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Abstract Let X be a smooth complex projective variety of dimension d . We show that its
primitive cohomology in degree d is generated by certain “tube classes,” constructed from
the monodromy in the family of all hyperplane sections of X . The proof makes use of a result
about the group cohomology of certain representations that may be of independent interest.
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1 Introduction

Let X be a complex projective manifold. When X is embedded into projective space, there is
a close relationship between the cohomology of X and that of any smooth hyperplane section
S = X ∩ H ; this is the content of the Lefschetz Hyperplane Theorem. In fact, the only piece
of the cohomology of X that cannot be inferred from that of S is the primitive cohomology
in degree d = dim X ,

Hd
0 (X, Q) = ker

(
Hd(X, Q) → Hd(S, Q)

)
,

which consists of those dth cohomology classes on X that restrict to zero on any smooth
hyperplane section.

By definition, it is not possible to obtain the primitive cohomology of X from a single
smooth hyperplace section; on the other hand, a consequence of Nori’s famous Connectivity
Theorem [7, Corollary 4.4 on p. 364] is the isomorphism

Hd
0 (X, Q) � H1

(
Psm, Rd−1

van π sm∗ Q

)
, (1)
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which describes the primitive cohomology using the family π sm : S sm → Psm of all smooth
hyperplane sections of X . For this to be true, the degree of the embedding of X into projective
space has to be sufficiently large.

In this paper, we explain another very concrete way to obtain the primitive cohomology
of X from the monodromy in the family of its smooth hyperplane sections. As above, let
Psm be the Zariski-open subset of the space of hyperplanes (in the ambient projective space),
consisting of hyperplanes H such that X ∩ H is smooth. Since any two smooth hyperplane
sections are diffeomorphic to each other, it is possible to transport homology classes among
nearby ones; this gives rise to an action of the fundamental group G = π1(Psm, H0) on the
homology groups of any smooth hyperplane section S0 = X ∩ H0 (see [9, Chapitre 15]).

The flat transport of homology classes can also be used to produce elements of Hd(X, Q).
Namely, suppose a homology class α ∈ Hd−1(S0, Q) is invariant under the action of an
element g ∈ G. When α is transported along a closed path representing g, it moves through
a one-dimensional family of hyperplane sections, and in the process, traces out a d-chain
on X . This d-chain is a d-cycle, because g · α = α. Taking the ambiguities in the con-
struction into account, we get a well-defined element of the quotient Hd(X, Q)/Hd(S0, Q);
we shall call it the tube class determined by g and α. Under Poincaré duality, the quotient
Hd(X, Q)/Hd(S0, Q) is isomorphic to the primitive cohomology of X , and we obtain the
tube mapping

⊕
g∈G

{
α ∈ Hd−1

van (S0, Q)
∣∣ g · α = α

} → Hd
0 (X, Q). (2)

Here Hd−1
van (S0, Q) is the vanishing cohomology of the hypersurface S0 (see Sect. 3 for basic

definitions). We shall prove that the tube mapping is surjective, provided that the left-hand
side is nontrivial.

Theorem 1 Let X be a smooth complex projective variety of dimension d, with a given
embedding into projective space. As above, let Psm be the set of hyperplanes H such that the
scheme-theoretic intersection X ∩ H is smooth. Let S0 = X ∩ H0 be the hypersurface cor-
responding to some base point H0 ∈ Psm, and write G = π1 (Psm, H0) for the fundamental
group of Psm. If Hd−1

van (S0, Q) �= 0, then the tube mapping in (2) is surjective.

This gives a positive answer to a question by H. Clemens. Although there are examples of
smooth projective varieties for which Hd−1

van (X ∩ H0, Q) = 0 (e.g., any smooth even-dimen-
sional quadric), the condition is almost always satisfied: when the dimension of X is odd,
it holds for essentially any embedding of X into projective space; when the dimension is
even, it holds as long as the degree of the embedding is sufficiently high (Dimca and Saito
[4, Theorem 6] have recently proved that an embedding by the third power of a very ample
line bundle is sufficient).

2 Proof of the main theorem

We now give the proof of Theorem 1, referring to later sections for details.

2.1 Dual formulation

Generally speaking, it is easier to prove that a map is injective than to prove that it is surjective.
With this in mind, we consider the mapping dual to (2), i.e.,
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HomQ

(
Hd

0 (X, Q), Q

)
→

∏
g∈G

HomQ (ker(g − id), Q) ,

where each g acts on the space VQ = Hd−1
van (S0, Q). We now put this map into a more under-

standable form by using the intersection pairings on X and S0. To begin with, the vanishing
cohomology is self-dual under the intersection pairing on S0; since the pairing is moreover
G-invariant, we then have

HomQ (ker(g − id), Q) � coker(g − id) � VQ/(g − id)VQ

for every g ∈ G. Similarly, we get

HomQ

(
Hd

0 (X, Q), Q

)
� Hd

0 (X, Q)

by using the intersection pairing on X . The dual of the tube mapping is therefore

Hd
0 (X, Q) →

∏
g∈G

VQ/(g − id)VQ. (3)

A simple linear algebra argument shows that surjectivity of the tube mapping is equivalent
to the injectivity of the map in (3).

The main advantage to this point of view is that the map (3) can be factored into three
simpler maps, given in (4), (5), and (7) below. We now discuss each of the three in turn.

2.2 The first map

The first step is to look at the topology of the family of all smooth hyperplane sections
π sm : S sm → Psm. From the projection S sm → X , we have a pullback map Hd(X, Q) →
Hd (S sm, Q). Now consider the Leray spectral sequence for π sm, whose E2-page is

E p,q
2 = H p (

Psm, Rqπ sm∗ Q
) �⇒ H p+q (

Psm, Q
)
.

Here Rqπ sm∗ Q is the local system on Psm with fiber Hq(S0, Q). The spectral sequence degen-
erates at E2 by Deligne’s theorem [9, p. 379], because π sm is smooth and projective. Letting
L• Hd (S sm, Q) be the induced filtration on the cohomology of S sm, we see in particular
that

Hd (
S sm, Q

)
/L1 Hd (

S sm, Q
) � E0,d

2 = H0
(

Psm, Rdπ sm∗ Q

)

and

L1 Hd (
S sm, Q

)
/L2 Hd (

S sm, Q
) � E1,d

2 = H1
(

Psm, Rd−1π sm∗ Q

)
.

By definition, primitive cohomology classes on X restrict to zero on every fiber of π sm, and
therefore go to zero in E0,d

2 . This means that Hd
0 (X, Q) is mapped into L1 Hd (S sm, Q).

