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0.1 INTRODUCTION

Absolute Hodge classes first appear in Deligne’s proof of the Weil conjectures for K3
surfaces in [14] and are explicitly introduced in [16]. The notion of absolute Hodge
classes in the singular cohomology of a smooth projective variety stands between that
of Hodge classes and classes of algebraic cycles. While it is not known whether abso-
lute Hodge classes are algebraic, their definition is both of an analytic and arithmetic
nature.

The paper [14] contains one of the first appearances of the notion of motives, and
is among the first unconditional applications of motivic ideas. Part of the importance
of the notion of absolute Hodge classes is indeed to provide an unconditional setting
for the application of motivic ideas. The papers [14], [17] and [1], among others, give
examples of this train of thought. The book [23] develops a theory of mixed motives
based on absolute Hodge classes.

In these notes, we survey the theory of absolute Hodge classes. The first section of
these notes recalls the construction of cycle maps in de Rham cohomology. As proved
by Grothendieck, the singular cohomology groups of a complex algebraic variety can
be computed using suitable algebraic de Rham complexes. This provides an algebraic
device for computing topological invariants of complex algebraic varieties.

The preceding construction is the main tool behind the definition of absolute Hodge
classes, the object of section 2. Indeed, comparison with algebraic de Rham cohomol-
ogy makes it possible to conjugate singular cohomology with complex coefficients by
automorphisms of C. In section 2, we discuss the definition of absolute Hodge classes.
We try to investigate two aspects of this subject. The first one pertains to the Hodge
conjecture. Absolute Hodge classes shed some light on the problem of the algebraic-
ity of Hodge classes, and make it possible to isolate the number-theoretic content of
the Hodge conjecture. The second aspect we hint at is the motivic meaning of abso-
lute Hodge classes. While we do not discuss the construction of motives for absolute
Hodge classes as in [17], we show various functoriality and semi-simplicity proper-
ties of absolute Hodge classes which lie behind the more general motivic constructions
cited above. We try to phrase our results so as to get results and proofs which are valid
for André’s theory of motivated cycles as in [1]. We do not define motivated cycles,
but some of our proofs are very much inspired by that paper.

1



2

CharlesSchnell July 5, 2013 6x9

The third section deals with variational properties of absolute Hodge classes. After
stating the variational Hodge conjecture, we prove Deligne’s principle B as in [16]
which is one of the main technical tools of the paper. In the remainder of the section,
we discuss consequences of the algebraicity of Hodge bundles and of the Galois action
on relative de Rham cohomology. Following [38], we investigate the meaning of the
theorem of Deligne-Cattani-Kaplan on the algebraicity of Hodge loci, see [10], and
discuss the link between Hodge classes being absolute and the field of definition of
Hodge loci.

The last two sections are devoted to important examples of absolute Hodge classes.
Section 4 discusses the Kuga-Satake correspondence following Deligne in [14]. In
section 5, we give a full proof of Deligne’s theorem which states that Hodge classes on
abelian varieties are absolute [16].

In writing these notes, we did not strive for concision. Indeed, we did not neces-
sarily prove properties of absolute Hodge cycles in the shortest way possible, but we
rather chose to emphasize a variety of techniques and ideas.
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0.2 ALGEBRAIC DE RHAM COHOMOLOGY

Shortly after Hironaka’s paper on resolutions of singularities had appeared, Grothendieck
observed that the cohomology groups of a complex algebraic variety can be computed
algebraically. More precisely, he showed in [20] that on a nonsingular n-dimensional
algebraic variety X (of finite type over the field of complex numbers C), the hyperco-
homology of the algebraic de Rham complex

OX → Ω1
X/C → · · · → ΩnX/C

is isomorphic to the singular cohomology H∗(Xan,C) of the complex manifold corre-
sponding to X . Grothendieck’s theorem makes it possible to ask arithmetic questions
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in Hodge theory, and is the founding stone for the theory of absolute Hodge classes. In
this lecture, we briefly review Grothendieck’s theorem, as well as the construction of
cycle classes in algebraic de Rham cohomology.

0.2.1 Algebraic de Rham cohomology

We begin by describing algebraic de Rham cohomology in a more general setting. Let
X be a nonsingular quasi-projective variety, defined over a field K of characteristic
zero. This means that we have a morphism X → SpecK, and we let Ω1

X/K denote the

sheaf of Kähler differentials on X . We also define ΩiX/K =
∧i

Ω1
X/K .

DEFINITION 0.1. The algebraic de Rham cohomology of X → K consists of the
K-vector spaces

Hi(X/K) = Hi
(
OX → Ω1

X/K → · · · → ΩnX/K
)
,

where n = dimX .

This definition is compatible with field extensions, for the following reason. Given
a field extension K ⊆ L, we let XL = X ×SpecK SpecL denote the variety obtained
fromX by extension of scalars. Since Ω1

XL/L
' Ω1

X/K⊗KL, we obtainHi(XL/L) '
Hi(X/K)⊗K L.

The algebraic de Rham complex Ω•X/K is naturally filtered by the subcomplexes

Ω•≥pX/K . Let φp : Ω•≥pX/K → Ω•X/K be the canonical inclusion. It induces a filtration on
algebraic de Rham cohomology which we will denote by

F pHi(X/K) = Im(φp)

and refer to it as the Hodge filtration. We can now state Grothendieck’s comparison
theorem.

THEOREM 0.2 (Grothendieck, [20]). Let X be a nonsingular projective variety
over C, and letXan denote the associated complex manifold. Then there is a canonical
isomorphism

Hi(X/C) ' Hi(Xan,C),

and under this isomorphism, F pHi(X/C) ' F pHi(Xan,C) gives the Hodge filtration
on singular cohomology.

PROOF. The theorem is a consequence of the GAGA theorem of Serre [33]. Let
OXan denote the sheaf of holomorphic functions on the complex manifold Xan. We
then have a morphism π : (Xan,OXan) → (X,OX) of locally ringed spaces. For any
coherent sheaf F on X , the associated coherent analytic sheaf on Xan is given by
F an = π∗F , and according to Serre’s theorem, Hi(X,F ) ' Hi(Xan,F an).

It is easy to see from the local description of the sheaf of Kähler differentials
that (Ω1

X/C)an = Ω1
Xan . This implies that Hq(X,ΩpX/C) ' Hq(Xan,ΩpXan) for all

p, q ≥ 0. Now pullback via π induces homomorphisms Hi(Ω•X/C) → Hi(Ω•Xan),
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which are isomorphism by Serre’s theorem. Indeed, the groups on the left are com-
puted by a spectral sequence with Ep,q2 (X) = Hq(X,ΩpX/C), and the groups on the
right by a spectral sequence with terms Ep,q2 (Xan) = Hq(Xan,ΩpXan), and the two
spectral sequences are isomorphic starting from the E2-page. By the Poincaré lemma,
the holomorphic de Rham complex Ω•Xan is a resolution of the constant sheaf C, and
thereforeHi(Xan,C) ' Hi(Ω•Xan). Putting everything together, we obtain a canonical
isomorphism

Hi(X/C) ' Hi(Xan,C).

Since the Hodge filtration on Hi(Xan,C) is induced by the naive filtration on the
complex Ω•Xan , the second assertion follows by the same argument. �

Remark. A similar result holds when X is nonsingular and quasi-projective. Using
resolution of singularities, one can find a nonsingular variety X and a divisor with
normal crossing singularities, such that X = X −D. Using differential forms with at
worst logarithmic poles along D, one still has

Hi(Xan,C) ' Hi(Ω•
X
an(logDan)) ' Hi(Ω•

X/C(logD));

under this isomorphism, the Hodge filtration is again induced by the naive filtration on
the logarithmic de Rham complex Ω•

X
an(logDan). Since algebraic differential forms

on X have at worst poles along D, it can further be shown that those groups are still
isomorphic to Hi(X/C).

The general case of a possibly singular quasi-projective variety is dealt with in [15].
It involves the previous construction together with simplicial techniques.

Now suppose that X is defined over a subfield K ⊆ C. Then the complex vec-
tor space Hi(Xan,C) has two additional structures: a Q-structure, coming from the
universal coefficients theorem

Hi(Xan,C) ' Hi(Xan,Q)⊗Q C,

and a K-structure, coming from Grothendieck’s theorem

Hi(Xan,C) ' Hi(X/K)⊗K C.

In general, these two structures are not compatible with each other. It should be noted
that the Hodge filtration is defined over K.

The same construction works in families to show that Hodge bundles and the Gauss-
Manin connection are algebraic. Let f : X → B be a smooth projective morphism of
varieties over C. For each i, it determines a variation of Hodge structure on B whose
underlying vector bundle is

Hi = Rif∗Q⊗Q OBan ' Rifan
∗ Ω•Xan/Ban '

(
Rif∗Ω•X/B

)an
.

By the relative version of Grothendieck’s theorem, the Hodge bundles are given by

F pHi '
(
Rif∗Ω•≥pX/B

)an
.
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Katz and Oda have shown that the Gauss-Manin connection∇ : Hi → Ω1
Ban ⊗Hi can

also be constructed algebraically [24]. Starting from the exact sequence

0→ f∗Ω1
B/C → Ω1

X/C → Ω1
X/B → 0,

let LrΩiX/C = f∗ΩrB/C ∧ Ωi−rX/C. We get a short exact sequence of complexes

0→ f∗Ω1
B/C ⊗ Ω•−1

X/B → Ω•X/C/L
2Ω•X/C → Ω•X/B → 0,

and hence a connecting morphism

Rif∗Ω•X/B → Ri+1f∗
(
f∗Ω1

B/C ⊗ Ω•−1
X/B

)
' Ω1

B/C ⊗ Rif∗Ω•X/B .

The theorem of Katz-Oda is that the associated morphism between analytic vector bun-
dles is precisely the Gauss-Manin connection∇.

For our purposes, the most interesting conclusion is the following: if f , X , and B
are all defined over a subfield K ⊆ C, then the same is true for the Hodge bundles
F pHi and the Gauss-Manin connection ∇. We shall make use of this fact later when
discussing absolute Hodge classes and Deligne’s Principle B.

0.2.2 Cycle classes

Let X be a nonsingular projective variety over C of dimension n. Integration of differ-
ential forms gives an isomorphism

H2n
(
Xan,Q(n)

)
→ Q, α 7→ 1

(2πi)n

∫
Xan

α.

The reason for including the factor of (2πi)n is that this functional is actually the
Grothendieck trace map (up to a sign factor that depends on the exact set of conventions
used), see [30]. This is important when considering the comparison with algebraic de
Rham cohomology below.

Remark. Let us recall that Z(p) (resp. Q(p)) is defined to be the weight −2p Hodge
structure purely of type (−p,−p) on the lattice (2iπ)pZ ⊂ C (resp. (2iπ)pQ ⊂ C).
If H is any integral (resp. rational) Hodge structure, we denote by H(p) the Hodge
structure H ⊗ Z(p)(resp. H ⊗ Q(p)). If X is a variety over a field K of charac-
teristic zero, the de Rham cohomology group is filtered K-vector space Hi

dR(X/K).
We will denote by Hi

dR(X/K)(p) the K-vector space Hi
dR(X/K) with the filtration

F jHi
dR(X/K)(p) = F j+pHi

dR(X/K). Tensor products with Z(p) or Q(p) are called
Tate twists.

Now let Z ⊆ X be an algebraic subvariety of codimension p, and hence of dimen-
sion n− p. It determines a cycle class

[Zan] ∈ H2p
(
Xan,Q(p)

)
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in Betti cohomology, as follows. Let Z̃ be a resolution of singularities of Z, and let
µ : Z̃ → X denote the induced morphism. By Poincaré duality, the linear functional

H2n−2p
(
Xan,Q(n− p)

)
→ Q, α 7→ 1

(2πi)n−p

∫
Z̃an

µ∗(α)

is represented by a unique class ζ ∈ H2p
(
Xan,Q(p)

)
, with the property that

1

(2πi)n−p

∫
Z̃an

µ∗(α) =
1

(2πi)n

∫
Xan

ζ ∪ α.

This class belongs to the group H2p
(
Xan,Q(p)

)
which is endowed with a weight zero

Hodge structure. In fact, one can prove, using triangulations and simplicial cohomol-
ogy groups, that it actually comes from a class in H2p

(
Xan,Z(p)

)
.

The class ζ is a Hodge class. Indeed, if α ∈ H2n−2p
(
Xan,Q(n − p)

)
is of type

(n−i, n−j) with i 6= j, then either i or j is strictly greater than p, and
∫
Z̃an µ

∗(α) = 0.
This implies that

∫
Xan ζ ∪ α = 0 and that ζ is of type (0, 0) in H2p

(
Xan,Q(p)

)
.

An important fact is that one can also define a cycle class

[Z] ∈ F pH2p(X/C)

in algebraic de Rham cohomology such that the following comparison theorem holds.

THEOREM 0.3. Under the isomorphism H2p(X/C) ' H2p(Xan,C), we have

[Z] = [Zan].

Consequently, if Z and X are both defined over a subfield K ⊆ C, then the cycle
class [Zan] is actually defined over the algebraic closure K̄.

In the remainder of this section, our goal is to understand the construction of the
algebraic cycle class. This will also give a second explanation for the factor (2πi)p

in the definition of the cycle class. We shall first look at a nice special case, due to
Grothendieck in [22], see also [5]. Assume for now that Z is a local complete inter-
section of codimension p. This means that X can be covered by open sets U , with
the property that Z ∩ U = V (f1, . . . , fp) is the zero scheme of p regular functions
f1, . . . , fp. Then U − (Z ∩ U) is covered by the open sets D(f1), . . . , D(fp), and

df1

f1
∧ · · · ∧ dfp

fp
(1)

is a closed p-form on D(f1) ∩ · · · ∩D(fp). Using Čech cohomology, it determines a
class in

Hp−1
(
U − (Z ∩ U),Ωp,cl

X/C
)
,

where Ωp,cl
X/C is the subsheaf of ΩpX/C consisting of closed p-forms. Since we have a

map of complexes Ωp,cl
X/C[−p]→ Ω•≥pX/C, we get

Hp−1
(
U − (Z ∩ U),Ωp,cl

X/C
)
→ H2p−1

(
U − (Z ∩ U),Ω•≥pX/C

)
→ H2p

Z∩U
(
Ω•≥pX/C

)
.
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One can show that the image of (1) in the cohomology group with supports on the
right does not depend on the choice of local equations f1, . . . , fp. (A good exercise is
to prove this for p = 1 and p = 2.) It therefore defines a global section of the sheaf
H2p
Z (Ω•≥pX/C). Using thatHiZ(Ω•≥pX/C) = 0 for i ≤ 2p−1, we get from the local-to-global

spectral sequence that

H2p
Z

(
Ω•≥pX/C

)
' H0

(
X,H2p

Z (Ω•≥pX/C)
)
.

In this way, we obtain a well-defined class in H2p
Z (Ω•≥pX/C), and hence in the algebraic

de Rham cohomology H2p(Ω•≥pX/C) = F pH2p(X/C).

For the general case, one uses the theory of Chern classes, which associates to a
locally free sheaf E of rank r a sequence of Chern classes c1(E ), . . . , cr(E ). We recall
their construction in Betti cohomology and in algebraic de Rham cohomology, referring
to [35, 11.2] for details and references.

First, consider the case of an algebraic line bundle L ; we denote the associated
holomorphic line bundle by L an. The first Chern class c1(L an) ∈ H2

(
Xan,Z(1)

)
can be defined using the exponential sequence

0→ Z(1)→ OXan
exp−−→ O∗Xan → 0.

The isomorphism class of L an belongs to H1(Xan,O∗Xan), and c1(L an) is the image
of this class under the connecting homomorphism.

