
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Lemma 2.2. If Hev 6= 0, then the characteristic variety of M is given by

Ch(M) =
(
the zero section of T ∗P

)
∪
(
the cone over Y ′

)
.

In particular, both components of Ch(M) are of dimension dimP , which means
that M is holonomic.

One can show that (M, F•+nM) is part of a Hodge module on P that naturally
extends the variation of Hodge structure Hev . You can find the details in the paper
[Sch12b]; the key point in the proof is that the incidence variety Y is smooth.

2.5. Conclusion. The message to take away from this is that Hodge modules
are the correct generalization of variations of Hode structure. Indeed, here we have
one example where we get a natural extension of a variation of Hodge structure
(with the help of residues) . . . and it turns out that the extension is precisely
the same as the one given by Saito’s theory! I should add that I have found this
particular example to be very useful for learning about mixed Hodge modules.

3. Proof of the main theorem

The remainder of the paper is devoted to the proof of Theorem 1.4. The proof
closely follows Kollár’s, but we replace certain geometric arguments by abstract
results about mixed Hodge modules. As I have said before, I do not claim that
this proof is in any way simpler than the original one; only that it is shorter, and
therefore perhaps better suited for generalizations.

3.1. Saito’s vanishing theorem. The main ingredient is the following van-
ishing theorem for the first nonzero sheaf in the Hodge filtration of a mixed Hodge
module [Sai91, Theorem 1.2].

Theorem 3.1 (Saito). Let (M, F•) be the filtered D-module underlying a mixed
Hodge module on a smooth projective variety X. If Fk−1M = 0, then

Hi
(
X,ωX ⊗ L⊗ FkM

)
= 0

for every i > 0 and every ample line bundle L on X.

The vanishing theorem implies that ωX ⊗ L⊗(n+1) ⊗ FkM is 0-regular (in the
sense of Castelnuovo-Mumford), and therefore always globally generated (here and
below, n = dimX). To prove that FkM is weakly positive, we have to find a way
to raise the term FkM in the formula to a large power. In Kollár’s proof, this is
accomplished by considering the fiber product X ×Y · · · ×Y X → Y ; it requires
some analysis of the singularities. We shall replace this geometric argument by the
following abstract result about mixed Hodge modules.

3.2. A useful lemma. Next, we recall a useful lemma about restriction to
submanifolds; it appears in [Sch12a, Lemma 2.17]. The symbol i!M in the state-
ment refers to a certain pullback operation on mixed Hodge modules (in the derived
category); the precise definition does not matter for our purposes.

Lemma 3.2. Let M be a mixed Hodge module on a smooth complex algebraic
variety X, and let (M, F ) denote the underlying filtered DX-module. Let i : Z ↪→ X
be the inclusion of a smooth subvariety of codimension r, and let i!(M, F ) denote
the complex of filtered DZ-modules underlying the object i!M ∈ Db MHM(Z).
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(a) For every p ∈ Z, there is a canonical morphism

Fk−r i
!(M, F )→ Li∗(FkM)[−r]

in the derived category Db
coh(OZ).

(b) The morphism in (a) is an isomorphism over the locus where M is smooth.

Proof. The functor i! is the right adjoint of i∗, and since i is a closed embed-
ding, we have the adjunction morphism i∗i

!M → M in Db MHM(X). Passing to
filtered D-modules, we then get a morphism Fk

(
i∗i

!(M, F )
)
→ FkM. Now i is a

closed embedding of codimension r, and because of how the direct image functor is
defined in [Sai88, 2.3], we have a canonical morphism

i∗
(
ωZ ⊗ Fk−r i!(M, F )

)
→ ωX ⊗ Fk

(
i∗i

!(M, F )
)
.

Let ωZ/X = ωZ ⊗ i∗ω−1X . Composing the two morphisms, we obtain

i∗
(
ωZ/X ⊗ Fk−r i!(M, F )

)
→ FkM.

On the level of coherent sheaves, the functor Li! = ωZ/X [−r] ⊗ Li∗ is the right
adjoint of i∗; by adjunction, we therefore get the desired morphism

Fk−r i
!(M, F )→ ω−1Z/X ⊗ Li!(FkM) = Li∗(FkM)[−r]

in the derived category Db
coh(OZ).

Now let us prove (b). After restricting to the open subset where M is smooth,
we may assume that M is the mixed Hodge module associated with a variation of
mixed Hodge structure; in particular, all the sheaves FkM, as well asM itself, are
locally free. In this situation, the complex i!M is concentrated in degree r, and
Hri!M is simply the restriction of M(r) to Z. It follows that

Fk−r i
!(M, F ) = i∗(FkM)[−r].

On the other hand, Li∗(FkM) = i∗(FkM) because FkM is locally free. It is then
easy to see from the construction that the morphism in (a) is an isomorphism. �

3.3. The proof. Now consider a mixed Hodge module M as in Theorem 1.4.
Let (M, F•M) denote the underlying filtered D-module; without loss of generality,
we may assume that SuppM = X. We apply Lemma 3.2 to the diagonal embedding

∆: X ↪→ X × · · · ×X;

if there are m factors, its codimension is r = (m− 1)n. On Xm, we have a mixed
Hodge module

M�m = M � · · ·�M.

The Hodge filtration on the underlying D-module M�m is defined by convolving
the filtrations on the individual factors; in particular,

Fmk−1M�m = 0 and FmkM�m = (FkM)�m.

Lemma 3.2 thus gives us a canonical morphism

Fmk−r∆
!
(
M�m, F

)
→ L∆∗

(
FmkM�m

)
[−r]

in the derived category. If we take cohomology in degree r, we obtain

Fmk−rN → (FkM)⊗m,

where N is the D-module underlying a certain mixed Hodge module on X. The
important thing is that this morphism is an isomorphism over the open set U ⊆ X
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where M is a variation of mixed Hodge structure. In fact, the proof of Lemma 3.2
shows that, over U , both sides are just isomorphic to the m-th tensor power of the
Hodge bundle F−kH.

Now we can easily show that FkM is weakly positive on U . Fix a very ample
line bundle L on X. Theorem 3.1 implies that the sheaf

ωX ⊗ L⊗(n+1) ⊗ Fmk−rN
is 0-regular and therefore globally generated. Because the morphism

ωX ⊗ L⊗(n+1) ⊗ Fmk−rN → ωX ⊗ L⊗(n+1) ⊗ (FkM)⊗m

is an isomorphism over U , it follows that the sheaf

ωX ⊗ L⊗(n+1) ⊗ (FkM)⊗m

is generated over U by its global sections. Since m was arbitrary, this implies that
FkM is weakly positive on U .
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making the conference a success. I am grateful to Mihnea Popa for many discussions
about Hodge modules and weak positivity, and to Mark Green for pointing out the
correct reference for the result by Carlson and Griffiths.

References

[CG80] J. A. Carlson and P. A. Griffiths, Infinitesimal variations of Hodge structure and the
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