Composing with the projection to E1,d
2 , we obtain a map

Hd
0 (X, Q) → H1

(
Psm, Rd−1π sm∗ Q

)
.

From the decomposition (11), we have Rd−1π sm∗ Q = Hd−1(X, Q)⊕ Rd−1
van π sm∗ Q, where the

first summand is constant. Now H1 (Psm, Q) = 0, because it is Poincaré dual to the space
H2N−1 (P, P − Psm, Q), which vanishes because H2N−1(P, Q) = 0 and because P\Psm is
irreducible (here N = dim P). Thus we find that

H1
(

Psm, Rd−1π sm∗ Q

)
� H1

(
Psm, Rd−1

van π sm∗ Q

)
,
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and so we obtain the first map in its final form as

Hd
0 (X, Q) → H1

(
Psm, Rd−1

van π sm∗ Q

)
. (4)

We shall prove in Sect. 3 that (4) is injective, provided Hd−1
van (S0, Q) �= 0. This is a simple

consequence of the topology of Lefschetz pencils on X . If one is willing to assume that the
embedding of X into projective space is of sufficiently high degree, it also follows directly
from the isomorphism in (1).

2.3 The second map

The second step is to represent the cohomology of the local system Rd−1
van π sm∗ Q by group

cohomology. The group in question is, of course, the fundamental group G = π1 (Psm, H0),
which acts on Hd−1

van (S0, Q) through monodromy.
In general, given a group G and a G-module M , the i th group cohomology is defined as

Hi (G, M) = Exti
ZG(Z, M)

in the category of ZG-modules [10, p. 161]. In particular, H0(G, M) = MG is the submodule
of G-invariant elements. The first cohomology H1(G, M), which is all we shall use, can be
described explicitly as a quotient Z1(G, M)/B1(G, M), where

Z1(G, M) = {
φ : G → M

∣∣ φ(gh) = g · φ(h) + φ(g) for all g, h ∈ G
}

is the group of 1-cocyles, and

B1(G, M) = {
φ : G → M

∣∣ there is x ∈ M such that φ(g) = g · x − x
}

the group of 1-coboundaries for M .
There is a well-known correspondence between local systems and representations of the

fundamental group [9, Corollaire 15.10 on p. 339]; similarly, there is a relationship between
the cohomology of the local system and the group cohomology of the representation.

Lemma 1 Let M be a local system on a connected topological space B. Let M be its fiber
at some point b0 ∈ B; it is the representation of the fundamental group G = π1(B, b0)

corresponding to M. Assume that B has a universal covering space B̃ → B. Then there is
a convergent spectral sequence

E p,q
2 = Ext p

ZG

(
Hq(B̃, Z), M

)
�⇒ H p+q(B, M).

In particular, we have H1(B, M) � H1(G, M).

Proof We sketch the simple proof. Let S•(B̃, Z) be the singular chain complex of B̃; it
is a complex of G-modules, because G acts on B̃ by deck transformations. According to
Steenrod’s original definition [8], the cohomology of the local system M is computed by the
complex HomZG(S•(B̃, Z), M). The spectral sequence in question comes from the double
complex HomZG(S•(B̃, Z), I •), where I • is any injective resolution of M in the category of
ZG-modules. The second assertion follows immediately from the spectral sequence, because
H0(B̃, Z) � Z, while H1(B̃, Z) = 0.
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In our case, the local system Rd−1
van π sm∗ Q corresponds to the G-module VQ = Hd−1

van (S0, Q).
Thus Lemma 1 gives us an isomorphism

H1
(

Psm, Rd−1
van π sm∗ Q

)
� H1 (

G, VQ

)
(5)

with the first group cohomology of VQ.

2.4 The third map

The third step is of a purely algebraic nature. Namely, for any G-module M , we have a
restriction map

H1(G, M) →
∏
g∈G

H1
(

gZ, M
)

,

where gZ is the cyclic subgroup generated by g. From the explicit description, it is easy to
see that H1

(
gZ, M

) � M/(g − id)M . The resulting map

H1(G, M) →
∏
g∈G

M/(g − id)M (6)

takes the class of a 1-cocycle φ to the element with components φ(g) + (g − id)M in the
product.

In the case at hand, where G is the fundamental group of Psm, the G-module is VQ, and
the restriction map becomes

H1 (
G, VQ

) →
∏
g∈G

VQ/(g − id)VQ. (7)

Unfortunately, (6) fails to be injective for general M (an example is given below, in Exam-
ple 1); nevertheless, we shall prove its injectivity for certain G-modules, in particular for the
vanishing cohomology VQ.

It should be noted that, as a representation of G, the nature of VQ is very different for even
and odd values of d . This is because the intersection pairing is symmetric when d is odd, but
alternating when d is even. Consequently, the proof that (7) is injective has to be different in
the two cases. When d is odd, it is a straightforward calculation, given in Sect. 4. When d is
even, we show that Hd−1

van (S0, Z), modulo torsion, is a vanishing lattice [5]. We can then use
results by W. Janssen about the structure of vanishing lattices to prove the injectivity. Details
can be found in Sect. 5.

2.5 Conclusion of the proof

Composing the three maps in (4), (5), and (7), we finally obtain an injective map

Hd
0 (X, Q) →

∏
g∈G

VQ/(g − id)VQ. (8)

It remains to verify that this map really is the dual of the tube mapping in (3). This is sufficient
to complete the proof of the theorem, because the injectivity of (8) is then equivalent to the
surjectivity of the tube mapping by simple linear algebra.

So let g ∈ G be an arbitrary element of the fundamental group of Psm, and let α ∈
Hd−1(S0, Q) be any class invariant under the action by g. We write τg(α) ∈ Hd(X, Q) for
the tube class determined by α; as we saw, it is well-defined up to the addition of elements
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in Hd(S0, Q). Take any closed d-form ω on X , whose class lies in Hd
0 (X, Q). Under the

mapping

Hd
0 (X, Q) →

∏
g∈G

Hd−1
van (S0, Q)/(g − id)Hd−1

van (S0, Q).

in (8), ω is sent to an element of the product with coordinates
(
λg(ω) + im(g − id)

)
. Of

course, λg(ω) itself is not uniquely determined by ω; we choose this notation only because
the ambiguity turns out not to matter.

To prove that the map in (8) really is the dual of the tube mapping, it suffices to establish
the identity

∫

τg(α)

ω =
∫

α

λg(ω) (9)

To do this, represent g by an immersion S1 → Psm, and let f : Y → S1 be the pullback of
the family π sm : S sm → Psm. Then Y is a smooth manifold of dimension m = 2d − 1. We
have the following diagram of maps:

The fiber over the base point of S1 is Y0 = S0, in the notation used above. Then α ∈
Hd−1(S0, Q) determines a tube class τ(α) on Y , and by the definition of the tube mapping,
we have

τg(α) ≡ (qh)∗τ(α) mod Hd(S0, Q).