To relate this to differential forms, cover X by open subsets Ui on which L an is
trivial, and let gij ∈ O∗Xan(Ui ∩ Uj) denote the holomorphic transition functions for
this cover. If each Ui is simply connected, say, then we can write gij = efij , and then

fjk − fik + fij ∈ Z(1)

form a 2-cocycle that represents c1(L an). Its image in H2(Xan,C) ' H2(Ω•Xan)
is cohomologous to the class of the 1-cocycle dfij in H1(Xan,Ω1

Xan). But dfij =
dgij/gij , and so c1(L an) is also represented by the cocycle dgij/gij . This explains
the special case p = 1 in Bloch’s construction.

To define the first Chern class of L in algebraic de Rham cohomology, we use the
fact that a line bundle is also locally trivial in the Zariski topology. If Ui are Zariski-
open sets on which L is trivial, and gij ∈ O∗X(Ui∩Uj) denotes the corresponding tran-
sition functions, we can define c1(L ) ∈ F 1H2(X/C) as the hypercohomology class
determined by the cocycle dgij/gij . In conclusion, we then have c1(L ) = c1(L an)
under the isomorphism in Grothendieck’s theorem.

Now suppose that E is a locally free sheaf of rank r on X . On the associated
projective bundle π : P(E )→ X , we have a universal line bundle OE (1), together with
a surjection from π∗E . In Betti cohomology, we have

H2r
(
P(E an),Z(r)

)
=

r−1⊕
i=0

ξi · π∗H2r−2i
(
Xan,Z(r − i)

)
,
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where ξ ∈ H2
(
P(E an),Z(1)

)
denotes the first Chern class of OE (1). Consequently,

there are unique classes ck ∈ H2k
(
Xan,Z(k)

)
that satisfy the relation

ξr − π∗(c1) · ξr−1 + π∗(c2) · ξr−2 + · · ·+ (−1)rπ∗(cr) = 0,

and the k-th Chern class of E an is defined to be ck(E an) = ck. The same construction
can be carried out in algebraic de Rham cohomology, producing Chern classes ck(E ) ∈
F kH2k(X/C). It follows easily from the case of line bundles that we have

ck(E ) = ck(E an)

under the isomorphism in Grothendieck’s theorem.
Since coherent sheaves on regular schemes admit finite resolutions by locally free

sheaves, it is possible to define Chern classes for arbitrary coherent sheaves. One con-
sequence of the Riemann-Roch theorem is the equality

[Zan] =
(−1)p−1

(p− 1)!
cp(OZan) ∈ H2p

(
Xan,Q(p)

)
.

Thus it makes sense to define the cycle class of Z in algebraic de Rham cohomology
by the formula

[Z] =
(−1)p−1

(p− 1)!
cp(OZ) ∈ F pH2p(X/C).

It follows that [Z] = [Zan], and so the cycle class of Zan can indeed be constructed
algebraically, as claimed.

EXERCISE 0.4. Let X be a nonsingular projective variety defined over C, let D ⊆
X be a nonsingular hypersurface, and set U = X −D. One can show that Hi(U/C)
is isomorphic to the hypercohomology of the log complex Ω•X/C(logD). Use this to
construct a long exact sequence

· · · → Hi−2(D)→ Hi(X)→ Hi(U)→ Hi−1(D)→ · · ·

for the algebraic de Rham cohomology groups. Conclude by induction on the dimen-
sion of X that the restriction map

Hi(X/C)→ Hi(U/C)

is injective for i ≤ 2 codimZ − 1, and an isomorphism for i ≤ 2 codimZ − 2.

0.3 ABSOLUTE HODGE CLASSES

In this section, we introduce the notion of absolute Hodge classes in the cohomology
of a complex algebraic variety. While Hodge theory applies to general compact Kähler
manifolds, absolute Hodge classes are brought in as a way to deal with cohomological
properties of a variety coming from its algebraic structure.

This circle of ideas is closely connected to the motivic philosophy as envisioned
by Grothendieck. One of the goals of this text is to give a hint of how absolute Hodge
classes can allow one to give unconditional proofs for results of a motivic flavor.
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0.3.1 Algebraic cycles and the Hodge conjecture

As an example of the need for a suitable structure on the cohomology of a complex
algebraic variety that uses more than usual Hodge theory, let us first discuss some
aspects of the Hodge conjecture.

Let X be a smooth projective variety over C. The singular cohomology groups of
X are endowed with pure Hodge structures such that for any integer p, H2p(X,Z(p))
has weight 0. We denote by Hdgp(X) the group of Hodge classes in H2p(X,Z(p)).

As we showed earlier, if Z is a subvariety of X of codimension p, its cohomology
class [Z] in H2p(X,Q(p)) is a Hodge class. The Hodge conjecture states that the
cohomology classes of subvarieties of X span the Q-vector space generated by Hodge
classes.

CONJECTURE 0.5. Let X be a smooth projective variety over C. For any nonneg-
ative integer p, the subspace of degree p rational Hodge classes

Hdgp(X)⊗Q ⊂ H2p(X,Q(p))

is generated over Q by the cohomology classes of codimension p subvarieties of X .

If X is only assumed to be a compact Kähler manifold, the cohomology groups
H2p(X,Z(p)) still carry Hodge structures, and analytic subvarieties of X still give
rise to Hodge classes. While a general compact Kähler manifold can have very few
analytic subvarieties, Chern classes of coherent sheaves also are Hodge classes on the
cohomology of X .

Note that on a smooth projective complex variety, analytic subvarieties are algebraic
by the GAGA principle of Serre [33], and that Chern classes of coherent sheaves are
linear combinations of cohomology classes of algebraic subvarieties of X . Indeed, this
is true for locally free sheaves and coherent sheaves on a smooth variety have finite free
resolutions. This latter result is no longer true for general compact Kähler manifolds,
and indeed Chern classes of coherent sheaves can generate a strictly larger subspace
than that generated by the cohomology classes of analytic subvarieties.

These remarks show that the Hodge conjecture could be generalized to the Kähler
setting by asking whether Chern classes of coherent sheaves on a compact Kähler man-
ifold generate the space of Hodge classes. This would be the natural Hodge-theoretic
framework for this question. However, the answer to this question is negative, as proved
by Voisin in [36].

THEOREM 0.6. There exists a compact Kähler manifold X such that Hdg2(X)
is nontorsion while for any coherent sheaf F on X , c2(F) = 0, c2(F) denoting the
second Chern class of F .

The proof of the preceding theorem takesX to be a general Weil torus. Weil tori are
complex tori with a specific linear algebra condition which endows them with a nonzero
space of Hodge classes. Note that Weil tori will be instrumental, in the projective case,
in proving Deligne’s theorem on absolute Hodge classes.
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To our knowledge, there is no tentative formulation of a Hodge conjecture for com-
pact Kähler manifolds. It makes it important to make use of ingredients which are
specific to algebraic geometry, such as the field of definition of algebraic de Rham
cohomology, to deal with the Hodge conjecture for projective varieties.

0.3.2 Galois action, algebraic de Rham cohomology and absolute Hodge classes

The preceding paragraph suggests that the cohomology of projective complex varieties
has a richer underlying structure than that of a general Kähler manifold.

This brings us very close to the theory of motives, which Grothendieck envisioned
in the sixties as a way to encompass cohomological properties of algebraic varieties.
Even though these notes won’t use the language of motives, the motivic philosophy is
pervasive to all the results we will state.

Historically, absolute Hodge classes were introduced by Deligne in [16] as a way to
make an unconditional use of motivic ideas. We will review his results in the next sec-
tions. The main starting point is, as we showed earlier, that the singular cohomology of
a smooth proper complex algebraic variety with complex coefficients can be computed
algebraically, using algebraic de Rham cohomology.

Indeed, let X be a smooth proper complex algebraic variety defined over C. As
proved in Theorem 0.2, we have a canonical isomorphism

H∗(Xan,C) ' H∗(Ω•X/C),

where Ω•X/C is the algebraic de Rham complex of the variety X over C. A striking
consequence of this isomorphism is that the singular cohomology of the manifold Xan

with complex coefficients can be computed algebraically. Note that the topology of
the field of complex numbers does not come into play in the definition of algebraic de
Rham cohomology. More generally, if X is a smooth proper variety defined over any
field k of characteristic zero, the hypercohomology of the de Rham complex of X over
Spec k gives a k-algebra which by definition is the algebraic de Rham cohomology of
X over k.

Now let Z be an algebraic cycle of codimension p in X . As we showed earlier, Z
has a cohomology class

[Z] ∈ H2p(Xan,Q(p))

which is a Hodge class, that is, the image of [Z] in H2p(Xan,C(p)) ' H2p(X/C)(p)
lies in

F 0H2p(X/C)(p) = F pH2p(X/C).

Given any automorphism σ of the field C, we can form the conjugate variety Xσ
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defined as the complex variety X ×σ SpecC, that is, by the Cartesian diagram

Xσ σ−1
//

��

X

��
SpecC σ∗ // SpecC.

(2)

It is another smooth projective variety. When X is defined by homogeneous polyno-
mials P1, . . . , Pr in some projective space, then Xσ is defined by the conjugates of the
Pi by σ. In this case, the morphism from Xσ to X in the Cartesian diagram sends the
closed point with coordinates (x0 : . . . : xn) to the closed point with homogeneous
coordinates (σ−1(x0) : . . . : σ−1(xn)), which allows us to denote it by σ−1.

The morphism σ−1 : Xσ → X is an isomorphism of abstract schemes, but it
is not a morphism of complex varieties. Pull-back of Kähler forms still induces an
isomorphism between the de Rham complexes of X and Xσ

(σ−1)∗Ω•X/C
∼→ Ω•Xσ/C. (3)

Taking hypercohomology, we get an isomorphism

(σ−1)∗ : H∗(X/C)
∼→ H∗(Xσ/C), α 7→ ασ.

Note however that this isomorphism is not C-linear, but σ-linear, that is, if λ ∈ C, we
have (λα)σ = σ(λ)ασ . We thus get an isomorphism of complex vector spaces

H∗(X/C)⊗σ C ∼→ H∗(Xσ/C) (4)

between the de Rham cohomology of X and that of Xσ . Here the notation ⊗σ means
that we are taking tensor product with C mapping to C via the morphism σ. Since this
isomorphism comes from an isomorphism of the de Rham complexes, it preserves the
Hodge filtration.

The preceding construction is compatible with the cycle map. Indeed, Z being
as before a codimension p cycle in X , we can form its conjugate Zσ by σ. It is a
codimension p cycle in Xσ . The construction of the cycle class map in de Rham
cohomology shows that we have

[Zσ] = [Z]σ

in H2p(Xσ/C)(p). It lies in F 0H2p(Xσ/C)(p).
Now as before Xσ is a smooth projective complex variety, and its de Rham co-

homology group H2p(Xσ/C)(p) is canonically isomorphic to the singular cohomol-
ogy group H2p((Xσ)an,C(p)). The cohomology class [Zσ] in H2p((Xσ)an,C(p)) '
H2p(Xσ/C)(p) is a Hodge class. This leads to the following definition.

DEFINITION 0.7. Let X be a smooth complex projective variety. Let p be a non-
negative integer, and let α be an element of H2p(X/C)(p). The cohomology class α
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is an absolute Hodge class if for every automorphism σ of C, the cohomology class
ασ ∈ H2p((Xσ)an,C(p)) ' H2p(Xσ/C(p)) is a Hodge class1.

The preceding discussion shows that the cohomology class of an algebraic cycle
is an absolute Hodge class. Taking σ = IdC, we see that absolute Hodge classes are
Hodge classes.

Using the canonical isomorphism H2p(Xan,C(p)) ' H2p(X/C)(p), we will say
that a class in H2p(Xan,C) is absolute Hodge if its image in H2p(X/C)(p) is.

We can rephrase the definition of absolute Hodge cycles in a slightly more intrinsic
way. Let k be a field of characteristic zero, and let X be a smooth projective variety
defined over k. Assume that there exist embeddings of k into C. Note that any variety
defined over a field of characteristic zero is defined over such a field, as it is defined
over a field generated over Q by a finite number of elements.

DEFINITION 0.8. Let p be an integer, and let α be an element of the de Rham
cohomology space H2p(X/k). Let τ be an embedding of k into C, and let τX be the
complex variety obtained from X by base change to C. We say that α is a Hodge class
relative to τ if the image of α in

H2p(τX/C) = H2p(X/k)⊗τ C

is a Hodge class. We say that α is absolute Hodge if it is a Hodge class relative to every
embedding of k into C.

Let τ be any embedding of k into C. Since by standard field theory, any two
embeddings of k into C are conjugated by an automorphism of C, it is straightforward
to check that such a cohomology class α is absolute Hodge if and only if its image in
H2p(τX/C) is. Definition 0.8 has the advantage of not making use of automorphisms
of C.

This definition allows us to work with absolute Hodge classes in a wider setting by
using other cohomology theories.

DEFINITION 0.9. Let k be an algebraic closure of k. Let p be an integer, ` a prime
number, and let α be an element of the étale cohomology space H2p(Xk,Q`(p)). Let
τ be an embedding of k into C, and let τX be the complex variety obtained from Xk

by base change to C. We say that α is a Hodge class relative to τ if the image of α in

H2p((τX)an,Q`(p)) ' H2p(Xk,Q`(p))

is a Hodge class, that is, if it lies in the rational subspace H2p((τX)an,Q(p)) of
H2p((τX)an,Q`(p)) and is a Hodge class. We say that α is absolute Hodge if it is a
Hodge class relative to every embedding of k into C.

1Since H2p((Xσ)an,C) is only considered as a vector space here, the Tate twist might seem super-
fluous. We put it here to emphasize that the comparison isomorphism with de Rham cohomology contains a
factor (2πi)−p.
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Remark. The original definition of absolute Hodge classes in [16] covers both Betti
and étale cohomology. It is not clear whether absolute Hodge classes in the sense of
definition 0.8 and 0.9 are the same, see [16], Question 2.4.

Remark. It is possible to encompass crystalline cohomology in a similar framework,
see [4, 28].

Remark. It is possible to work with absolute Hodge classes on more general varieties.
Indeed, while the definitions we gave above only deal with the smooth projective case,
the fact that the singular cohomology of any quasi-projective variety can be computed
using suitable versions of algebraic de Rham cohomology – whether through logarith-
mic de Rham cohomology, algebraic de Rham cohomology on simplicial schemes or a
combination of the two – makes it possible to consider absolute Hodge classes in the
singular cohomology groups of a general complex variety.

Note here that ifH is a mixed Hodge structure defined over Z with weight filtration
W• and Hodge filtrationF •, a Hodge class inH is an element ofHZ

⋂
F 0HC

⋂
W0HC.

One of the specific features of absolute Hodge classes on quasi-projective varieties is
that they can be found in the odd singular cohomology groups. Let us consider the
one-dimensional case as an example. Let C be a smooth complex projective curve,
and let D be a divisor of degree 0 on C. Let Z be the support of D, and let C ′ be the
complement of Z in C. It is a smooth quasi-projective curve.

As in Exercise 0.4, we have an exact sequence

0→ H1(C,Q(1))→ H1(C ′,Q(1))→ H0(Z,Q)→ H2(C,Q(1)).

The divisor D has a cohomology class d ∈ H0(Z,Q). Since the degree of D is
zero, d maps to zero in H2(C,Q(1)). As a consequence, it comes from an element in
H1(C ′,Q(1)). Now it can be proved that there exists a Hodge class in H1(C ′,Q(1))
mapping to d if and only if some multiple of the divisor D is rationally equivalent to
zero.

In general, the existence of Hodge classes in extensions of mixed Hodge struc-
tures is related to Griffiths’ Abel-Jacobi map, see [9]. The problem of whether these
are absolute Hodge classes is linked with problems pertaining to the Bloch-Beilinson
filtration and comparison results with regulators in étale cohomology, see [23].