Since ω is primitive, its restriction to S0 is trivial. Lemma 2 below, applied to the class (qh)∗ω,
shows that ∫

τg(α)

ω =
∫

τ(α)

(qh)∗ω =
∫

α

λ
(
(qh)∗ω

)
.

The class λ ((qh)∗ω) is determined by the Leray spectral sequence for the map f . On the
other hand, the class λg(ω) is determined in exactly the same way by the Leray spectral
sequence for π sm. But both spectral sequences are compatible with each other, starting from
the E2-page, and so it has to be the case that

λ
(
(qh)∗ω

) ≡ (qh)∗λg(ω) mod (g − id)Hd−1(S0, Q).

Now α is g-invariant, and its integral against any element of (g−id)Hd−1(S0, Q) is therefore
zero. It follows that ∫

α

λ
(
(qh)∗ω

) =
∫

α

(qh)∗λg(ω) =
∫

α

λg(ω).

After combining this with the other equality, we obtain (9).
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2.6 Smooth families over the circle

The given proof above depends on an analysis of the tube mapping in the case of a family of
smooth manifolds over S1; we now go over the details of that step. As above, let f : Y → S1

be a proper and submersive map of smooth manifolds. Let m be the real dimension of Y , and
let Y0 be the fiber of f over the point 1 ∈ S1. The cohomology of Y and Y0 can be represented
by smooth differential forms, and this will be done throughout.

The fundamental group of S1 is isomorphic to Z, and acts by monodromy on the homol-
ogy and cohomology of Y0. To get an explicit description, note that the pullback of Y to
the universal covering space e : R → S1, t �→ exp(2π i t), is diffeomorphic to R × Y0; the
following diagram shows the relevant maps.

The composition � ◦ i0 is simply the inclusion of Y0 into Y , while � ◦ i1 gives a different
embedding of Y0 into Y . We write F : Y0 → Y0 be the resulting diffeomorphism, so that
� ◦ i1 = � ◦ i0 ◦ F .

For a homology class α ∈ Hi (Y0, Q), a flat translate of α to the fiber over e(t) is given
by (� ◦ it )(α). The monodromy action Ti : Hi (Y0, Q) → Hi (Y0, Q) by the standard gener-
ator is therefore Ti (α) = (� ◦ i1)∗α = F∗α. Similarly, we have an action on cohomology,
T i : Hi (Y0, Q) → Hi (Y0, Q).

Tube classes on Y are defined in the following way. Suppose that α ∈ ker Tk−1 is a mo-
nodromy-invariant homology class on Y0. This means that there is a k-chain A on Y0, such
that ∂ A = F(α)−α. Translating α flatly along S1 and taking the trace in Y gives the k-chain
	 = �(α × [0, 1]). Then 	 − A is closed, and its class τ(α) ∈ Hk(Y, Q) is the tube class
determined by α. Of course, τ(α) is only defined up to elements of Hd(Y0, Q), because of
the ambiguity in choosing A.

We now have to connect this topological construction with the one coming from the Leray
spectral sequence for the map f . The latter degenerates at E2, and gives us for each k ≥ 0 a
short exact sequence

(10)

It is well-known that H1
(
S1, Rk−1 f∗Q

) � coker T k−1, and H0
(
S1, Rk f∗Q

) � ker T k .
Now suppose we are given a cohomology class in Hk(Y, Q) whose restriction to the fibers of
f is trivial. By virtue of (10), it defines a class in H1

(
S1, Rk−1 f∗Q

)
, and hence in coker T k−1.

The following lemma gives a formula for this class.

Lemma 2 Let β be a smooth and closed k-form on Y , representing an element of
ker

(
Hk(Y, Q) → Hk(Y0, Q)

)
. Choose any (k − 1)-form γ on Y0 × R with �∗β = dγ ,

and let γt = i∗t γ .

(i) The element of coker T k−1 determined by β is λ(β) = (F−1)∗γ1 − γ0.
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(ii) For every monodromy-invariant class α ∈ Hk−1(Y0, Q), we have

∫

τ(α)

β =
∫

α

λ(β).

where τ(α) is the tube class on Y coming from α.

Proof Note that λ(β) is a closed (k − 1)-form on S0. Let m be the dimension of the smooth
manifold Y , and let i : Y0 → Y be the inclusion map. For every closed (m − k)-form ω on
Y , a simple calculation using Stokes’ Theorem shows that

∫

Y

β ∧ ω =
∫

Y0×[0,1]
�∗β ∧ �∗ω =

∫

Y0×[0,1]
dγ ∧ �∗ω

=
∫

Y0×[0,1]
d

(
γ ∧ �∗ω

) =
∫

Y0

i∗1
(
γ ∧ �∗ω

) −
∫

Y0

i∗0
(
γ ∧ �∗ω

)

=
∫

Y0

γ1 ∧ F∗ (
i∗ω

) −
∫

Y0

γ0 ∧ i∗ω =
∫

Y0

(
(F−1)∗γ1 − γ0

) ∧ i∗ω.

The assertion in (i) now follows by duality.
To prove the second half, we recall that the tube class is given by 	 − A, where ∂ A =

F(α) − α on Y0, and 	 = �(α × [0, 1]). Again using Stokes’ Theorem, we compute that

∫

α

λ(β) =
∫

α

(F−1)∗γ1 − γ0 =
∫

α

(γ1 − γ0) +
∫

F−1(α)−α

γ1

=
∫

∂(α×[0,1])
γ −

∫

F−1(∂ A)

i∗1γ =
∫

α×[0,1]
dγ −

∫

F−1(A)

i∗1 (dγ )

=
∫

α×[0,1]
�∗β −

∫

F−1(A)

i∗1
(
�∗β

) =
∫

	

β −
∫

F−1(A)

F∗β.

This equals
∫
	

β − ∫
A β = ∫

τ(α)
β, proving the identity in (ii).

3 Topology of the universal hypersurface

The main purpose of this section is to show that the map in (4) is injective, as long as
VQ = Hd−1

van (S0, Q) �= 0. As we have seen, this is the same as showing the injectivity of the
map

Hd
0 (X, Q) → H1

(
Psm, Rd−1π sm∗ Q

)
,

derived from the Leray spectral sequence. Along the way, we need to review several results
about the vanishing cohomology of S0 that are obtained by studying Lefschetz pencils on X .
Throughout, we shall assume that VQ �= 0.
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3.1 Review of the Lefschetz theorems

A comprehensive discussion of the relationship between the cohomology of X and that of a
smooth hyperplane section S = X ∩ H can be found, for instance, in the book by C. Voisin
[9, Section 13]. We only give a very brief outline of the main points. Let us write i : S → X
for the inclusion map; we also let d = dim X be the complex dimension of X . The com-
plement X\S is a Stein manifold, and Morse theory shows that it has the homotopy type
of a d-dimensional CW-complex. One consequence is the following result, known as the
Lefschetz Hyperplane Theorem.

Theorem 2 The restriction map i∗ : Hk(X, Z) → Hk(S, Z) is an isomorphism for
k < dim S = d − 1, and injective for k = d − 1. Moreover, the quotient group
Hd−1(S, Z)/Hd−1(X, Z) is torsion-free.

Since Poincaré duality on X (resp. S) can be used to describe the cohomology groups in
dimensions greater than d (resp. d − 1), there are only two pieces of the cohomology rings
of X and S that are not covered by Lefschetz’ theorem. One is the primitive cohomology

Hd
0 (X, Z) = ker

(
i∗ : Hd(X, Z) → Hd(S, Z)

)

= ker
(

L : Hd(X, Z) → Hd+2(X, Z)
)

,

where L is the Lefschetz operator, given by cup product with the fundamental class of S in
H2(X, Z). The other is the vanishing cohomology of the hypersurface

Hd−1
van (S, Z) = ker

(
i∗ : Hd−1(S, Z) → Hd+1(X, Z)

)
.

The vanishing cohomology is dual to ker (i∗ : Hd−1(S, Z) → Hd−1(X, Z)) under Poincaré
duality, and it is known that the kernel is generated by the vanishing cycles of any Lefschetz
pencil on X , thus explaining the name.

At least over Q, one has direct sum decompositions

Hd−1(S, Q) = i∗ Hd−1(X, Q) ⊕ Hd−1
van (S, Q) (11)

and

Hd(X, Q) = i∗ Hd−2(S, Q) ⊕ Hd
0 (X, Q), (12)

orthogonal with respect to the intersection pairings on S and X , respectively. This is part of
the content of the Hard Lefschetz Theorem [9, Proposition 14.27 on p. 328]. With integer
coefficients, the map

Hd−1
van (S, Z) → Hd−1(S, Z)/Hd−1(X, Z)

is unfortunately neither injective nor surjective in general.

3.2 Lefschetz pencils

Recall that P is the space of all hyperplanes (in the ambient projective space), and Psm the
subset of those H for which X ∩ H is smooth. The dual variety X∨ = P\Psm is the set of
hyperplanes such that X ∩ H is singular. It is an irreducible subvariety of P; since we are
assuming that the vanishing cohomology is nontrivial, it is actually a hypersurface, whose
smooth points correspond to hyperplane sections of X with a single ordinary double point.
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Lemma 3 If VQ �= 0, then X∨ is a hypersurface in P.

Proof We will prove the converse: if X∨ is not a hypersurface, then necessarily VQ = 0. So
let us suppose that the codimension of X∨ is at least two. Choose a line P1 ⊆ P that does
not meet X∨, and let f : X̃ → P1 be the restriction of the family of hyperplane sections to
P1. Then f is smooth and projective, and since P1 is simply connected, all the local systems
Rq f∗Q are constant, with fiber Hq(S0, Q). Now consider the Leray spectral sequence for the
map f : X̃ → P1. By Deligne’s theorem, it degenerates at E2, and thus gives a short exact
sequence

using that Rq f∗Q is constant, this amounts to the exactness of the first row in the following
diagram. (All cohomology groups are with coefficients in Q.)

The two vertical maps are isomorphisms because of the Hyperplane Theorem. In-
deed, we have already seen that Hd−3(X, Q) � Hd−3(S0, Q). On the other hand, X̃ ⊆
P1 × X is itself a smooth very ample hypersurface of dimension d , and so we also have
Hd−1

(
P1 × X, Q

) � Hd−1(X̃ , Q). It follows that Hd−1(X, Q) � Hd−1(S0, Q), which
means that VQ = Hd−1

van (S0, Q) is reduced to zero.

Now take any Lefschetz pencil of hyperplane sections of X containing S0; in other words,
a line P1 ⊆ P through the base point H0 ∈ P that meets X∨ transversely in finitely many
points. Also let B = P1 ∩ Psm be the smooth locus of the pencil, and let 0 ∈ B be the point
whose image is H0. We write X̃ → P1 for the restriction of the family S → P to the line,
and U ⊆ X̃ for the part that lies over B. The following diagram shows the relevant maps; all
diagonal arrows are inclusions of open subsets.

We know from Lemma 3 that D = P1 ∩ X∨ is nonempty; say D = {t1, . . . , tn}, with
all ti distinct and different from the base point 0. Let Si be the hyperplane section of X
corresponding to the point ti ; each Si has a single ordinary double point (ODP). From a local
analysis around an ODP singularity, it is known that S0 contains an embedded (d −1)-sphere
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for each i , the so-called vanishing cycle for the singularity on Si . Moreover, the homotopy
type of Si is that of S0 with a d-cell attached along the vanishing cycle [9, p. 322].

The vanishing homology ker (i∗ : Hd−1(S0, Z) → Hd−1(X, Z)) is generated over Z by
the classes of these spheres [9, Lemme 14.26 on p. 327]. Writing ei for the cohomology class
Poincaré dual to the i th vanishing cycle, the ei thus generate the vanishing cohomology with
integer coefficients

Hd−1
van (S0, Z) = ker

(
i∗ : Hd−1(S0, Z) → Hd+1(X, Z)

)
.

Since X∨ is irreducible, it is further known [9, Corollaire 15.24 on p. 353] that all the ei lie
in one orbit of the monodromy action of π1(B, 0) on Hd−1(S0, Z). In particular, we have
ei �= 0 in Hd−1

van (S0, Q), because we are assuming that the latter is nontrivial.

Lemma 4 Classes in Hd
0 (X, Q) have trivial restriction to each of the singular hyperplane

sections Si .

Proof The singular hyperplane section Si is homotopy-equivalent to S0 with a d-cell attached
along the i th vanishing cycle. From the Mayer–Vietoris sequence in cohomology, we thus
get an exact sequence isomorphic to

Since ei �= 0, the first map in the sequence is nontrivial, and so Hd(Si , Q) � Hd(S0, Q).
In particular, every primitive cohomology class on X has trivial restriction to Si .

Lemma 5 The pullback map Hd
0 (X, Q) → Hd(U, Q) is injective.