While we will not discuss here specific features of this problem, most of the results
we will state in the pure case have extensions to the mixed case, see for instance [12].

0.3.3 Variations on the definition and some functoriality properties

While the goal of these notes is neither to construct nor to discuss the category motives
for absolute Hodge classes, we will need to use functoriality properties of absolute
Hodge classes that are very close to those motivic constructions. In this paragraph, we
extend the definition of absolute Hodge classes to encompass morphisms, multilinear
forms, etc. This almost amounts to defining motives for absolute Hodge classes as in
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[17]. The next paragraph will be devoted to semi-simplicity results through the use of
polarized Hodge structures.

The following generalizes Definition 0.8.

DEFINITION 0.10. Let k be a field of characteristic zero with cardinality less or
equal than the cardinality of C. Let (Xi)i∈I and (Xj)j∈J be smooth projective vari-
eties over C, and let (pi)i∈I , (qj)j∈J , n be integers.Let α be an element of the tensor
product

(
⊗
i∈I

Hpi(Xi/k))⊗ (
⊗
j∈J

Hqj (Xj/k)∗)(n).

Let τ be an embedding of k into C. We say that α is a Hodge class relative to τ if
the image of α in

(
⊗
i∈I

Hpi(Xi/k))⊗ (
⊗
j∈J

Hqj (Xj/k)∗)(n)⊗τ C

= (
⊗
i∈I

Hpi(τXi/C))⊗ (
⊗
j∈J

Hqj (τXj/C)∗)(n)

is a Hodge class. We say that α is absolute Hodge if it is a Hodge class relative to every
embedding of k into C.

As before, if k = C, we can speak of absolute Hodge classes in the group

(
⊗
i∈I

Hpi(Xi,Q))⊗ (
⊗
j∈J

Hqj (Xj ,Q)∗)(n).

If X and Y are two smooth projective complex varieties, and if

f : Hp(X,Q(i))→ Hq(Y,Q(j))

is a morphism of Hodge structures, we will say that f is absolute Hodge, or is given by
an absolute Hodge class, if the element corresponding to f in

Hq(Y,Q)⊗Hp(X,Q)∗(j − i)

is an absolute Hodge class. Similarly, we can define what it means for a multilinear
form, e.g., a polarization, to be absolute Hodge.

This definition allows us to exhibit elementary examples of absolute Hodge classes
as follows.

Let X be a smooth projective complex variety.

1.Cup-product defines a map

Hp(X,Q)⊗Hq(X,Q)→ Hp+q(X,Q).

This map is given by an absolute Hodge class.
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2.Poincaré duality defines an isomorphism

Hp(X,Q)→ H2d−p(X,Q(d))∗,

where d is the dimension of X . This map is given by an absolute Hodge
class.

PROOF. This is formal. Let us write down the computations involved. Assume X
is defined over k (which might be C). We have a cup-product map

Hp(X/k)⊗Hq(X/k)→ Hp+q(X/k).

Let τ be an embedding of k into C. The induced map

Hp(τX/C)⊗Hq(τX/C)→ Hp+q(τX/C)

is cup-product on the de Rham cohomology of τX . We know that cup-product on a
smooth complex projective variety is compatible with Hodge structures, which shows
that it is given by a Hodge class. The conclusion follows, and a very similar argument
proves the result regarding Poincaré duality. �

Morphisms given by absolute Hodge classes behave in a functorial way. The fol-
lowing properties are easy to prove, working as in the preceding example to track down
compatibilities.

Let X , Y and Z be smooth projective complex varieties, and let

f : Hp(X,Q(i))→ Hq(Y,Q(j)), g : Hq(Y,Q(j))→ Hr(Y,Q(k))

be morphisms of Hodge structures.

1.If f is induced by an algebraic correspondence, then f is absolute Hodge.

2.If f and g are absolute Hodge, then g ◦ f is absolute Hodge.

3.Let
f† : H2d′−q(Y,Q(d′ − j))→ H2d−p(X,Q(d− i))

be the adjoint of f with respect to Poincaré duality. Then f is absolute Hodge
if and only if f† is absolute Hodge.

4.If f is an isomorphism, then f is absolute Hodge if and only if f−1 is abso-
lute Hodge.

Note that the last property is not known to be true for algebraic correspondences. For
these, it is equivalent to the Lefschetz standard conjecture, see the next paragraph. We
will need a refinement of this property as follows.
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Let X and Y be smooth projective complex varieties, and let

p : Hp(X,Q(i))→ Hp(X,Q(i)) and q : Hq(Y,Q(j))→ Hq(Y,Q(j))

be projectors. Assume that p and q are absolute Hodge. Let V (resp. W ) be the
image of p (resp. q), and let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be absolute Hodge. Assume that qfp induces an isomorphism from V toW . Then
the composition

Hq(Y,Q(j)) // // W
(qfp)−1

// V �
� // Hp(X,Q(i))

is absolute Hodge.

PROOF. We need to check that after conjugating by any automorphism of C, the
above composition is given by a Hodge class. Since q, f and p are absolute Hodge, we
only have to check that this is true for the identity automorphism, which is the case. �

This is to compare with Grothendieck’s construction of the category of pure motives
as a pseudo-abelian category, see for instance [3].

0.3.4 Classes coming from the standard conjectures and polarizations

LetX be a smooth projective complex variety of dimension d. The cohomology ofX×
X carries a number of Hodge classes which are not known to be algebraic. The standard
conjectures, as stated in [21], predict that the Künneth components of the diagonal and
the inverse of the Lefschetz isomorphism are algebraic. A proof of these would have a
lot of consequences in the theory of pure motives. Let us prove that they are absolute
Hodge classes. More generally, any cohomology class obtained from absolute Hodge
classes by canonical (rational) constructions can be proved to be absolute Hodge.

First, let ∆ be the diagonal of X ×X . It is an algebraic cycle of codimension d in
X ×X , hence it has a cohomology class [∆] in H2d(X ×X,Q(d)). By the Künneth
formula, we have a canonical isomorphism of Hodge structures

H2d(X ×X,Q) '
2d⊕
i=0

Hi(X,Q)⊗H2d−i(X,Q),

hence projectionsH2d(X×X,Q)→ Hi(X,Q)⊗H2d−i(X,Q). Let πi be the compo-
nent of [∆] in Hi(X,Q)⊗H2d−i(X,Q)(d) ⊂ H2d(X ×X,Q)(d). The cohomology
classes πi are the called the Künneth components of the diagonal.

The Künneth components of the diagonal are absolute Hodge cycles.
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PROOF. Clearly the πi are Hodge classes. Let σ be an automorphism of C. Denote
by ∆σ the diagonal of Xσ ×Xσ = (X ×X)σ , and by πσi the Künneth components of
∆σ . These are also Hodge classes.

Let πi,dR (resp. (πσi )dR) denote the images of the πi (resp. πσi ) in the de Rham
cohomology of X × X (resp. Xσ × Xσ). The Künneth formula holds for de Rham
cohomology and is compatible with the comparison isomorphism between de Rham
and singular cohomology. It follows that

(πσi )dR = (πi,dR)σ.

Since the (πσi )dR are Hodge classes, the conjugates of πi,dR are, which concludes the
proof. �

Fix an embedding of X into a projective space, and let h ∈ H2(X,Q(1)) be the
cohomology class of a hyperplane section. The hard Lefschetz theorem states that for
all i ≤ d, the morphism

Ld−i = ∪hd−i : Hi(X,Q)→ H2d−i(X,Q(d− i)), x 7→ x ∪ ξd−i

is an isomorphism.

The inverse fi : H2d−i(X,Q(d− i))→ Hi(X,Q) of the Lefschetz isomorphism
is absolute Hodge.

PROOF. This an immediate consequence of Proposition 0.3.3. �

As an immediate corollary, we get the following result.

COROLLARY 0.11. Let i be an integer such that 2i ≤ d. An element x ∈ H2i(X,Q)
is an absolute Hodge class if and only if x ∪ ξd−2i ∈ H2d−2i(X,Q(d− 2i)) is an ab-
solute Hodge class.

Using the preceding results, one introduce polarized Hodge structures in the setting
of absolute Hodge classes. Let us start with an easy lemma.

LEMMA 0.12. Let X be a smooth projective complex variety of dimension d, and
let h ∈ H2(X,Q(1)) be the cohomology class of a hyperplane section. Let L denote
the operator given by cup-product with ξ. Let i be an integer. Consider the Lefschetz
decomposition

Hi(X,Q) =
⊕
j≥0

LjHi−2j(X,Q)prim

of the cohomology of X into primitive parts. Then the projection of Hi(X,Q) onto
LjHi−2j(X,Q)prim with respect to the Lefschetz decomposition is given by an abso-
lute Hodge class.
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PROOF. By induction, it is enough to prove that the projection of Hi(X,Q) onto
LHi−2(X,Q) is given by an absolute Hodge class. While this could be proved by an
argument of Galois equivariance as before, consider the composition

L ◦ fi ◦ Ld−i+1 : Hi(X,Q)→ Hi(X,Q)

where fi : H2d−i(X,Q)→ Hi(X,Q) is the inverse of the Lefschetz operator. It is the
desired projection since Hk(S,Q)prim is the kernel of Ld−i+1 in Hi(S,Q) . �

This allows for the following result, which shows that the Hodge structures on the
cohomology of smooth projective varieties can be polarized by absolute Hodge classes.

Let X be a smooth projective complex variety and k be an integer. There exists
an absolute Hodge class giving a pairing

Q : Hk(X,Q)⊗Hk(X,Q)→ Q(−k)

which turns Hk(X,Q) into a polarized Hodge structure.

PROOF. Let d be the dimension of X . By the hard Lefschetz theorem, we can
assume k ≤ d. Let H be an ample line bundle on X with first Chern class h ∈
H2(X,Q(1), and let L be the endomorphism of the cohomology of X given by cup-
product with h. Consider the Lefschetz decomposition

Hk(X,Q) =
⊕
i≥0

LiHk−2i(X,Q)prim

of Hk(X,Q) into primitive parts. Let s be the linear automorphism of Hk(X,Q)
which is given by multiplication by (−1)i on LiHk−2i(X,Q)prim.

By the Hodge index theorem, the pairing

Hk(X,Q)⊗Hk(X,Q)→ Q(1), α⊗ β 7→
∫
X

α ∪ Ld−k(s(β))

turns H2p(X,Q) into a polarized Hodge structure.
By Lemma 0.12, the projections ofH2p(X,Q) onto the factorsLiH2p−2i(X,Q)prim

are given by absolute Hodge classes. It follows that the morphism s is given by an ab-
solute Hodge class.

Since cup-product is given by an absolute Hodge class, see 0.3.3, and L is induced
by an algebraic correspondence, it follows that the pairing Q is given by an absolute
Hodge class, which concludes the proof of the proposition. �

Let X and Y be smooth projective complex varieties, and let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be a morphism of Hodge structures. Fix polarizations on the cohomology groups
of X and Y given by absolute Hodge classes. Then the orthogonal projection
of Hp(X,Q(i)) onto Ker f and the orthogonal projection of Hq(Y,Q(j)) onto
Im f) are given by absolute Hodge classes.
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PROOF. The proof of this result is a formal consequence of the existence of polar-
izations by absolute Hodge classes. It is easy to prove that the projections we consider
are absolute using an argument of Galois equivariance as in the preceding paragraph.
Let us however give an alternate proof from linear algebra. The abstract argument cor-
responding to this proof can be found in [1, Section 3]. We will only prove that the
orthogonal projection of Hp(X,Q(i)) onto Ker f is absolute Hodge, the other state-
ment being a consequence via Poincaré duality.

For ease of notation, we will not write down Tate twists. They can be recovered by
weight considerations. By Poincaré duality, the polarization on Hp(X,Q) induces an
isomorphism

φ : Hp(X,Q)→ H2d−p(X,Q),

where d is the dimension of X , which is absolute Hodge since the polarization is.
Similarly, the polarization on Hq(Y,Q) induces a morphism

ψ : Hq(Y,Q)→ H2d′−q(Y,Q)

where d′ is the dimension of Y , which is given by an absolute Hodge class.
Consider the following diagram, which does not commute

Hp(X,Q)

f

��

φ // H2d−p(X,Q)

Hq(Y,Q)
ψ // H2d′−q(Y,Q)

f†

OO
,

and consider the morphism

h : Hp(X,Q)→ Hp(X,Q), x 7→ (φ−1 ◦ f† ◦ ψ ◦ f)(x).

Since all the morphisms in the diagram above are given by absolute Hodge classes, h
is. Let us compute the kernel and the image of h.

Let x ∈ Hp(X,Q). We have h(x) = 0 if and only if f†ψf(x) = 0, which means
that for all y in Hp(X,Q),

f†ψf(x) ∪ y = 0,

that is, since f and f† are transpose of each other :

ψf(x) ∪ f(y) = 0,

which exactly means that f(x) is orthogonal to f(Hp(X,Q)) with respect to the po-
larization of Hq(Y,Q). Now the space f(Hp(X,Q)) is a Hodge substructure of the
polarized Hodge structure Hq(Y,Q). As such, it does not contain any nonzero totally
isotropic element. This implies that f(x) = 0 and shows that

Kerh = Ker f.
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Since f and f† are transpose of each other, the image of h is clearly contained in
(Ker f)⊥. Considering the rank of h, this readily shows that

Imh = (Ker f)⊥.

The two subspaces Kerh = Ker f and Imh = (Ker f)⊥ of Hp(X,Q) are in
direct sum. By standard linear algebra, it follows that the orthogonal projection p of
Hp(X,Q) onto (Ker f)⊥ is a polynomial in h with rational coefficients. Since h is
given by an absolute Hodge class, so is p, as well as Id − p, which is the orthogonal
projection onto Ker f . �

COROLLARY 0.13. Let X and Y be two smooth projective complex varieties, and
let

f : Hp(X,Q(i))→ Hq(Y,Q(j))

be a morphism given by an absolute Hodge class. Let α be an absolute Hodge class in
the image of f . Then there exists an absolute Hodge class β ∈ Hp(X,Q(i)) such that
f(β) = α.

PROOF. By Proposition 0.3.4, the orthogonal projection of Hp(X,Q(i)) to the
subspace (Ker f)⊥ and the orthogonal projection of Hq(Y,Q(j)) to Im f are given by
absolute Hodge classes. Now Proposition 0.3.3 shows that the composition

Hq(Y,Q(j)) // // Im f
(qfp)−1

// (Ker f)⊥
� � // Hp(X,Q(i))

is absolute Hodge. As such, it sends α to an absolute Hodge class β. Since α belongs
to the image of f , we have f(β) = α. �

The results we proved in this paragraph and the preceding one are the ones needed
to construct a category of motives for absolute Hodge cycles and prove it is a semi-
simple abelian category. This is done in [17]. In that sense, absolute Hodge classes
provide a way to work with an unconditional theory of motives, to quote André.

We actually proved more. Indeed, while the explicit proofs we gave of Proposition
0.12 and Proposition 0.3.4 might seem a little longer than what would be needed, they
provide the cohomology classes we need using only classes coming from the standard
conjectures. This is the basis for André’s notion of motivated cycles described in [1].
This paper shows that a lot of the results we obtain here about the existence of some
absolute Hodge classes can be actually strengthened to motivated cycles. In particular,
the algebraicity of the absolute Hodge classes we consider, which is a consequence of
the Hodge conjecture, is most of the time implied by the standard conjectures.

0.3.5 Absolute Hodge classes and the Hodge conjecture

Let X be a smooth projective complex variety. We proved earlier that the cohomology
class of an algebraic cycle in X is absolute Hodge. This remark allows us to split the
Hodge conjecture in the two following conjectures.
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CONJECTURE 0.14. Let X be a smooth projective complex variety. Let p be a
nonnegative integer, and let α be an element of H2p(X,Q(p)). Then α is a Hodge
class if and only if it is an absolute Hodge class.