Proof The complement of U in X̃ is the disjoint union of the singular fibers Si ; thus we have
an exact sequence

for cohomology with compact support. As U is a manifold,

Hd
c (U, Q) � Hom

(
Hd(U, Q), Q

)
,

with the isomorphism given by integration over U .
Now let ω ∈ Hd

0 (X, Q) be any class whose pullback q∗ω has trivial restriction to U . The
functional Hd(X̃ , Q) → Q, given by integrating against q∗ω, is then zero on Hd

c (U, Q), and
thus factors through the image of Hd(X̃ , Q) → ⊕

i Hd(Si , Q). Let λ : ⊕
i Hd(Si , Q) → Q

be any extension to the entire direct sum. For each α ∈ Hd
0 (X, Q) we then have

∫

X

ω ∪ α =
∫

X̃

q∗ω ∪ q∗α = λ
(
α
∣∣
S1

, . . . , α
∣∣
Sn

)
= 0

by Lemma 4. But the intersection pairing is nondegenerate on the primitive cohomology, and
so ω = 0.
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3.3 Injectivity of the map

Now consider the Leray spectral sequence for the map f : U → B. Since B has the homot-
opy-type of a bouquet of circles, the spectral sequence degenerates, and we get a short exact
sequence

By definition, classes in Hd
0 (X, Q) go to zero in the group on the right; Lemma 5 then lets

us conclude that the induced map

Hd
0 (X, Q) → H1

(
B, Rd−1 f∗Q

)

has to be injective. This immediately implies the injectivity of (4). To see this, note that the
functoriality of the Leray spectral sequence gives a factorization

Hd
0 (X, Q) → H1

(
Psm, Rd−1π sm∗ Q

)
→ H1

(
B, Rd−1 f∗Q

)
;

since the composition is injective, the first map has to be injective, proving our claim.

3.4 Vanishing cycles with intersection number one

We have seen that the vanishing cohomology Hd−1
van (S0, Z) is generated by the Poincaré duals

ei of the vanishing cycles for any Lefschetz pencil. More generally, we shall refer to any ele-
ment in the orbit � = G · {e1, . . . , en} as a vanishing cycle. As shown above, all δ ∈ � are
nontrivial even as elements of VQ = Hd−1

van (S0, Q).
The fundamental group π1(B, 0) is isomorphic to a free group on (n − 1) letters; in fact,

a set of generators is given by taking, for each i = 1, . . . , n, a loop gi based at 0 that goes
exactly once around the point ti with positive orientation, but not around any of the other
t j . The only relation is the obvious one, namely that g1 . . . gn = 0. By Zariski’s theorem, G
itself is also generated by the gi .

The monodromy action of each gi on Hd−1(S0, Z) is described explicitly by the Picard–
Lefschetz formula [9, Théorème 15.16 on p. 345]

gi · α = α − εd(α, ei )ei , (13)

where (−,−) is the intersection pairing on S0, and εd = (−1)d(d−1)/2. This has different
consequences for odd and even values of d:

(i) When d is odd, S0 has even dimension, and the intersection pairing is symmetric. More-
over, each vanishing cycle has self-intersection number 2εd , and g2

i acts trivially on
Hd−1(S0, Z).

(ii) When d is even, S0 has odd dimension, and the intersection pairing is skew-symmetric.
Consequently, the self-intersection of ei is zero, and the element gi is of infinite order.

The same formulas are of course true for every vanishing cycle δ ∈ �.
To analyze the structure of VQ for even values of d , we will need the following lemma about

the set �. It is the main step in showing that Hd−1
van (S0, Z) is a skew-symmetric vanishing

lattice [5].

Lemma 6 Assume that d = dim X is even. Then there are two vanishing cycles δ1, δ2 ∈ �

with (δ1, δ2) = 1.
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Proof As observed in [5, p. 132], it suffices to show that there is a singular hyperplane sec-
tion S′ ⊆ X with an isolated singularity that is not an ordinary double point. Indeed, the
vanishing homology of the Milnor fiber F of such a singularity embeds into Hvan

d−1(S0, Z)

by [1, p. 9], in such a way that vanishing cycles map to vanishing cycles. The Milnor fiber
has the homotopy type of a bouquet of (d − 1)-spheres; the number of spheres is the Milnor
number µ of the singular point. If the singularity is not an ordinary double point, then µ ≥ 2,
and so there are (at least) two independent vanishing cycles on F with intersection number
one. We can then take δ1 and δ2 to be their images in Hvan

d−1(S0, Z).
To find such a hyperplane section S′, let P2 ⊆ P be a general plane containing the base

point, and C = P2 ∩ X∨. Since the dual variety is irreducible, the curve C is also irreducible,
and its only singularities are nodes and cusps. A node of C corresponds to a hyperplane sec-
tion of X with two ordinary double points; a cusp corresponds to a hyperplane section with
one isolated singularity of Milnor number two. To prove the lemma, it is therefore enough
to show that C has at least one cusp.

Since both P2 and P are simply connected, it follows from the Lefschetz theorem for
fundamental groups [6, Theorem 3.1.21] that the fundamental group of P2\C is isomorphic
to G. If C had only nodes and no cusps, then this group would be abelian [3], and hence
a finite cyclic group since C is irreducible. In particular, the action of each vanishing cycle
would be of finite order. Since d is even, this possibility is ruled out by our assumption that
Hd−1

van (S0, Q) �= 0.

4 Detecting group cohomology classes: the odd case

In this section, we show that the restriction map (7) is injective when d is odd. As it happens,
this can be proved by using very little of the structure of the vanishing cohomology, and so
we shall treat the problem abstractly first.

4.1 Injectivity of the restriction map

We consider a finite-dimensional Q-vector space VQ with a symmetric bilinear form B : VQ⊗
VQ → Q, and a finitely generated group G acting on VQ, subject to the following two assump-
tions:

1. There are distinguished elements e1, . . . , en ∈ VQ with B(ei , ei ) = 2.
2. There are generators g1, . . . , gn for G, such that

gi · v = v − B(v, ei )ei

for all v ∈ VQ.

It follows that the action of G preserves the bilinear form, and that each g2
i acts trivially. In

this situation, the restriction map is injective.

Proposition 1 Let VQ be a finite-dimensional Q-vector space with an action by a group G,
subject to the assumptions just stated. Then the restriction map

H1 (
G, VQ

) →
∏
g∈G

VQ/(g − id)VQ

is injective.
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We begin with a simple observation (easily proved by induction on n). To keep it general,
we do not assume anything about the bilinear form; in this way, it can also be applied to the
even case in the next section.

Lemma 7 Let VQ be a Q-vector space with a bilinear form B : VQ ⊗ VQ → Q, and with an
action by a group G. Assume that there are elements g1, . . . , gn of G, and vectors e1, . . . , en ∈
VQ, such that giv = v−B(v, ei )ei holds for every v ∈ VQ. Let φ ∈ Z1

(
G, VQ

)
be a 1-cocycle

satisfying φ(gi ) = ai ei for all i . Then we have

φ(gn · · · g1) =
n∑

k=1

bkek,

and the coefficients bk ∈ Q are determined by the recursive relations

b1 = a1 and bk+1 = ak+1 −
k∑

i=1

B(ei , ek+1)bi . (14)

We now give the algebraic proof of Proposition 1.

Proof Let φ ∈ Z1
(
G, VQ

)
represent an arbitrary class in the kernel of the restriction map.

This means that for every g ∈ G, there is some v ∈ VQ with the property that φ(g) = gv−v.
Of course, v is allowed to depend on g. To prove the asserted injectivity, we need to show
that φ ∈ B1

(
G, VQ

)
.

We shall do this in two steps. Re-indexing the generators g1, . . . , gn of G, if necessary,
we may assume that the vectors e1, . . . , ep are linearly independent, while ep+1, . . . , en are
linearly dependent on e1, . . . , ep . The first step is to show that we can subtract from φ a
suitable element of B1

(
G, VQ

)
to get φ(gi ) = 0 for i = 1, . . . , p.

By assumption, there is a vector v ∈ VQ such that

φ(gp · · · g1) = gp · · · g1v − v;
after subtracting from φ the element (g �→ gv−v) ∈ B1(G, VQ), we have φ(gp · · · g1) = 0.
Furthermore, for each i = 1, . . . , p, there is some vi ∈ VQ with

φ(gi ) = givi − vi = −B(vi , ei )ei = ai ei ,

where ai = −B(vi , ei ) ∈ Q. According to Lemma 7 below, we can write

φ(gp · · · g1) =
p∑

k=1

bkek,

with coefficients bk that satisfy the recursive relations given in the lemma. But e1, . . . , ep

are linearly independent, and therefore b1 = · · · = bp = 0. The relations imply that
a1 = · · · = ap = 0, and so we obtain φ(gi ) = 0 for i = 1, . . . , p.

In the second step, we show that φ is now actually zero. For this, we only need to prove
that φ(gi ) = 0 for i = p+1, . . . , n, because all the gi together generate G and φ is a cocycle.
By symmetry, it obviously suffices to consider just gp+1. Since ep+1 is linearly dependent
on e1, . . . , ep , we can write ep+1 = ∑p

i=1 ci ei for certain coefficients ci ∈ Q, subject to the
condition that

2 = B(ep+1, ep+1) =
p∑

i, j=1

ci B(ei , e j )c j .
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If we let c be the column vector with coordinates ci , and E the symmetric p × p-matrix with
entries Ei j = B(ei , e j ), we can put the condition into the form

2 = c† Ec. (15)

Again, there is a vector v ∈ VQ with φ(gp+1) = gp+1v − v = −B(v, ep+1)ep+1, and if
we set η = −B(v, ep+1) ∈ Q, we have

φ(gp+1) = η · ep+1 = η ·
p∑

j=1

c j e j .

We may also find w ∈ VQ such that

φ(gp+1gp · · · g1) = gp+1gp · · · g1w − w.

Now φ(gi ) = 0 for i = 1, . . . , p, and so we get φ(gp+1gp · · · g1) = φ(gp+1) from the fact
that φ is a cocycle. Since gp+1ep+1 = −ep+1, we calculate that

−η · ep+1 = gp+1 · φ(gp+1) = gp+1 · (
gp+1gp · · · g1w − w

)

= (
gp · · · g1w − w

) − (
gp+1w − w

)

= (
gp · · · g1w − w

) + B(w, ep+1)ep+1

Let xi = −B(w, ei ). An application of Lemma 7 to the cocycle (g �→ gw − w) shows that
gp · · · g1w − w = ∑

y j e j , where

y1 = x1 and yk+1 = xk+1 −
k∑

i=1

Ei,k+1 yi . (16)

From our calculation, we now obtain a linear relation between e1, . . . , ep , namely

−η ·
p∑

j=1

c j e j =
p∑

j=1

y j e j −
p∑

i, j=1

ci xi c j e j .

But e1, . . . , ep are linearly independent, and we deduce that

η · c j =
p∑

i=1

ci xi c j − y j

for all j = 1, . . . , p, which we can write as a vector equation

η · c = c†x · c − y. (17)

The recursive relations in (16) for the y j can be put into the form x = Sy, where S is a
lower-triangular matrix with entries

Si j =
⎧⎨
⎩

Ei j if i > j ,
1 if i = j ,
0 if i < j .

But now E = S + S†, because E is symmetric and its diagonal entries are all equal to 2.
From (15), we find that

2 = c† Ec = c†Sc + c†S†c = 2c†Sc,
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and so 1 = c†Sc. Now apply c†S to the equation in (17) to get

η = c†Sc · η = c†x · c†Sc − c†Sy = c†x − c†Sy = c†(x − Sy) = 0.

This shows that φ(gp+1) = η · ep+1 = 0, and we have our result.

Example 1 It should be pointed out that the restriction map (6) need not be injective for an
arbitrary representation of a group G on a vector space M . Here is a simple example, where
the group is even abelian. Let G = Z2 be the free abelian group on two generators, acting on
M = Q3 by the two commuting matrices

A1 =
⎛
⎝

1 0 1
0 1 0
0 0 1

⎞
⎠ and A2 =

⎛
⎝

1 2 2
0 1 2
0 0 1

⎞
⎠ .

Define φ : G → M by the rule φ(a, b) = (a, 0, 0). One easily verifies that φ gives a non-zero
element in H1(G, M), but that it goes to zero under the restriction map

H1(G, M) →
∏
g∈G

M/(g − id)M.

Thus Proposition 1 does not remain true for arbitrary representations.

4.2 Conclusion of the argument

Proposition 1 applies to the vanishing cohomology VQ = Hd−1
van (S0, Q) and shows that (7) is

injective when d is odd. Indeed, it is clear from the results in Sect. 3 that VQ satisfies all the
assumptions of the proposition, if we set B(u, v) = εd(u, v). We can take for e1, . . . , en the
vanishing cycles in an arbitrary Lefschetz pencil on X , and for g1, . . . , gn the corresponding
generators of the fundamental group. The identity giv = v − B(v, ei )ei is then simply the
Picard–Lefschetz formula (13). We conclude that (7) is injective when VQ is the vanishing
cohomology. This completes the proof that (8) is injective when the dimension of X is odd.