CONJECTURE 0.15. Let X be a smooth projective complex variety. For any non-
negative integer p, the subspace of degree p absolute Hodge classes is generated over
Q by the cohomology classes of codimension p subvarieties of X .

These statements do address the problem we raised in paragraph 0.3.1. Indeed,
while these two conjectures together imply the Hodge conjecture, neither of them
makes sense in the setting of Kähler manifolds. Indeed, automorphisms of C other
than the identity and complex conjugation are very discontinuous – e.g., they are not
measurable. This makes it impossible to give a meaning to the conjugate of a complex
manifold by an automorphism of C.

Even for algebraic varieties, the fact that automorphisms of C are highly discon-
tinuous appears. Let σ be an automorphism of C, and let X be a smooth projective
complex variety. Equation (4) induces a σ-linear isomorphism

(σ−1)∗ : H∗(Xan,C)→ H∗((Xσ)an,C)

between the singular cohomology with complex coefficients of the complex manifolds
underlying X and Xσ . Conjecture 0.14 means that Hodge classes in H∗(Xan,C)
should map to Hodge classes in H∗((Xσ)an,C). In particular, they should map to
elements of the rational subspace H∗((Xσ)an,Q).

However, it is not to be expected that (σ−1)∗ mapsH∗(Xan,Q) toH∗((Xσ)an,Q).
It can even happen that the two algebras H∗(Xan,Q) and H∗((Xσ)an,Q) are not
isomorphic, see [11]. This implies in particular that the complex varieties Xan and
(Xσ)an need not be homeomorphic, as was first shown by Serre in [34], while the
schemes X and Xσ are isomorphic. This also shows that singular cohomology with
rational algebraic coefficients can not be defined algebraically2.

The main goal of these notes is to discuss Conjecture 0.14. We will give a number of
example of absolute Hodge classes which are not known to be algebraic, and describe
some applications. While Conjecture 0.15 seems to be completely open at the time, we
can make two remarks about it.

Let us first state a result which might stand as a motivation for the statement of this
conjecture. We mentioned above that conjugation by an automorphism of C does not
in general preserve singular cohomology with rational coefficients, but it does preserve
absolute Hodge classes by definition.

Let X be a smooth projective complex variety. The singular cohomology with
rational coefficients of the underlying complex manifold Xan is spanned by the co-
homology classes of images of real submanifolds of Xan. The next result, see [39,

2While the isomorphism we gave between the algebras H∗(Xan,C) and H∗((Xσ)an,C) is not C-
linear, it is possible to show using étale cohomology that there exists a C-linear isomorphism between these
two algebras, depending on an embedding of Ql into C.
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Lemma 28] for a related statement, shows that among closed subsets of Xan for the
usual topology, algebraic subvarieties are the only one that remain closed after conju-
gation by an automorphism of C.

Recall that if σ is an automorphism of C, we have an isomorphism of schemes

σ : X → Xσ.

It sends complex points of X to complex points of Xσ .

Let X be a complex variety, and let F be a closed subset of Xan. Assume that for
any automorphism σ of C, the subset

σ(F ) ⊂ Xσ(C)

is closed in (Xσ)an. Then F is a countable union of algebraic subvarieties of X .
If furthermore X is proper, then F is an algebraic subvariety of X .

Note that we consider closed subsets for the usual topology of Xan, not only for the
analytic one.

PROOF. Using induction on the dimension of X , we can assume that F is not
contained in a countable union of proper subvarieties of X . We want to prove that
F = X . Using a finite map fromX to a projective space, we can assume thatX = AnC.
Our hypothesis is thus that F is a closed subset of Cn which is not contained in a
countable union of proper subvarieties of Cn, such that for any automorphism of C,
σ(F ) = {(σ(x1), . . . , σ(xn)), (x1, . . . , xn) ∈ Cn} is closed in Cn. We will use an
elementary lemma.

LEMMA 0.16. Let k be a countable subfield of C. There exists a point (x1, . . . , xn)
in F such that the complex numbers (x1, . . . , xn) are algebraically independent over
k.

PROOF. Since k is countable, there exists only a countable number of algebraic
subvarieties of Cn defined over k. By our assumption on F , there exists a point of F
which does not lie in any proper algebraic variety defined over k. Such a point has
coordinates which are algebraically independent over k. �

Using the preceding lemma and induction, we can find a sequence of points

pi = (xi1, . . . , x
i
n) ∈ F

such that the (xij)i∈N,j≤n are algebraically independent over Q. Now let (yij)i∈N,j≤n be
a sequence of algebraically independent points in Cn such that {(yi1, . . . , yin), i ∈ N}
is dense in Cn. We can find an automorphism σ of C mapping xij to yij for all i, j.
The closed subset of Cn σ(F ) contains a dense subset of Cn, hence σ(F ) = Cn. This
shows that F = Cn and concludes the proof of the first part. The proper case follows
using a standard compactness argument. �



CharlesSchnell July 5, 2013 6x9

23

Given that absolute Hodge classes are classes in the singular cohomology groups
that are, in some sense, preserved by automorphisms of C 3 and that by the preceding
result, algebraic subvarieties are the only closed subsets with a good behavior with
respect to the Galois action, this might serve as a motivation for Conjecture 0.15.

Another, more precise, reason that explains why Conjecture 0.15 might be more
tractable than the Hodge conjecture is given by the work of André around motivated
cycles in [1]. Through motivic considerations, André does indeed show that for most of
the absolute Hodge classes we know, Conjecture 0.15 is actually a consequence of the
standard conjectures, which, at least in characteristic zero, seem considerably weaker
than the Hodge conjecture.

While we won’t prove such results, it is to be noted that the proofs we gave in
Paragraphs 0.3.3 and 0.3.4 were given so as to imply André’s results for the absolute
Hodge classes we will consider. The interested reader should have no problem filling
the gaps.

In the following sections, we will not use the notation Xan for the complex man-
ifold underlying a complex variety X anymore, but rather, by an abuse of notation,
use X to refer to both objects. The context will hopefully help the reader avoid any
confusion.

0.4 ABSOLUTE HODGE CLASSES IN FAMILIES

This section deals with the behavior of absolute Hodge classes under deformations. We
will focus on consequences of the algebraicity of Hodge bundles. We prove Deligne’s
principle B, which states that absolute Hodge classes are preserved by parallel trans-
port, and discuss the link between Hodge loci and absolute Hodge classes as in [38].
The survey [40] contains a beautiful account of similar results.

We only work here with projective families. Some aspects of the quasi-projective
case are treated in [12].

0.4.1 The variational Hodge conjecture and the global invariant cycle theorem

Before stating Deligne’s Principle B of [16], let us explain a variant of the Hodge
conjecture.

Let S be a smooth connected complex quasi-projective variety, and let π : X → S
be a smooth projective morphism. Let 0 be a complex point of S, and, for some integer
p let α be a cohomology class in H2p(X0,Q(p)). Assume that α is the cohomology
class of some codimension p algebraic cycle Z0, and that α extends as a section α̃ of
the local system R2pπ∗Q(p) on S.

In [20, footnote 13], Grothendieck makes the following conjecture.

CONJECTURE 0.17. (Variational Hodge conjecture) For any complex point s of S,
the class α̃s is the cohomology class of an algebraic cycle.

3See [16, Question 2.4], where the questions of whether these are the only ones is raised.



24

CharlesSchnell July 5, 2013 6x9

Using the Gauss-Manin connection and the isomorphism between de Rham and
singular cohomology, we can formulate an alternative version of the variational Hodge
conjecture in de Rham cohomology. For this, keeping the notations as above, we have a
coherent sheafH2p = R2pπ∗Ω

•
X/S which computes the relative de Rham cohomology

of X over S. As we saw earlier, it is endowed with a canonical connection, the Gauss-
Manin connection∇.

CONJECTURE 0.18. (Variational Hodge conjecture for de Rham cohomology) Let
β be a cohomology class in H2p(X0/C). Assume that β is the cohomology class of
some codimension p algebraic cycle Z0, and that β extends as a section β̃ of the coher-
ent sheaf H2p = R2pπ∗Ω

•
X/S such that β̃ is flat for the Gauss-Manin connection. The

variational Hodge conjecture states that for any complex point s of S, the class β̃s is
the cohomology class of an algebraic cycle.

Remark. Note that both these conjectures are clearly false in the analytic setting. In-
deed, if one takes S to be a simply connected subset of Cn, the hypothesis that α
extends to a global section of R2pπ∗Q(p) over S is automatically satisfied since the
latter local system is trivial. This easily gives rise to counterexamples even in degree 2.

Conjecture 0.17 and 0.18 are equivalent.

PROOF. The de Rham comparison isomorphism between singular and de Rham
cohomology in a relative context takes the form of a canonical isomorphism

R2pπ∗Ω
•
X/S ' R

2pπ∗Q(p)⊗Q OS . (5)

Note that this formula is not one from algebraic geometry. Indeed, the sheafOS de-
notes here the sheaf of holomorphic functions on the complex manifold S. The derived
functor R2pπ∗ on the left is a functor between categories of complexes of holomorphic
coherent sheaves, while the one on the right is computed for sheaves with the usual
complex topology. The Gauss-Manin connection is the connection on R2pπ∗Ω

•
X/S for

which the local systemR2pπ∗Q(p) is constant. As we saw earlier, the locally free sheaf
R2pπ∗Ω

•
X/S is algebraic, i.e., is induced by a locally free sheaf on the algebraic variety

S, as well as the Gauss-Manin connection.
Given β a cohomology class in the de Rham cohomology group H2p(X0/C) as

above, we know that β belongs to the rational subspace H2p(X0,Q(p)) because it
is the cohomology class of an algebraic cycle. Furthermore, since β̃ is flat for the
Gauss-Manin connection and is rational at one point, it corresponds to a section of the
local system R2pπ∗Q(p) under the comparison isomorphism above. This shows that
Conjecture 0.17 implies Conjecture 0.18.

On the other hand, sections of the local systemR2pπ∗Q(p) induce flat holomorphic
sections of the coherent sheaf R2pπ∗Ω

•
X/S . We have to show that they are algebraic.

This is a consequence of the following important result, which is due to Deligne.

THEOREM 0.19. (Global invariant cycle theorem) Let π : X → S be a smooth
projective morphism of quasi-projective complex varieties, and let i : X ↪→ X be a
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smooth compactification of X . Let 0 be complex point of S, and let π1(S, 0) be the
fundamental group of S. For any integer k, the space of monodromy-invariant classes
of degree k

Hk(X0,Q)π1(S,0)

is equal to the image of the restriction map

i∗0 : Hk(X ,Q)→ Hk(X0,Q),

where i0 is the inclusion of X0 in X .

In the theorem, the monodromy action is the action of the fundamental group
π1(S, 0) on the cohomology groups of the fiber X0. Note that the theorem implies
that the space Hk(X0,Q)π1(S,0) is a sub-Hodge structure of Hk(X0,Q). However, the
fundamental group of S does not in general act by automorphisms of Hodge structures.

The global invariant cycle theorem implies the algebraicity of flat holomorphic sec-
tions of the vector bundle R2pπ∗Ω

•
X/S as follows. Let β̃ be such a section, and keep

the notation of the theorem. By definition of the Gauss-Manin connection, β̃ corre-
sponds to a section of the local system R2pπ∗C under the isomorphism 5, that is, to a
monodromy-invariant class in H2p(X0,C). The global invariant cycle theorem shows,
using the comparison theorem between singular and de Rham cohomology on X , that
β̃ comes from a de Rham cohomology class b in H2p(X/C). As such, it is algebraic.

The preceding remarks readily show the equivalence of the two versions of the
variational Hodge conjecture. �

The next proposition shows that the variational Hodge conjecture is actually a part
of the Hodge conjecture. This fact is a consequence of the global invariant cycle the-
orem. The following proof will be rewritten in the next paragraph to give results on
absolute Hodge cycles.

Let S be a smooth connected quasi-projective variety, and let π : X → S be
a smooth projective morphism. Let 0 be a complex point of S, and let p be an
integer.

1.Let α be a cohomology class in H2p(X0,Q(p)). Assume that α is a Hodge
class and that α extends as a section α̃ of the local system R2pπ∗Q(p) on S.
Then for any complex point s of S, the classes α̃s is a Hodge class.

2.Let β be a cohomology class inH2p(X0/C). Assume that β is a Hodge class
and that β extends as a section β̃ of the coherent sheafR2pπ∗Ω

•
X/S such that

β̃ is flat for the Gauss-Manin connection. Then for any complex point s of
S, the classes β̃s is a Hodge class.

As an immediate corollary, we get the following.

COROLLARY 0.20. The Hodge conjecture implies the variational Hodge conjec-
ture.



26

CharlesSchnell July 5, 2013 6x9

PROOF OF THE PROPOSITION. The two statements are equivalent by the argu-
ments of Proposition 0.4.1. Let us keep the notations as above. We want to prove
that for any complex point s of S, the class α̃s is a Hodge class. Let us show how this
is a consequence of the global invariant cycle theorem. This is a simple consequence of
Corollary 0.13 in the – easier – context of Hodge classes. Let us prove the result from
scratch.

As in Proposition 0.3.4, we can find a pairing

H2p(X ,Q)⊗H2p(X ,Q)→ Q(1)

which turns H2p(X ,Q) into a polarized Hodge structure.
Let i : X ↪→ X be a smooth compactification of X , and let i0 be the inclusion of

X0 in X .
By the global invariant cycle theorem, the morphism

i∗0 : H2p(X ,Q)→ H2p(X0,Q)π1(S,0)

is surjective. It restricts to an isomorphism of Hodge structures

i∗0 : (Keri∗0)⊥ → H2p(X0,Q)π1(S,0),

hence a Hodge class a ∈ (Keri∗0)⊥ ⊂ H2p(X ,Q) mapping to α. Indeed, saying that
α extends to a global section of the local system R2pπ∗Q(p) exactly means that α is
monodromy-invariant.

Now let is be the inclusion of Xs in X . Since S is connected, we have α̃s = i∗s(a),
which shows that α̃s is a Hodge class. �

It is an important fact that the variational Hodge conjecture is a purely algebraic
statement. Indeed, we saw earlier that both relative de Rham cohomology and the
Gauss-Manin connection can be defined algebraically. This is to be compared to the
above discussion of the transcendental aspect of the Hodge conjecture, where one can-
not avoid to use singular cohomology, which cannot be defined in a purely algebraic
fashion as it does depend on the topology of C.

Very little seems to be known about the variational Hodge conjecture, see however
[5].

0.4.2 Deligne’s Principle B

In this paragraph, we state and prove the so-called Principle B for absolute Hodge
cycles, which is due to Deligne. It shows that the variational Hodge conjecture is true
if one replaces algebraic cohomology classes by absolute Hodge classes.

THEOREM 0.21. (Principle B, [16, THeorem 2.12]) Let S be a smooth connected
complex quasi-projective variety, and let π : X → S be a smooth projective morphism.
Let 0 be a complex point of S, and, for some integer p let α be a cohomology class
in H2p(X0,Q(p)). Assume that α is an absolute Hodge class and that α extends as a
section α̃ of the local system R2pπ∗Q(p) on S. Then for any complex point s of S, the
class α̃s is absolute Hodge.
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As in Proposition 0.4.1, this is equivalent to the following rephrasing.

THEOREM 0.22. (Principle B for de Rham cohomology) Let S be a smooth con-
nected quasi-projective variety, and let π : X → S be a smooth projective morphism.
Let 0 be a complex point of S, and, for some integer p let β be a cohomology class in
H2p(X0/C). Assume that β is an absolute Hodge class and that β extends as a flat
section β̃ of the locally free sheafH2p = R2pπ∗Ω

•
X/S endowed with the Gauss-Manin

connection. Then for any complex point s of S, the class β̃s is absolute Hodge.