5 Detecting group cohomology classes: the even case

The purpose of this section is to prove that the restriction map

VQ →
∏
g∈G

VQ/(g − id)VQ (18)

is also injective when d = dim X is even. This is more subtle than in the case of odd d , and
we will need to use the fact that the vanishing cohomology and the monodromy action can
all be defined over Z. The integral vanishing cohomology Hd−1

van (S0, Z), modulo torsion, is
an example of a skew-symmetric vanishing lattice. We therefore have to begin by reviewing
some results about the structure of skew-symmetric vanishing lattices, due to W. Janssen [5].

5.1 Skew-symmetric vanishing lattices

Let V be a free Z-module of finite rank, with an alternating bilinear form B : V ⊗ V → Z.
Let Sp(V ) be the group of all automorphisms of V that preserve B. For every element v ∈ V ,
we can define a symplectic transvection Tv ∈ Sp(V ) by the formula Tv(x) = x − B(x, v)v.
With the monodromy representation on Hd−1(S0, Z) and the facts in Sect. 3 in mind, we
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are interested in subgroups of Sp(V ) generated by transvections. Given a subset � ⊆ V , we
write 	� for the subgroup of Sp(V ) generated by all Tδ , for δ ∈ �.

As a matter of fact, all transvections are contained in a (potentially smaller) group Sp�(V ),
which we now define. The form induces a linear map j : V → Hom(V, Z), given by the
rule j (v) = B(v,−); in general, it is neither injective nor surjective without further assump-
tions on B. Now Sp(V ) naturally acts on the dual module Hom(V, Z) as well, by setting
(gλ)(x) = λ(g−1x) for x ∈ V and λ ∈ Hom(V, Z), and the map j is equivariant. We let
Sp�(V ) be the subgroup of those g ∈ Sp(V ) that act trivially on Hom(V, Z)/j (V ). Con-
cretely, this means that

Sp�(V ) = {
g ∈ Sp(V )

∣∣ for any λ ∈ Hom(V, Z), there exists v ∈ V

such that λ(gx − x) = B(v, x) for allx ∈ V
}
.

It is easy to see that Tv ∈ Sp�(V ); each 	� is therefore a subgroup of Sp�(V ).
We now come to the main definition, due to Janssen. A (skew-symmetric) vanishing lattice

in V is a subset � ⊆ V with the following three properties:

1. The set � generates V .
2. � is a single orbit under the action of 	�.
3. There exist two elements δ1, δ2 ∈ � such that B(δ1, δ2) = 1.

In that case, 	� is called the monodromy group of the vanishing lattice.
Janssen has carried out a very detailed study of such vanishing lattices. One of his main

technical results, obtained by a careful choice of generators of the lattice, is the following
theorem.

Theorem 3 [5, Theorem 2.5] Let � ⊆ V be a vanishing lattice. Then the monodromy group
of � contains the congruence subgroup

Sp�
2(V ) = {

g ∈ Sp(V )
∣∣ g acts trivially on Hom(V, Z)/j (2V )

}
.

In particular, 	� is itself of finite index in Sp�(V ).

We shall now use Janssen’s theorem to show that 	� contains a finite-index subgroup
with a particularly convenient set of generators, similar to that used in Janssen’s proof of
Theorem 3. This is the crucial step in proving the injectivity of (18) in the even-dimensional
case.

Lemma 8 Let V be a free Z-module of rank r, and let � ⊆ V be a vanishing lattice. Then
it is possible to find r linearly independent elements δ1, . . . , δr ∈ �, such that the group
	{δ1,...,δr } has finite index in 	�.

Proof Pick an arbitrary element δ1 ∈ �. Since � is a vanishing lattice, a short calculation
[5, Lemma 2.7] shows that V is already generated by the smaller set

�1 = {
δ ∈ �

∣∣ B(δ1, δ) = 1or δ = δ1
}
.

We can therefore find r linearly independent elements δ1, . . . , δr ∈ � that satisfy B(δ1, δi ) =
1 for i ≥ 2. Let V ′ ⊆ V be their span; then V ′ is free of rank r , and the quotient is V/V ′ is
finite, say of order k. Set

Sp�(V )V ′ = {
g ∈ Sp�(V )

∣∣ g(V ′) = V ′};
as a stabilizer for the action of Sp�(V ) on the finite group V/V ′, it has finite index in Sp�(V ).
Note that we may consider Sp�(V )V ′ as a subgroup of Sp(V ′).
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Let Ti = Tδi be the corresponding transvections, and 	′ = 	{δ1,...,δr } the group generated
by them. By construction, each Ti preserves V ′, which means that 	′ ⊆ Sp�(V )V ′ . For i ≥ 2,
we have

Ti T1(δi ) = Ti (δi + δ1) = δi + δ1 − B(δi + δ1, δi )δi = δ1,

and so all the δi lie in one orbit of the group 	′. It follows that �′ = 	′ · {δ1, . . . , δr } is itself
a vanishing lattice in V ′. Theorem 3, applied to �′ ⊆ V ′, shows that 	′ has finite index in
the group Sp�(V ′). We can thus complete the proof by appealing to the following lemma.

Lemma 9 Let V ′ ⊆ V be a submodule with V/V ′ finite. Then Sp�(V ′)∩Sp�(V )V ′ has finite
index in Sp�(V )V ′ .

Proof Let Q = Sp�(V )V ′/ Sp�(V ′) ∩ Sp�(V )V ′ be the quotient group; we have to show that
Q has finite order.

As above, we let j : V → Hom(V, Z) be the map induced by the bilinear form; since
Hom(V, Z) embeds into Hom(V ′, Z), we denote the corresponding map for V ′ by the same
letter. By definition, the group Sp�(V )V ′ consists of elements g that satisfy g(V ′) = V ′ and
act trivially on the quotient Hom(V, Z)/j (V ). It follows that Sp�(V )V ′ acts on every one of
the five finitely generated Z-modules in the following diagram:

Thus Q embeds into the group of automorphisms of Hom(V ′, Z)/j (V ′) that act compat-
ibly on each module, and trivially on Hom(V, Z)/j (V ). Since all modules in the diagram
are finitely generated, and j (V )/j (V ′) and Ext1(V/V ′, Z) are finite, it is easy to see that the
group of such automorphisms is finite. This implies that Q is also a finite group.