We will give two different proofs of this result to illustrate the techniques we intro-
duced earlier. Both rely on Proposition 0.4.1, and on the global invariant cycle theorem.
The first one proves the result as a consequence of the algebraicity of the Hodge bun-
dles and of the Gauss-Manin connection. It is essentially Deligne’s proof in [16]. The
second proof elaborates on polarized Hodge structures and is inspired by André’s ap-
proach in [1].

PROOF. We work with de Rham cohomology. Let σ be an automorphism of C.
Since β̃ is a global section of the locally free sheaf H2p, we can form the conjugate
section β̃σ of the conjugate sheaf (H2p)σ on Sσ . Now as in 0.3.2, this sheaf identifies
with the relative de Rham cohomology of X σ over Sσ .

Fix a complex point s in S. We want to show that the class β̃s is absolute Hodge.
This means that for any automorphism σ of C, the class β̃σσ(s) is a Hodge class in the

cohomology of X σσ(s). Now since β = β̃0 is an absolute Hodge class by assumption,

β̃σσ(0) is a Hodge class.
Since the construction of the Gauss-Manin connection commutes with base change,

the Gauss-Manin connection ∇σ on the relative de Rham cohomology of X σ over Sσ

is the conjugate by σ of the Gauss-Manin connection onH2p.
These remarks allow us to write

∇σβ̃σ = (∇β̃)σ = 0

since β̃ is flat. This shows that β̃σ is a flat section of the relative de Rham cohomology
of X σ over Sσ . Since β̃σσ(0) is a Hodge class, Proposition 0.4.1 shows that β̃σσ(s) is a
Hodge class, which is what we needed to prove. �

Note that while the above proof may seem just a formal computation, it actually
uses in an essential way the important fact that both relative de Rham cohomology and
the Gauss-Manin connection are algebraic object, which makes it possible to conjugate
them by field automorphisms.

Let us give a second proof of Principle B.

PROOF. This is a consequence of Corollary 0.13. Indeed, let i : X ↪→ X be a
smooth compactification of X , and let i0 be the inclusion of X0 in X .

By the global invariant cycle theorem, the morphism

i∗0 : H2p(X ,Q)→ H2p(X0,Q)π1(S,0)
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is surjective. As a consequence, since α is monodromy-invariant, it belongs to the
image of i∗0. By Corollary 0.13, we can find an absolute Hodge class a ∈ H2p(X ,Q)
mapping to α. Now let is be the inclusion of Xs in X . Since S is connected, we have

α̃s = i∗s(a),

which shows that α̃s is an absolute Hodge class, and concludes the proof. �

Note that following the remarks we made around the notion of motivated cycles,
this argument could be used to prove that the standard conjectures imply the variational
Hodge conjecture, see [1].

Principle B will be one of our main tools in proving that some Hodge classes are
absolute. When working with families of varieties, it allows us to work with specific
members of the family where algebraicity results might be known. When proving
that the Kuga-Satake correspondence between a projective K3 surface and its Kuga-
Satake abelian variety is absolute Hodge, it will make it possible to reduce to the case
of Kummer surfaces, while in the proof of Deligne’s theorem that Hodge classes on
abelian varieties are absolute, it allows for a reduction to the case of abelian varieties
with complex multiplication. Its mixed case version is instrumental to the results of
[12].

0.4.3 The locus of Hodge classes

In this paragraph, we recall the definitions of the Hodge locus and the locus of Hodge
classes associated to a variation of Hodge structures and discuss their relation to the
Hodge conjecture. The study of those has been started by Griffiths in [21]. References
on this subject include [35, Chapter 17] and [40]. To simplify matters, we will only
deal with variations of Hodge structures coming from geometry, that is, coming from
the cohomology of a family of smooth projective varieties. We will point out statements
that generalize to the quasi-projective case.

Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth
projective morphism. Let p be an integer. As earlier, consider the Hodge bundles

H2p = R2pπ∗Ω
•
X/S

together with the Hodge filtration

F kH2p = R2pπ∗Ω
•≥k
X/S .

These are algebraic vector bundles over S, as we saw before. They are endowed
with the Gauss-Manin connection

∇ : H2p → H2p ⊗ Ω1
X/S .

Furthermore, the local system

H2p
Q = R2pπ∗Q(p)
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injects intoH2p and is flat with respect to the Gauss-Manin connection.
Let us start with a set-theoretic definition of the locus of Hodge classes.

DEFINITION 0.23. The locus of Hodge classes in H2p is the set of pairs (α, s),
s ∈ S(C), α ∈ H2p

s , such that α is a Hodge class, that is, α ∈ F pH2p
s and α ∈ H2p

Q,s.

It turns out that the locus of Hodge classes is the set of complex points of a count-
able union of analytic subvarieties of H2p. This can be seen as follows, see the above
references for a thorough description. Let (α, s) be in the locus of Hodge classes of
H2p. We want to describe the component of the locus of Hodge classes passing through
(α, s) as an analytic variety in a neighborhood of (α, s).

On a neighborhood of s, the class α̃ extends to a flat holomorphic section of H2p.
Now the points (α̃t, t), for t in the neighborhood of s, which belong to the locus of
Hodge classes are the points of an analytic variety, namely the variety defined by the
(α̃t, t) such that α̃t vanishes in the holomorphic (and even algebraic) vector bundle
H2p/F pH2p.

It follows from this remark that the locus of Hodge classes is a countable union of
analytic subvarieties ofH2p. Note that if we were to consider only integer cohomology
classes to define the locus of Hodge classes, we would actually get an analytic subva-
riety. The locus of Hodge classes was introduced in [10]. It is of course very much
related to the more classical Hodge locus.

DEFINITION 0.24. The Hodge locus associated to H2p is the projection on S of
the locus of Hodge classes. It is a countable union of analytic subvarieties of S.

Note that the Hodge locus is interesting only when H2p has no flat global section
of type (p, p). Indeed, if it has, the Hodge locus is S itself. However, in this case, one
can always split off any constant variation of Hodge structures for H2p and consider
the Hodge locus for the remaining variation of Hodge structures.

The reason why we are interested in these loci is the way they are related to the
Hodge conjecture. Indeed, one has the following.

If the Hodge conjecture is true, then the locus of Hodge classes and the Hodge
locus for H2p → S are countable unions of closed algebraic subsets of H2p and
S respectively.

PROOF. We only have to prove the proposition for the locus of Hodge classes. If the
Hodge conjecture is true, the locus of Hodge classes is the locus of cohomology classes
of algebraic cycles with rational coefficients. These algebraic cycles are parametrized
by Hilbert schemes for the family X/B. Since these are proper and have countably
many connected components, the Hodge locus is a countable union of closed algebraic
subsets ofH2p. �

This consequence of the Hodge conjecture is a theorem proved in [10].

THEOREM 0.25. (Cattani – Deligne – Kaplan) With the notations above, the locus
of Hodge classes and the Hodge locus for H2p → S are countable unions of closed
algebraic subsets ofH2p and S respectively.
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As before, the preceding discussion can be led in the quasi-projective case. Gen-
eralized versions of the Hodge conjecture lead to similar algebraicity predictions, and
indeed the corresponding algebraicity result for variations of mixed Hodge structures
is proved in [8], after the work of Brosnan-Pearlstein on the zero locus of normal func-
tions in [7].

0.4.4 Galois action on relative de Rham cohomology

Let S be a smooth irreducible quasi-projective variety over a field k, and let π : X → S
be a smooth projective morphism. Let p be an integer. Consider again the Hodge bun-
dles H2p together with the Hodge filtration F kH2p = R2pπ∗Ω

•≥k
X/S . They are defined

over k.

Let α be a section of H2p over S. Let η be the generic point of S. The class α
induces a class αη in the de Rham cohomology of the generic fiber Xη of π.

Let σ be any embedding of k(S) in C over k. The morphism σ corresponds to a
morphism Spec(C) → η → S, hence it induces a complex point s of SC. We have an
isomorphism

Xη ×k(S) C ' XC,s

and the cohomology class αη pulls back to a class αs in the cohomology of XC,s.
The class αs only depends on the complex point s. Indeed, it can be obtained the

following way. The class α pulls-back as a section αC ofH2p
C over SC. The class αs is

the value of αC at the point s ∈ S(C).
The following rephrases the definition of an absolute Hodge class.

Assume that αη is an absolute Hodge class. If αη is absolute, then αs is a Hodge
class. Furthermore, in case k = Q, αη is absolute if and only if αs is a Hodge
class for all s induced by embeddings σ : Q(S)→ C.

We try to investigate the implications of the previous rephrasing.

LEMMA 0.26. Assume the field k is countable. Then the set of points s ∈ SC(C)
induced by embeddings of k(S) in C over k is dense in SC(C) for the usual topology.

PROOF. Say that a complex point of SC is very general if it does not lie in any
proper algebraic subset of SC defined over k. Since k is countable, the Baire theorem
shows that the set of general points is dense in SC(C) for the usual topology.

Now consider a very general point s. There exists an embedding of k(S) into C
such that the associated complex point of SC is s. Indeed, s being very general exactly
means that the image of the morphism

Spec(C)
s // SC // S

is η, the generic point of S, hence a morphism Spec(C) → η giving rise to s. This
concludes the proof of the lemma. �
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We say that a complex point of SC is very general if it lies in the aforementioned
subset.

THEOREM 0.27. Let S be a smooth irreducible quasi-projective variety over a
subfield k of C with generic point η, and let π : X → S be a smooth projective
morphism. Let p be an integer, and let α be a section ofH2p over S.

1. Assume the class αη ∈ H2p(Xη/k(S)) is absolute Hodge. Then α is flat for the
Gauss-Manin connection and αC is a Hodge class at every complex point of SC.

2. Assume that k = Q. Then the class αη ∈ H2p(Xη/Q(S)) is absolute Hodge
if and only if α is flat for the Gauss-Manin connection and for any connected
component S′ of SC, there exists a complex point s of S′ such that αs is a Hodge
class.

PROOF. All the objects we are considering are defined over a subfield of k that is
finitely generated over Q, so we can assume that k is finitely generated over Q, hence
countable. Let αC be the section of H2p

C over SC obtained by pulling-back α. The
value of the class αC at any general point is a Hodge class. Locally on SC, the bundle
H2p

C with the Gauss-Manin connection is biholomorphic to the flat bundle S × Cn, n
being the rank of H2p

C , and we can assume such a trivialization respects the rational
subspaces.

Under such trivializations, the section αC is given locally on SC by n holomorphic
functions which take rational values on a dense subset. It follows that αC is locally
constant, that is, that αC, hence α, is flat for the Gauss-Manin connection. Since α is
absolute Hodge, αC is a Hodge class at any very general point of SC. Since these are
dense in SC(C), Proposition 0.4.1 shows that αC is a Hodge class at every complex
point of SC. This proves the first part of the theorem.

For the second part, assuming α is flat for the Gauss-Manin connection and αs is
Hodge for points s in ,all the connected components of SC, Proposition 0.4.1 shows
that αs is a Hodge class at all the complex points s of SC. In particular, this true for the
general points of SC, which proves that αη is an absolute Hodge class by Proposition
0.4.4. �

As a corollary, we get the following important result.

THEOREM 0.28. Let k be an algebraically closed subfield of C, and let X be a
smooth projective variety over k. Let α be an absolute Hodge class of degree 2p inXC.
Then α is defined over k, that is, α is the pull-back of an absolute Hodge class in X .

PROOF. The cohomology class α belongs to H2p(XC/C) = H2p(X/k)⊗ C. We
need to show that it lies in H2p(X/k) ⊂ H2p(XC/C), that is, that it is defined over k.

The class α is defined over a fieldK finitely generated over k. SinceK is generated
by a finite number of elements over k, we can find a smooth irreducible quasi-projective
variety S defined over k such that K is isomorphic to k(S). Let X = X × S, and let
π be the projection of X onto S. Saying that α is defined over k(S) means that α is a
class defined at the generic fiber of π. Up to replacing S by a Zariski-open subset, we
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can assume that α extends to a section α̃ of the relative de Rham cohomology group
H2p of X over S. Since α is an absolute Hodge class, Theorem 0.27 shows that α̃ is
flat with respect to the Gauss-Manin connection onH2p.

Since X = X × S, relative de Rham cohomology is trivial, that is, the flat bundle
H2p is isomorphic to H2p(X/k)⊗OS with the canonical connection. Since α̃ is a flat
section over S which is irreducible over the algebraically closed field k, it corresponds
to the constant section with value some α0 in H2p(X/k). Then α is the image of α0 in
H2p(XC/C) = H2p(X/k)⊗ C, which concludes the proof. �

Remark. In case α is the cohomology class of an algebraic cycle, the preceding result
is a consequence of the existence of Hilbert schemes. If Z is an algebraic cycle in
XC, Z is algebraically equivalent to an algebraic cycle defined over k. Indeed, Z
corresponds to a point in some product of Hilbert schemes parameterizing subschemes
of X . These Hilbert schemes are defined over k, so their points with value in k are
dense. This shows the result. Of course, classes of algebraic cycles are absolute Hodge,
so this is a special case of the previous result.

0.4.5 The field of definition of the locus of Hodge classes

In this paragraph, we present some of the results of Voisin in [38]. While they could
be proved using Principle B and the global invariant cycle theorem along a line of
arguments we used earlier, we focus on deducing the theorems as consequences of
statements from the previous paragraph. The reader can consult [40] for the former
approach.

Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth
projective morphism. Let p be an integer, and let H2p = R2pπ∗Ω

•
X/S together with

the Hodge filtration F kH2p = R2pπ∗Ω
•≥k
X/S . Assume π is defined over Q. ThenH2p is

defined over Q, as well as the Hodge filtration. InsideH2p, we have the locus of Hodge
classes as before. It is an algebraic subset ofH2p.

Note that any smooth projective complex variety is isomorphic to the fiber of such
a morphism π over a complex point. Indeed, if X is a smooth projective complex
variety, it is defined over a field finitely generated over Q. Noticing that such a field
is the function field of a smooth quasi-projective variety S defined over Q allows us to
find X → S as before. Of course, S might not be geometrically irreducible.

THEOREM 0.29. Let s be a complex point of S, and let α be a Hodge class in
H2p(Xs/C). Then α is an absolute Hodge class if and only if the connected compo-
nent Zα of the locus of Hodge classes passing through α is defined over Q and the
conjugates of Zα by Gal(Q/Q) are contained in the locus of Hodge classes.

PROOF. Let Z ′ be the smallest algebraic subset defined over Q containing Zα. It
is the Q-Zariski closure of Zα. We want to show that Z ′ is contained in the locus of
Hodge classes if and only if α is absolute Hodge.
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Pulling back to the image of Z ′ and spreading the base scheme S if necessary, we
can reduce to the situation where Z ′ dominates S, and there exists a smooth projective
morphism

πQ : XQ → SQ

defined over Q, such that π is the pull-back of πQ to C, a class αQ inH2p(XQ/S)), and
an embedding of Q(SQ) into C corresponding to the complex point s ∈ S(C) such that
Xs and α are the pullback of XQ,η and αη respectively, where η is the generic point of
S.

In this situation, by the definition of absolute Hodge classes, α is an absolute Hodge
class if and only if αη is. Also, since Z ′ dominates S, Z ′ is contained in the locus of
Hodge classes if and only if α extends as a flat section ofH2p over S which is a Hodge
class at every complex point. Such a section is automatically defined over Q since the
Gauss-Manin connection is. Statement (2) of Theorem 0.27 allows us to conclude the
proof. �

Remark. It is to be noted that the proof uses in an essential way the theorem of
Cattani-Deligne-Kaplan on the algebraicity of Hodge loci.

Recall that Conjecture 0.14 predicts that Hodge classes are absolute. As an imme-
diate consequence, we get the following reformulation.

COROLLARY 0.30. Conjecture 0.14 is equivalent to the following.
Let S be a smooth complex quasi-projective variety, and let π : X → S be a smooth

projective morphism. Assume π is defined over Q. Then the locus of Hodge classes for
π is a countable union of algebraic subsets of the Hodge bundles defined over Q.

It is possible to prove the preceding corollary without resorting to the Cattani-
Deligne-Kaplan theorem using Proposition 0.3.5.

In the light of this result, the study of whether Hodge classes are absolute can be
seen as a study of the field of definition of the locus of Hodge classes. An intermediate
property is to a ask for the component of the locus of Hodge classes passing through a
class α to be defined over Q. In [38], Voisin shows how one can use arguments from the
theory of variations of Hodge structures to give infinitesimal criteria for this to happen.

This is closely related to the rigidity result of Theorem 0.28. Indeed, using the
fact that the Gauss-Manin connection is defined over Q, it is easy to show that the
component of the locus of Hodge classes passing through a class α in the cohomology
of a complex variety defined over Q is defined over Q if and only if α is defined over
Q as a class in algebraic de Rham cohomology.

Let us conclude this section by showing how the study of fields of definition for
Hodge loci is related to the Hodge conjecture. The following is due to Voisin in [38].

THEOREM 0.31. Let S be a smooth complex quasi-projective variety, and let π :
X → S be a smooth projective morphism. Assume π is defined over Q. Let s be a
complex point of S and let α be a Hodge class in H2p(Xs,Q(p)). If the image in S
of the component of the locus of Hodge classes passing through α is defined over Q,
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then the Hodge conjecture for α can be reduced to the Hodge conjecture for varieties
defined over number fields.

PROOF. This is a consequence of the global invariant cycle theorem. Indeed, with
the notation of Theorem 0.19, one can choose the compactification X to be defined
over Q. The desired result follows easily. �

0.5 THE KUGA-SATAKE CONSTRUCTION

In this section, we give our first nontrivial example of absolute Hodge classes. It is due
to Deligne in [14].

Let S be a complex projective K3 surface. We want construct an abelian variety A
and an embedding of Hodge structures

H2(S,Q) ↪→ H1(A,Q)⊗H1(A,Q)

which is absolute Hodge. This is the Kuga-Satake correspondence, see [25], [14].
We will take a representation-theoretic approach to this problem. This paragraph

merely outlines the construction of the Kuga-Satake correspondence, leaving aside part
of the proofs. We refer to the survey [19] for more details. Properties of Spin groups
and their representations can be found in [18, Chapter 20] or [6, Paragraph 9].

0.5.1 Recollection on Spin groups

We follow Deligne’s approach in [14]. Let us start with some linear algebra. Let V
be a finite-dimensional vector space over a field k of characteristic zero with a non-
degenerate quadratic form Q. Recall that the Clifford algebra C(V ) over V is the
algebra defined as the quotient of the tensor algebra

⊕
i≤0 V

⊗i by the relation v⊗ v =
Q(v), v ∈ V . Even though the natural grading of the tensor algebra does not descend
to the Clifford algebra, there is a well-defined sub-algebra C+(V ) of C(V ) which is
the image of

⊕
i≤0 V

⊗2i in C(V ). The algebra C+(V ) is the even Clifford algebra
over V .

The Clifford algebra is endowed with an anti-automorphism x 7→ x∗ such that
(v1. . . . vi)

∗ = vi. . . . v1 if v1, . . . , vi ∈ V . The Clifford group of V is the algebraic
group defined by

CSpin(V ) = {x ∈ C+(V )∗, x.V.x−1 ⊂ V }.

It can be proved that CSpin(V ) a connected algebraic group. By definition, it acts on
V . Let x ∈ CSpin(V ), v ∈ V . We have Q(xvx−1) = xvx−1xvx−1 = xQ(v)x−1 =
Q(v), which shows that CSpin(V ) acts on V through the orthogonal group O(V ),
hence a map fromCSpin(V ) toO(V ). SinceCSpin(V ) is connected, this map factors
through τ : CSpin(V )→ SO(V ). We have an exact sequence

1 // Gm
w // CSpin(V )

τ // SO(V ) // 1 .
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The spinor norm is the morphism of algebraic groups

N : CSpin(V )→ Gm, x 7→ xx∗.

It is well-defined. Let t be the inverse of N . The composite map

t ◦ w : Gm → Gm

is the map x 7→ x−2. The Spin group Spin(V ) is the algebraic group defined as the
kernel of N . The Clifford group is generated by homotheties and elements of the Spin
group.

The Spin group is connected and simply connected. The exact sequence

1→ ±1→ Spin(V )→ SO(V )→ 1

realizes the Spin group as the universal covering of SO(V ).

0.5.2 Spin representations

The Clifford group has two different representations on C+(V ). The first one is the
adjoint representation C+(V )ad. The adjoint action of CSpin(V ) is defined as

x.adv = xvx−1,

where x ∈ CSpin(V ), v ∈ C+(V ). It factors through SO(V ) and is isomorphic to⊕
i

∧2i
V as a representation of CSpin(V ).

The group CSpin(V ) acts on C+(V ) by multiplication on the left, hence a repre-
sentation C+(V )s, with

x.sv = xv,

where x ∈ CSpin(V ), v ∈ C+(V ). It is compatible with the structure of rightC+(V )-
module on C+(V ), and we have

EndC+(V )(C
+(V )s) = C+(V )ad.

Assume k is algebraically closed. We can describe these representations explic-
itly. In case the dimension of V is odd, let W be a simple C+(V )-module. The
Clifford group CSpin(V ) acts on W . This is the spin representation of CSpin(V ).
Then C+(V )s is isomorphic to a sum of copy of W , and C+(V )ad is isomorphic to
Endk(W ) as representations of CSpin(V ).

In case the dimension of V is even, let W1 and W2 be nonisomorphic simple
C+(V )-modules. These are the half-spin representations of CSpin(V ). Their sum
W is called the spin representation. Then C+(V )s is isomorphic to a sum of copy
of W , and C+(V )ad is isomorphic to Endk(W1) × Endk(W2) as representations of
CSpin(V ).
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0.5.3 Hodge structures and the Deligne torus

Recall the definition of Hodge structures à la Deligne, see [13]. Let S be the Deligne
torus, that is, the real algebraic group of invertible elements of C. It can be defined as
the Weil restriction of Gm from C to R. We have morphisms of real algebraic groups

Gm
w // S

t // Gm ,

where w is the inclusion of R∗ into C∗ and t maps a complex number z to |z|−2. The
composite map

t ◦ w : Gm → Gm
is the map x 7→ x−2.

Let VZ be a free Z-module of finite rank, and let V = VQ. The datum of a Hodge
structure of weight k on V (or VZ) is the same as the datum of a representation ρ : S →
GL(VR) such that ρw(x) = xkIdVR for all x ∈ R∗. Given a Hodge structure of weight
n, z ∈ C∗ acts on VR by z.v = zpzqv if v ∈ V p,q .

0.5.4 From weight two to weight one

Now assume V is polarized of weight zero with Hodge numbers V −1,1 = V 1,−1 = 1,
V 0,0 6= 0. We say that V (or VZ) is of K3 type. We get a quadratic form Q on VR,
and the representation of S on VR factors through the special orthogonal group of V as
h : S → SO(VR).

LEMMA 0.32. There exists a unique lifting of h to a morphism h̃ : S → CSpin(VR)
such that the following diagram commutes.

Gm
w // S

t //

h̃
��

Gm

Gm
w // CSpin(VR)

t // Gm.

PROOF. It is easy to prove that such a lifting is unique if it exists. The restriction of
Q to P = VR

⋂
(V −1,1 ⊕ V 1,−1) is positive definite. Furthermore, P has a canonical

orientation. Let e1, e2 be a direct orthonormal basis of P . We have e1e2 = −e2e1 and
e2

1 = e2
2 = 1. As a consequence, (e2e1)2 = −1. An easy computation shows that the

morphism a+ ib 7→ a+ be2e1 defines a suitable lifting of h. �

Using the preceding lemma, consider such a lifting h̃ : S → CSpin(V ) of h. Any
representation of CSpin(VR) thus gives rise to a Hodge structure. Let us first con-
sider the adjoint representation. We know that C+(V )ad is isomorphic to

⊕
i

∧2i
V ,

where CSpin(V ) acts on V through SO(V ). It follows that h̃ endows C+(V )ad with
a weight zero Hodge structure. Since V −1,1 = 1, the type of the Hodge structure
C+(V )ad is {(−1, 1), (0, 0), (1,−1)}.

Now assume the dimension of V is odd, and consider the spin representation W .
It is a weight one representation. Indeed, the lemma above shows that C+(V )s is of
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weight one, and it is isomorphic to a sum of copies ofW . SinceC+(V )ad is isomorphic
to Endk(W ) as representations of CSpin(V ), the type of W is {(1, 0), (0, 1)}.

It follows that h̃ endows C+(V )s with an effective Hodge structure of weight one.
It is possible to show that this Hodge structure is polarizable, see [14]. The underlying
vector space has C+(VZ) as a natural lattice. This construction thus defines an abelian
variety. Similar computations show that the same result holds if the dimension of V is
even.

DEFINITION 0.33. The abelian variety defined by the Hodge structure on C+(V )s
with its natural lattice C+(VZ) is called the Kuga-Satake variety associated to VZ. We
denote it by KS(VZ).

THEOREM 0.34. Let VZ be a polarized Hodge structure of K3 type. There exists a
natural injective morphism of Hodge structures

VQ(−1) ↪→ H1(KS(VZ),Q)⊗H1(KS(VZ),Q).

This morphism is called the Kuga-Satake correspondence.

PROOF. Let V = VQ. Fix an element v0 ∈ V that is invertible in C(V ) and
consider the vector space M = C+(V ). It is endowed with a left action of V by the
formula

v.x = vxv0

for v ∈ V , x ∈ C+(V ). This action induces an embeddings

V ↪→ EndQ(C+(V )s)

which is equivariant with respect to the action of CSpin(V ).
Now we can consider EndQ(C+(V )s)(−1) as a subspace of C+(V ) ⊗ C+(V ) =

H1(KS(VZ),Q)⊗H1(KS(VZ),Q) via a polarization ofKS(VZ), and V as a subspace
of C+(V ). This gives an injection

V (−1) ↪→ H1(KS(VZ),Q)⊗H1(KS(VZ),Q)

as desired. The equivariance property stated above shows that this is a morphism of
Hodge structures. �

Remark. Let V be a Hodge structure of K3 type. In order to construct the Kuga-
Satake correspondence associated to V , we can relax a bit the assumption that V is
polarized. Indeed, it is enough to assume that V is endowed with a quadratic form that
is positive definite on (V −1,1⊕V 1,−1)

⋂
VR and such that V 1,−1 and V −1,1 are totally

isotropic subspaces of V .
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0.5.5 The Kuga-Satake correspondence is absolute

LetX be a polarized complexK3 surface. Denote byKS(X) the Kuga-Satake variety
associated to H2(X,Z(1)) endowed with the intersection pairing. Even though this
pairing only gives a polarization on the primitive part of cohomology, the construction
is possible by the preceding remark. Theorem 0.34 gives us a correspondence between
the cohomology groups of X and its Kuga-Satake variety. This is the Kuga-Satake
correspondence for X . We can now state and prove the main theorem of this section.
It is proved by Deligne in [14].

THEOREM 0.35. Let X be a polarized complex K3 surface. The Kuga-Satake
correspondence

H2(X,Q(1)) ↪→ H1(KS(X),Q)⊗H1(KS(X),Q)

is absolute Hodge.

PROOF. Any polarized complex K3 surface deforms to a polarized Kummer sur-
face in a polarized family. Now the Kuga-Satake construction works in families. As a
consequence, by Principle B, see Theorem 0.21, it is enough to prove that the Kuga-
Satake correspondence is absolute Hodge for a variety X which is the Kummer variety
associated to an abelian surface A. In this case, we can even prove the Kuga-Satake
correspondence is algebraic. Let us outline the proof of this result, which has been
proved first by Morrison in [27]. We follow a slightly different path.

First, remark that the canonical correspondence between A and X identifies the
transcendental part of the Hodge structure H2(X,Z(1)) with the transcendental part
of H2(A,Z(1)). Note that the latter Hodge structure is of K3 type. Since this iso-
morphism is induced by an algebraic correspondence between X and A, standard re-
ductions show that it is enough to show that the Kuga-Satake correspondence between
A and the Kuga-Satake abelian variety associated to H2(A,Z(1)) is algebraic. Let us
write U = H1(A,Q) and V = H2(A,Q), considered as vector spaces.

We have V =
∧2

U . The vector space U is of dimension 2, and the weight 1 Hodge
structure on U induces a canonical isomorphism

∧2
V =

∧4
U ' Q. The intersection

pairing Q on V satisfies
∀x, y ∈ V,Q(x, y) = x ∧ y.

Let g ∈ SL(U). The determinant g being 1, g acts trivially on
∧2

V =
∧4

U . As
a consequence, g ∧ g preserves the intersection form on V . This gives a morphism
SL(U) → SO(V ). The kernel of this morphism is ±IdU , and it is surjective by di-
mension counting. Since SL(U) is a connected algebraic group, this gives a canonical
isomorphism SL(U) ' Spin(V ).

The group SL(U) acts onU by the standard action and on its dualU∗ by g 7→ tg−1.
These representations are irreducible, and they are not isomorphic since no nontrivial
bilinear form on U is preserved by SL(U). By standard representation theory, these
are the two half-spin representations of SL(U) ' Spin(V ). As a consequence, the
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Clifford algebra of V is canonically isomorphic to End(U)×End(U∗), and we have a
canonical identification

CSpin(V ) = {(λg, λtg−1), g ∈ SL(U), λ ∈ Gm}.

An element (λg, λtg−1) of the Clifford group acts on the half-spin representations U
and U∗ through its first and second component respectively.

The preceding identifications allow us to conclude the proof. Let h′ : S → GL(U)
be the morphism that defines the weight one Hodge structure on U , and let h : S →
SO(V ) endow V with its Hodge structure of K3 type. Note that if s ∈ C∗, the deter-
minant of h′(s) is |s|4 since U is of dimension 4 and weight 1. Since V =

∧2
U(1) as

Hodge structures, we get that h is the morphism

h : s 7→ |s|−2h′(s) ∧ h′(s).

It follows that the morphism

h̃ : S → CSpin(V ), s 7→ (h′(s), |s|2 th′(s)−1) = (|s||s|−1h′(s)s, |s| t(|s|−1h′(s))−1)

is a lifting of h to CSpin(V ).
Following the previous identifications shows that the Hodge structure induced by

h̃ on U and U∗ are the ones induced by the identifications U = H1(A,Q) and U∗ =
H1(Â,Q), where Â is the dual abelian variety. Since the representation C+(V )s is a
sum of 4 copies of U ⊕ U∗, this gives an isogeny between KS(A) and (A × Â)4 and
shows that the Kuga-Satake correspondence is algebraic, using the identity correspon-
dence between A and itself and the correspondence between A and its dual induced by
the polarization. This concludes the proof. �

Remark. Since the cohomology of a Kummer variety is a direct factor of the coho-
mology of an abelian variety, it is an immediate consequence of Deligne’s theorem on
absolute cycles on abelian varieties that the Kuga-Satake correspondence for Kummer
surfaces is absolute Hodge. However, our proof is more direct and also gives the alge-
braicity of the correspondence in the Kummer case. Few algebraicity results are known
for the Kuga-Satake correspondence, but see [29] for the case of K3 surfaces which are
a double cover of P2 ramified over 6 lines. See also [19], [37] and [32] for further
discussion of this problem.