5.2 Injectivity of the restriction map

In the presence of a vanishing lattice, it is again possible to prove the injectivity of the restric-
tion map by a fairly simple argument. The most convenient setting is the following. Let V
be a free Z-module of finite rank, with an alternating bilinear form B : V ⊗ V → Z. Let G
be a finitely generated group acting on V , and assume that there are generators g1, . . . , gn

for G, and distinguished elements e1, . . . , en of V , such that

giv = v − B(v, ei )ei = Tei (v)

for all i . Furthermore, assume that � = G · {e1, . . . , en} is a vanishing lattice in V . Of course,
the image of G in Sp�(V ) is then exactly the monodromy group 	�.
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Proposition 2 Let V be a free Z-module of finite rank with a G-action, subject to the assump-
tions above. Let VQ = V ⊗ Q. Then the restriction map

H1 (
G, VQ

) →
∏
g∈G

VQ/(g − id)VQ

is injective.

Proof Let φ ∈ Z1
(
G, VQ

)
represent an element of the kernel; we have to show that it belongs

to B1
(
G, VQ

)
. To simplify the notation, we shall write 	 = 	�. We begin the proof by not-

ing that φ is identically zero on the normal subgroup N = ker(G → 	). Indeed, given any
g ∈ G, we can find some v ∈ VQ such that φ(g) = gv − v; thus any g that acts trivially on
V automatically satisfies φ(g) = 0. Consequently, φ descends to an element in H1

(
	, VQ

)
.

Since H1
(
	, VQ

)
is easily seen to inject into H1

(
G, VQ

)
, we may assume from now on that

we are dealing with an element φ ∈ Z1
(
	, VQ

)
.

Let r = dim VQ. Using Lemma 8, we can find r linearly independent elements δ1, . . . ,

δr ∈ V , such that 	′ = 	{δ1,...,δr } has finite index in 	. Let Ti = Tδi ∈ 	′. As in the odd
case, we can adjust φ by an element of B1

(
	, VQ

)
to make sure that φ(Tr · · · T1) = 0. By

assumption, we can also find vectors vi ∈ VQ such that

φ(Ti ) = Tivi − vi = −B(vi , δi )δi = aivi ,

for ai = −B(vi , δi ). An application of Lemma 7 shows that

0 = φ(Tr · · · T1) =
r∑

k=1

bkδk,

for coefficients bk ∈ Q satisfying the relations in (14). Since the δi are linearly independent,
we have bk = 0 for all k, and thus ai = 0 for all i . After the adjustment, the cocycle φ thus
satisfies φ(Ti ) = 0 for all i . Since 	′ is generated by the transvections Ti , we conclude that
φ(	′) = 0.

It is now easy to show that φ is identically zero. Let m be the index of 	′ in 	. Take an
arbitrary element δ ∈ �. As usual, there is a vector w ∈ VQ such that

φ(Tδ) = Tδw − w = −B(w, δ)δ.

From this, one easily deduces that

φ
(
T m

δ

) = −m B(w, δ)δ = mφ (Tδ) .

On the other hand, T m
δ belongs to 	′, and so φ

(
T m

δ

) = 0. Since the Tδ together generate 	,
and φ is a cocycle, we then have mφ = 0, and hence φ = 0. This proves the assertion.

5.3 Conclusion of the argument

To conclude that (7) is injective, we now apply our general result to the vanishing cohomology
VQ = Hd−1

van (S0, Q). All the assumptions are satisfied by Sect. 3, if we let B(u, v) = εd(u, v)

be a multiple of the intersection pairing on S0.
In more detail, we set V = Hd−1

van (S0, Z) modulo torsion; it is generated by the vanishing
cycles e1, . . . , en of any Lefschetz pencil. Let g1, . . . , gn be the corresponding elements of
the fundamental group G. The collection of all vanishing cycles � = G · {e1, . . . , en} is then
a vanishing lattice in V , because e1, . . . , en all lie in one G-orbit, and because of Lemma 6.
Proposition 2 now gives us the injectivity of the restriction map in (18), which finishes the
proof that (8) is injective when the dimension of X is even.
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6 An application to Clemens’ potential function for Calabi-Yau threefolds

Let X be a Calabi-Yau threefold, and let ω ∈ H0
(
X,�3

X

)
be a nowhere vanishing holomor-

phic three-form. In studying the deformation theory of curves on X , it is useful to consider
the covering space Tvan of Psm, whose fiber over a point corresponding to the hyperplane
section S = X ∩ H is the group H2

van(S, Z). Points of Tvan can naturally be viewed as pairs
(S, α), where S ⊆ X is a smooth hyperplane section, and α ∈ H2

van(S, Z). Of course, Tvan

has countably many sheets and countably many connected components, and is thus far from
being an algebraic variety.

Motivated by physics, Clemens [2] has shown that the locus of Hodge classes (known to
be a countable union of algebraic varieties)

Alg (Tvan) = {
(S, α) ∈ Tvan

∣∣ α ∈ H1,1(S) ∩ H2
van(S, Z)

}

is the zero locus of a closed holomorphic 1-form � on Tvan, constructed from ω via membrane
integrals. Local integrals of � are referred to as potential functions in [2]; as in many other
situations, the points in the paramater space coming from geometric objects (namely, curves
on X ) are therefore given as the critical locus of potential functions.

It is a natural question whether one can find a globally defined potential function on all of
Tvan; in other words, whether � is an exact 1-form. The result in Theorem 1 gives a negative
answer to this question. We now explain why.

Return, for a moment, to the general setting, where Tvan is the étalé space of the local
system with fibers Hd−1

van (S, Z), and a point in Tvan is a pair (S, α). If we let Tvan(α) be the
component containing the point (S0, α), it is easy to see that

π1 (Tvan(α), (S0, α)) = {
g ∈ G

∣∣ g · α = α
} = StabG(α).

consequently, we have the isomorphism H1 (Tvan(α), Q) � HomQ (StabG(α), Q). For any
primitive cohomology class ω ∈ Hd

0 (X, Q), we can use the tube mapping in homology to
construct a first cohomology class on Tvan(α). Indeed, the rule

StabG(α) → Q, g �→
∫

τg(α)

ω,

defines a homomorphism from the fundamental group of Tvan(α) to Q, and thus an element
of H1 (Tvan(α), Q). It is not hard to show that this class is independent of the choice of base
point on Tvan(α). Thus we have a well-defined map

F : Hd
0 (X, Q) → H1 (Tvan, Q) .

Theorem 1, in its dual formulation (3), is precisely the assertion that this map is injective.
In particular, the topology of the space Tvan is sufficiently complicated to detect primitive
cohomology classes on X .

This fact implies that the form � constructed by Clemens cannot be globally integrated.
Indeed, one easily sees from the description in [2, p. 735] that

[�] = F(ω) ∈ H1 (Tvan, C) .

Since the map F is injective by Theorem 1, it follows that the 1-form � cannot be exact, and
thus that there cannot be a global potential function on all of Tvan.
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