Remark. In Definition 0.9, we extended the notion of absolute Hodge classes to the
setting of étale cohomology. While we did not use this notion, most results we stated,
for instance Principle B, can be generalized in this setting with little additional work.
This makes it possible to show that the Kuga-Satake correspondence is absolute Hodge
in the sense of Definition 0.9. In the paper [14], Deligne uses this to deduce the Weil
conjectures for K3 surfaces from the Weil conjectures for abelian varieties.
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0.6 DELIGNE’S THEOREM ON HODGE CLASSES ON ABELIAN
VARIETIES

Having introduced the notion of absolute Hodge classes, Deligne went on to prove
the following remarkable theorem, which has already been mentioned several times in
these notes.

THEOREM 0.36 (Deligne [16]). On an abelian variety, all Hodge classes are ab-
solute.

The purpose of the remaining lectures is to explain the proof of Deligne’s theorem.
We follow Milne’s account of the proof [16], with some simplifications due to André
in [2] and Voisin in [40]. .

0.6.1 Overview

In the lectures of Griffiths and Kerr, we have already seen that rational Hodge struc-
tures whose endomorphism algebra contains a CM-field are very special. Since abelian
varieties of CM-type also play a crucial role in the proof of Deligne’s theorem, we shall
begin by recalling two basic definitions.

DEFINITION 0.37. A CM field is a number field E, such that for every embedding
s : E ↪→ C, complex conjugation induces an automorphism of E that is independent of
the embedding. In other words, E admits an involution ι ∈ Aut(E/Q), such that for
any embedding s : E ↪→ C, one has s̄ = s ◦ ι.

The fixed field of the involution is a totally real field F ; concretely, this means that
F = Q(α), where α and all of its conjugates are real numbers. The field E is then of
the form F [x]/(x2 − f), for some element f ∈ F that is mapped to a negative number
under all embeddings of F into R.

DEFINITION 0.38. An abelian varietyA is said to be of CM-type if a CM-fieldE is
contained in End(A)⊗Q, and if H1(A,Q) is one-dimensional as an E-vector space.
In that case, we clearly have 2 dimA = dimQH

1(A,Q) = [E : Q].

We will carry out a more careful analysis of abelian varieties and Hodge structures
of CM-type below. To motivate what follows, let us however briefly look at a criterion
for a simple abelian variety A to be of CM-type that involves the (special) Mumford-
Tate group MT(A) = MT

(
H1(A)

)
.

Recall that the Hodge structure on H1(A,Q) can be described by a morphism of
R-algebraic groups h : U(1) → GL

(
H1(A,R)

)
; the weight being fixed, h(z) acts as

multiplication by zp−q on the space Hp,q(A). Recalling Paragraph 0.5.3, the group
U(1) is the kernel of the weight w : S → Gm. Representations of Ker(w) correspond
to Hodge structures of fixed weight.

We can define MT(A) as the smallest Q-algebraic subgroup of GL
(
H1(A,Q)

)
whose set of real points contains the image of h. Equivalently, it is the subgroup fixing
every Hodge class in every tensor product

T p,q(A) = H1(A)⊗p ⊗H1(A)⊗q.
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We have the following criterion.

A simple abelian variety is of CM-type if and only if its Mumford-Tate group
MT(A) is an abelian group.

Here is a quick outline of the proof of the fact that the Mumford-Tate group of a sim-
ple abelian variety of CM-type is abelian; a more general discussion can be found in
Section 0.6.2 below.

PROOF. Let H = H1(A,Q). The abelian variety A is simple, which implies that
E = End(A) ⊗ Q is a division algebra. It is also the space of Hodge classes in
EndQ(H), and therefore consists exactly of those endomorphisms that commute with
MT(A). Because the Mumford-Tate group is abelian, its action splits H1(A,C) into a
direct sum of character spaces

H ⊗Q C =
⊕
χ

Hχ,

where m · h = χ(m)h for h ∈ Hχ and m ∈ MT(A). Now any endomorphism of Hχ

obviously commutes with MT(A), and is therefore contained in E ⊗Q C. By counting
dimensions, we find that

dimQE ≥
∑
χ

(
dimCHχ

)2 ≥∑
χ

dimCHχ = dimQH.

On the other hand, we have dimQE ≤ dimQH; indeed, since E is a division algebra,
the map E → H , e 7→ e ·h, is injective for every nonzero h ∈ H . Therefore [E : Q] =
dimQH = 2 dimA; moreover, each character space Hχ is one-dimensional, and this
implies that E is commutative, hence a field. To construct the involution ι : E → E
that makes E into a CM-field, choose a polarization ψ : H ×H → Q, and define ι by
the condition that, for every h, h′ ∈ H ,

ψ(e · h, h′) = ψ
(
h, ι(e) · h′

)
.

The fact that −iψ is positive definite on the subspace H1,0(A) can then be used to
show that ι is nontrivial, and that s̄ = s ◦ ι for any embedding of E into the complex
numbers. �

After this preliminary discussion of abelian varieties of CM-type, we return to
Deligne’s theorem on an arbitrary abelian variety A. The proof consists of the fol-
lowing three steps.

1. The first step is to reduce the problem to abelian varieties of CM-type. This is done
by constructing an algebraic family of abelian varieties that links a given A and a
Hodge class in H2p(A,Q) to an abelian variety of CM-type and a Hodge class on
it, and then applying Principle B.



42

CharlesSchnell July 5, 2013 6x9

2. The second step is to show that every Hodge class on an abelian variety of CM-
type can be expressed as a sum of pullbacks of so-called split Weil classes. The
latter are Hodge classes on certain special abelian varieties, constructed by linear
algebra from the CM-field E and its embeddings into C. This part of the proof is
due to André [2].

3. The last step is to show that all split Weil classes are absolute. For a fixed CM-
type, all abelian varieties of split Weil type are naturally parametrized by a certain
hermitian symmetric domain; by Principle B, this allows to reduce the problem to
split Weil classes on abelian varieties of a very specific form, for which the proof
of the result is straightforward.

The original proof by Deligne uses Baily-Borel theory to show that certain families
of abelian varieties are algebraic. Following a suggestion by Voisin, we have chosen
to replace this by the following two results: the existence of a quasi-projective moduli
space for polarized abelian varieties with level structure and the theorem of Cattani-
Deligne-Kaplan in [10] concerning the algebraicity of Hodge loci.

0.6.2 Hodge structures of CM-type

WhenA is an abelian variety of CM-type,H1(A,Q) is an example of a Hodge structure
of CM-type. We now undertake a more careful study of this class of Hodge structures.
Let V be a rational Hodge structure of weight n, with Hodge decomposition

V ⊗Q C =
⊕
p+q=n

V p,q.

Once we fix the weight n, there is a one-to-one correspondence between such decom-
positions and group homomorphisms h : U(1) → GL(V ⊗Q R). Namely, h(z) acts
as multiplication by zp−q = z2p−n on the subspace V p,q . We define the (special)
Mumford-Tate group MT(V ) as the smallest Q-algebraic subgroup of GL(V ) whose
set of real points contains the image of h.

DEFINITION 0.39. We say that V is a Hodge structure of CM-type if the following
two equivalent conditions are satisfied:

(a) The group of real points of MT(V ) is a compact torus.

(b) MT(V ) is abelian and V is polarizable.

A proof of the equivalence may be found in Schappacher’s book [31], Section 1.6.1.
It is not hard to see that any Hodge structure of CM-type is a direct sum of ir-

reducible Hodge structures of CM-type. Indeed, since V is polarizable, it admits a
finite decomposition V = V1 ⊕ · · · ⊕ Vr, with each Vi irreducible. As subgroups of
GL(V ) = GL(V1)×· · ·×GL(Vr), we then have MT(V ) ⊆ MT(V1)×· · ·×MT(Vr),
and since the projection to each factor is surjective, it follows that MT(Vi) is abelian.
But this means that each Vi is again of CM-type. It is therefore sufficient to concen-
trate on irreducible Hodge structures of CM-type. For those, there is a nice structure
theorem that we shall now explain.
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Let V be an irreducible Hodge structure of weight n that is of CM-type, and as
above, denote by MT(V ) its special Mumford-Tate group. Because V is irreducible,
its algebra of endomorphisms

E = EndQ-HS(V )

must be a division algebra. In fact, since the endomorphisms of V as a Hodge structure
are exactly the Hodge classes in EndQ(V ), we see that E consists of all rational endo-
morphisms of V that commute with MT(V ). If TE = E× denotes the algebraic torus
in GL(V ) determined by E, then we get MT(V ) ⊆ TE because MT(V ) is commuta-
tive by assumption.

Since MT(V ) is commutative, it acts on V ⊗Q C by characters, and so we get a
decomposition

V ⊗Q C =
⊕
χ

Vχ,

where m ∈ MT(V ) acts on v ∈ Vχ by the rule m · v = χ(m)v. Any endomorphism of
Vχ therefore commutes with MT(V ), and so E ⊗Q C contains the spaces EndC(Vχ).
This leads to the inequality

dimQE ≥
∑
χ

(
dimC Vχ

)2 ≥∑
χ

dimC Vχ = dimQ V.

On the other hand, we have dimQ V ≤ dimQE because every nonzero element in
E is invertible. It follows that each Vχ is one-dimensional, that E is commutative,
and therefore that E is a field of degree [E : Q] = dimQ V . In particular, V is one-
dimensional as an E-vector space.

The decomposition into character spaces can be made more canonical in the fol-
lowing way. Let S = Hom(E,C) denote the set of all complex embeddings of E; its
cardinality is [E : Q]. Then

E ⊗Q C ∼−→
⊕
s∈S

C, e⊗ z 7→
∑
s∈S

s(e)z,

is an isomorphism of E-vector spaces; E acts on each summand on the right through
the corresponding embedding s. This decomposition induces an isomorphism

V ⊗Q C ∼−→
⊕
s∈S

Vs,

where Vs = V ⊗E,s C is a one-dimensional complex vector space on which E acts via
s. The induced homomorphism U(1) → MT(V ) → E× → EndC(Vs) is a character
of U(1), hence of the form z 7→ zk for some integer k. Solving k = p − q and
n = p + q, we find that k = 2p − n, which means that Vs is of type (p, n − p) in the
Hodge decomposition of V . Now define a function ϕ : S → Z by setting ϕ(s) = p;
then any choice of isomorphism V ' E puts a Hodge structure of weight n on E,
whose Hodge decomposition is given by

E ⊗Q C '
⊕
s∈S

Cϕ(s),n−ϕ(s).
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From the fact that e⊗ z = e⊗ z̄, we deduce that∑
s∈S

zs =
∑
s∈S

zs̄.

Since complex conjugation has to interchange Cp,q and Cq,p, this implies that ϕ(s̄) =
n− ϕ(s), and hence that ϕ(s) + ϕ(s̄) = n for every s ∈ S.

DEFINITION 0.40. Let E be a number field, and S = Hom(E,C) the set of its
complex embeddings. Any function ϕ : S → Z with the property that ϕ(s) + ϕ(s̄) = n
defines a Hodge structure Eϕ of weight n on the Q-vector space E, whose Hodge
decomposition is given by

Eϕ ⊗Q C '
⊕
s∈S

Cϕ(s),ϕ(s̄).

By construction, the action of E on itself respects this decomposition.

In summary, we have V ' Eϕ, which is an isomorphism both of E-modules and of
Hodge structures of weight n. Next, we would like to prove that in all interesting cases,
E must be a CM-field. Recall from Definition 0.37 that a field E is called a CM-field if
there exists a nontrivial involution ι : E → E, such that complex conjugation induces
ι under any embedding of E into the complex numbers. In other words, we must have
s(ιe) = s̄(e) for any s ∈ S and any e ∈ E. We usually write ē in place of ιe, and refer
to it as complex conjugation on E. The fixed field of E is then a totally real subfield
F , and E is a purely imaginary quadratic extension of F .

To prove that E is either a CM-field or Q, we choose a polarization ψ on Eϕ. We
then define the so-called Rosati involution ι : E → E by the condition that

ψ(e · x, y) = ψ(x, ιe · y)

for every x, y, e ∈ E. Denoting the image of 1 ∈ E by
∑
s∈S 1s, we have∑

s∈S
ψ(1s, 1s̄)s(e · x)s̄(y) =

∑
s∈S

ψ(1s, 1s̄)s(x)s̄(ιe · y),

which implies that s(e) = s̄(ιe). Now there are two cases: Either ι is nontrivial, in
which case E is a CM-field and the Rosati involution is complex conjugation. Or ι is
trivial, which means that s̄ = s for every complex embedding. In the second case, we
see that ϕ(s) = n/2 for every s, and so the Hodge structure must be Q(−n/2), being
irreducible and of type (n/2, n/2). This implies that E = Q.

From now on, we exclude the trivial case V = Q(−n/2) and assume that E is a
CM-field.

DEFINITION 0.41. A CM-type of E is a mapping ϕ : S → {0, 1} with the property
that ϕ(s) + ϕ(s̄) = 1 for every s ∈ S.

When ϕ is a CM-type, Eϕ is a polarizable rational Hodge structure of weight 1. As
such, it is the rational Hodge structure of an abelian variety with complex multiplication
by E. This variety is unique up to isogeny. In general, we have the following structure
theorem.
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Any Hodge structure V of CM-type and of even weight 2k with V p,q = 0 for
p < 0 or q < 0 occurs as a direct factor of H2k(A,Q), where A is a finite product
of simple abelian varieties of CM-type.

PROOF. In our classification of irreducible Hodge structures of CM-type above,
there were two cases: Q(−n/2), and Hodge structures of the form Eϕ, where E is a
CM-field and ϕ : S → Z is a function satisfying ϕ(s) + ϕ(s̄) = n. Clearly ϕ can be
written as a linear combination (with integer coefficients) of CM-types for E. Because
of the relations

Eϕ+ψ ' Eϕ ⊗E Eψ and E−ϕ ' E∨ϕ ,

every irreducible Hodge structure of CM-type can thus be obtained from Hodge struc-
tures corresponding to CM-types by tensor products, duals, and Tate twists.

As we have seen, every Hodge structure of CM-type is a direct sum of irreducible
Hodge structures of CM-type. The assertion follows from this by simple linear algebra.

�

To conclude our discussion of Hodge structures of CM-type, we will consider the
case when the CM-field E is a Galois extension of Q. In that case, the Galois group
G = Gal(E/Q) acts on the set of complex embeddings of E by the rule

(g · s)(e) = s(g−1e).

This action is simply transitive. Recall that we have an isomorphism

E ⊗Q E
∼−→
⊕
g∈G

E, x⊗ e 7→ g(e)x.

For any E-vector space V , this isomorphism induces a decomposition

V ⊗Q E
∼−→
⊕
g∈G

V, v ⊗ e 7→ g(e)v.

When V is an irreducible Hodge structure of CM-type, a natural question is whether
this decomposition is compatible with the Hodge decomposition. The following lemma
shows that the answer to this question is yes.

LEMMA 0.42. Let E be a CM-field that is a Galois extension of Q, with Galois
group G = Gal(E/Q). Then for any ϕ : S → Z with ϕ(s) + ϕ(s̄) = n, we have

Eϕ ⊗Q E '
⊕
g∈G

Egϕ.

PROOF. We chase the Hodge decompositions through the various isomorphisms
that are involved in the statement. To begin with, we have(
Eϕ⊗QE

)
⊗QC '

(
Eϕ⊗QC

)
⊗QE '

⊕
s∈S

Cϕ(s),n−ϕ(s)⊗QE '
⊕
s,t∈S

Cϕ(s),n−ϕ(s),
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and the isomorphism takes (v ⊗ e)⊗ z to the element∑
s,t∈S

t(e) · z · s(v).

On the other hand,(
Eϕ ⊗Q E

)
⊗Q C '

⊕
g∈G

E ⊗Q C '
⊕
g∈G

⊕
s∈S

Cϕ(s),n−ϕ(s),

and under this isomorphism, (v ⊗ e)⊗ z is sent to the element∑
g∈G

∑
s∈S

s(ge) · s(v) · z.

If we fix g ∈ G and compare the two expressions, we see that t = sg, and hence

E ⊗Q C '
⊕
t∈S

Cϕ(s),n−ϕ(s) '
⊕
t∈S

Cϕ(tg−1),n−ϕ(tg−1).

But since (gϕ)(t) = ϕ(tg−1), this is exactly the Hodge decomposition of Egϕ. �

0.6.3 Reduction to abelian varieties of CM-type

The proof of Deligne’s theorem involves the construction of algebraic families of abelian
varieties, in order to apply Principle B. For this, we shall use the existence of a fine
moduli space for polarized abelian varieties with level structure. Recall that if A is
an abelian variety of dimension g, the subgroup A[N ] of its N -torsion points is iso-
morphic to (Z/NZ)⊕2g . A level N -structure is a choice of symplectic isomorphism
A[N ] ' (Z/NZ)⊕2g . Also recall that a polarization of degree d on an abelian variety
A is a finite morphism θ : A→ Â of degree d.

THEOREM 0.43. Fix integers g, d ≥ 1. Then for any N ≥ 3, there is a smooth
quasi-projective varietyMg,d,N that is a fine moduli space for g-dimensional abelian
varieties with polarization of degree d and level N -structure. In particular, we have a
universal family of abelian varieties overMg,d,N .

The relationship of this result with Hodge theory is the following. Fix an abelian
variety A of dimension g, with level N -structure and polarization θ : A→ Â of degree
d. The polarization corresponds to an antisymmetric bilinear form ψ : H1(A,Z) ×
H1(A,Z) → Z that polarizes the Hodge structure; we shall refer to ψ as a Riemann
form. Define V = H1(A,Q), and let D be the corresponding period domain; D
parametrizes all possible Hodge structures of type {(1, 0), (0, 1)} on V that are po-
larized by the form ψ. Then D is isomorphic to the universal covering space of the
quasi-projective complex manifoldMg,d,N .

We now turn to the first step in the proof of Deligne’s theorem, namely the reduction
of the general problem to abelian varieties of CM-type. This is accomplished by the
following theorem and Principle B, see Theorem 0.21.
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THEOREM 0.44. Let A be an abelian variety, and let α ∈ H2p(A,Q(p)) be a
Hodge class on A. Then there exists a family π : A → B of abelian varieties, with B
nonsingular, irreducible, and quasi-projective, such that the following three things are
true:

(a) A0 = A for some point 0 ∈ B.

(b) There is a Hodge class α̃ ∈ H2p(A,Q(p)) whose restriction to A equals α.

(c) For a dense set of t ∈ B, the abelian variety At = π−1(t) is of CM-type.

Before giving the proof, let us briefly recall the following useful interpretation of
period domains. Say D parametrizes all Hodge structures of weight n on a fixed ratio-
nal vector space V that are polarized by a given bilinear form ψ. The set of real points
of the groupG = Aut(V, ψ) then acts transitively onD by the rule (gH)p,q = g ·Hp,q ,
and so D ' G(R)/K.

Now points of D are in one-to-one correspondence with homomorphisms of real
algebraic groups h : U(1) → GR, and we denote the Hodge structure corresponding
to h by Vh. Then V p,qh is exactly the subspace of V ⊗Q C on which h(z) acts as
multiplication by zp−q , and from this, it is easy to verify that gVh = Vghg−1 . In other
words, the points of D can be thought of as conjugacy classes of a fixed h under the
action of G(R).

PROOF OF THEOREM 0.44. After choosing a polarization θ : A → Â, we may
assume that the Hodge structure on V = H1(A,Q) is polarized by a Riemann form
ψ. Let G = Aut(V, ψ), and recall that M = MT(A) is the smallest Q-algebraic
subgroup ofGwhose set of real pointsM(R) contains the image of the homomorphism
h : U(1) → G(R). Let D be the period domain whose points parametrize all possible
Hodge structures of type {(1, 0), (0, 1)} on V that are polarized by the form ψ. With
Vh = H1(A) as the base point, we then have D ' G(R)/K; the points of D are thus
exactly the Hodge structures Vghg−1 , for g ∈ G(R) arbitrary.

The main idea of the proof is to consider the Mumford-Tate domain

Dh = M(R)/K ∩M(R) ↪→ D.

By definition, Dh consists of all Hodge structures of the form Vghg−1 , for g ∈ M(R).
As explained in Griffiths’ lectures, these are precisely the Hodge structures whose
Mumford-Tate group is contained in M .

To find Hodge structures of CM-type in Dh, we appeal to a result by Borel. Since
the image of h is abelian, it is contained in a maximal torus T of the real Lie group
M(R). One can show that, for a generic element ξ in the Lie algebra mR, this torus
is the stabilizer of ξ under the adjoint action by M(R). Now m is defined over Q,
and so there exist arbitrarily small elements g ∈ M(R) for which Ad(g)ξ = gξg−1

is rational. The stabilizer gTg−1 of such a rational point is then a maximal torus in
M that is defined over Q. The Hodge structure Vghg−1 is a point of the Mumford-Tate
domain Dh, and by definition of the Mumford-Tate group, we have MT(Vghg−1) ⊆ T .



48

CharlesSchnell July 5, 2013 6x9

In particular, Vghg−1 is of CM-type, because its Mumford-Tate group is abelian. This
reasoning shows that Dh contains a dense set of points of CM-type.

To obtain an algebraic family of abelian varieties with the desired properties, we can
now argue as follows. Let M be the moduli space of abelian varieties of dimension
dimA, with polarization of the same type as θ, and level 3-structure. Then M is a
smooth quasi-projective variety, and since it is a fine moduli space, it carries a universal
family π : A →M.

By general properties of reductive algebraic groups, see [16, Proposition 3.1] or
Griffiths’ lecture in this volume, we can find finitely many Hodge tensors τ1, . . . , τr for
H1(A) – that is, the elements τi are Hodge classes in spaces of the form H1(A)⊗a ⊗
(H1(A)∗)⊗b ⊗ Q(c) – such that M = MT(A) is exactly the subgroup of G fixing
every τi. Given τi, we can consider the irreducible component Bi of the Hodge locus
of τi inM passing through the point A. These Hodge loci are associated to the local
systems of the form (R1π∗Q)⊗a ⊗ ((R1π∗Q)∗)⊗b ⊗Q(c) corresponding to the τi.

Let B ⊆ M be the intersection of the Bi. By the theorem of Cattani-Deligne-
Kaplan, B is again a quasi-projective variety. Let π : A → B be the restriction of the
universal family to B. Then (a) is clearly satisfied for this family.

NowD is the universal covering space ofM, with the point Vh = H1(A) mapping
to A. By construction, the preimage of B in D is exactly the Mumford-Tate domain
Dh. Indeed, consider a Hodge structure Vghg−1 in the preimage of B. By construction,
every τi is a Hodge tensor for this Hodge structure, which shows that MT(Vghg−1) is
contained in M . As explained above, this implies that Vghg−1 belongs to Dh. Since
Dh contains a dense set of Hodge structures of CM-type, (c) follows. Since B is also
contained in the Hodge locus of α, and since the monodromy action of π1(B, 0) on
the space of Hodge classes has finite orbits, we may pass to a finite étale cover of
B and assume that the local system R2pπ∗Q(p) has a section that is a Hodge class
at every point of B. We now obtain (b) from the global invariant cycle theorem (see
Theorem 0.19 above). �

0.6.4 Background on hermitian forms

The second step in the proof of Deligne’s theorem involves the construction of special
Hodge classes on abelian varieties of CM-type, the so-called split Weil classes. This
requires some background on hermitian forms, which we now provide. Throughout,
E is a CM-field, with totally real subfield F and complex conjugation e 7→ ē, and
S = Hom(E,C) denotes the set of complex embeddings of E. An element ζ ∈ E× is
called totally imaginary if ζ̄ = −ζ; concretely, this means that s̄(ζ) = −s(ζ) for every
complex embedding s. Likewise, an element f ∈ F× is said to be totally positive if
s(f) > 0 for every s ∈ S.

DEFINITION 0.45. Let V be anE-vector space. A Q-bilinear form φ : V ×V → E
is said to be E-hermitian if φ(e · v, w) = e · φ(v, w) and φ(v, w) = φ(w, v) for every
v, w ∈ V and every e ∈ E.

Now suppose that V is an E-vector space of dimension d = dimE V , and that φ is
an E-hermitian form on V . We begin by describing the numerical invariants of the pair
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(V, φ). For any embedding s : E ↪→ C, we obtain a hermitian form φs (in the usual
sense) on the complex vector space Vs = V ⊗E,sC. We let as and bs be the dimensions
of the maximal subspaces where φs is, respectively, positive and negative definite.

A second invariant of φ is its discriminant. To define it, note that φ induces an
E-hermitian form on the one-dimensional E-vector space

∧d
E V , which up to a choice

of basis vector, is of the form (x, y) 7→ fxȳ. The element f belongs to the totally real
subfield F , and a different choice of basis vector only changes f by elements of the
form NmE/F (e) = e · ē. Consequently, the class of f in F×/NmE/F (E×) is well-
defined, and is called the discriminant of (V, φ). We denote it by the symbol discφ.

Now suppose that φ is nondegenerate. Let v1, . . . , vd be an orthogonal basis for V ,
and set ci = φ(vi, vi). Then we have ci ∈ F×, and

as = #
{
i
∣∣ s(ci) > 0

}
and bs = #

{
i
∣∣ s(ci) < 0

}
satisfy as + bs = d. Moreover, we have

f =

d∏
i=1

ci mod NmE/F (E×);

this implies that sgn
(
s(f)

)
= (−1)bs for every s ∈ S. The following theorem by

Landherr [26] shows that the discriminant and the integers as and bs are a complete set
of invariants for E-hermitian forms.

THEOREM 0.46 (Landherr). Let as, bs ≥ 0 be a collection of integers, indexed by
the set S, and let f ∈ F×/NmE/F (E×) be an arbitrary element. Suppose that they
satisfy as + bs = d and sgn

(
s(f)

)
= (−1)bs for every s ∈ S. Then there exists a

nondegenerate E-hermitian form φ on an E-vector space V of dimension d with these
invariants; moreover, (V, φ) is unique up to isomorphism.

This classical result has the following useful consequence.

COROLLARY 0.47. If (V, φ) is nondegenerate, then the following two conditions
are equivalent:

(a) as = bs = d/2 for every s ∈ S, and discφ = (−1)d/2.

(b) There is a totally isotropic subspace of V of dimension d/2.

PROOF. If W ⊆ V is a totally isotropic subspace of dimension d/2, then v 7→
φ(−, v) induces an antilinear isomorphism V/W

∼−→W∨. Thus we can extend a basis
v1, . . . , vd/2 of W to a basis v1, . . . , vd of V , with the property that

φ(vi, vi+d/2) = 1 for 1 ≤ i ≤ d/2,
φ(vi, vj) = 0 for |i− j| 6= d/2.

We can use this basis to check that (a) is satisfied. For the converse, consider the
hermitian space (E⊕d, φ), where

φ(x, y) =
∑

1≤i≤d/2

(
xiȳi+d/2 + xi+d/2ȳi

)
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for every x, y ∈ E⊕d. By Landherr’s theorem, this space is (up to isomorphism) the
unique hermitian space satisfying (a), and it is easy to see that it satisfies (b), too. �

DEFINITION 0.48. An E-hermitian form φ that satisfies the two equivalent condi-
tions in Corollary 0.47 is said to be split.

We shall see below that E-hermitian forms are related to polarizations on Hodge
structures of CM-type. We now describe one additional technical result that shall be
useful in that context. Suppose that V is a Hodge structure of type {(1, 0), (0, 1)}
that is of CM-type and whose endomorphism ring contains E; let h : U(1) → E× be
the corresponding homomorphism. Recall that a Riemann form for V is a Q-bilinear
antisymmetric form ψ : V × V → Q, with the property that

(x, y) 7→ ψ
(
x, h(i) · ȳ

)
is hermitian and positive definite on V ⊗Q C. We only consider Riemann forms whose
Rosati involution induces complex conjugation on E; that is, which satisfy

ψ(ev, w) = ψ(v, ēw).

LEMMA 0.49. Let ζ ∈ E× be a totally imaginary element (ζ̄ = −ζ), and let ψ be
a Riemann form for V as above. Then there exists a unique E-hermitian form φ with
the property that ψ = TrE/Q(ζφ).

We begin with a simpler statement.

LEMMA 0.50. Let V and W be finite-dimensional vector spaces over E, and let
ψ : V ×W → Q be a Q-bilinear form such that ψ(ev, w) = ψ(v, ew) for every e ∈ E.
Then there exists a unique E-bilinear form φ such that ψ(v, w) = TrE/Q φ(v, w).

PROOF. The trace pairing E × E → Q, (x, y) 7→ TrE/Q(xy), is nondegenerate.
Consequently, composition with TrE/Q induces an injective homomorphism

HomE

(
V ⊗E W,E

)
→ HomQ

(
V ⊗E W,Q

)
,

which has to be an isomorphism because both vector spaces have the same dimension
over Q. By assumption, ψ defines a Q-linear map V ⊗E W → Q, and we let φ be the
element of HomE

(
V ⊗EW,E

)
corresponding to ψ under the above isomorphism. �

PROOF OF LEMMA 0.49. We apply the preceding lemma with W = V , but with
E acting on W through complex conjugation. This gives a sesquilinear form φ1 such
that ψ(x, y) = TrE/Q φ1(x, y). Now define φ = ζ−1φ1, so that we have ψ(x, y) =

TrE/Q
(
ζφ(x, y)

)
. The uniqueness of φ is obvious from the preceding lemma.

It remains to show that we have φ(y, x) = φ(x, y). Because ψ is antisymmetric,
ψ(y, x) = −ψ(x, y), which implies that

TrE/Q
(
ζφ(y, x)

)
= −TrE/Q

(
ζφ(x, y)

)
= TrE/Q

(
ζ̄φ(x, y)

)
.
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On replacing y by ey, for arbitrary e ∈ E, we obtain

TrE/Q
(
ζe · φ(y, x)

)
= TrE/Q

(
ζe · φ(x, y)

)
.

On the other hand, we have

TrE/Q
(
ζe · φ(y, x)

)
= TrE/Q

(
ζe · φ(y, x)

)
= TrE/Q

(
ζe · φ(y, x)

)
.

Since ζe can be an arbitrary element of E, the nondegeneracy of the trace pairing
implies that φ(x, y) = φ(y, x). �

0.6.5 Construction of split Weil classes

Let E be a CM-field; as usual, we let S = Hom(E,C) be the set of complex embed-
dings; it has [E : Q] elements.

Let V be a rational Hodge structure of type {(1, 0), (0, 1)} whose endomorphism
algebra contains E. We shall assume that dimE V = d is an even number. Let Vs =
V ⊗E,s C. Corresponding to the decomposition

E ⊗Q C ∼−→
⊕
s∈S

C, e⊗ z 7→
∑
s∈S

s(e)z,

we get a decomposition
V ⊗Q C '

⊕
s∈S

Vs.

The isomorphism is E-linear, where e ∈ E acts on the complex vector space Vs as
multiplication by s(e). Since dimQ V = [E : Q] · dimE V , each Vs has dimension d
over C. By assumption, E respects the Hodge decomposition on V , and so we get an
induced decomposition

Vs = V 1,0
s ⊕ V 0,1

s .

Note that dimC V
1,0
s + dimC V

0,1
s = d.

LEMMA 0.51. The rational subspace
∧d
E V ⊆

∧d
Q V is purely of type (d/2, d/2)

if and only if dimC V
1,0
s = dimC V

0,1
s = d/2 for every s ∈ S.

PROOF. We have(∧d

E
V
)
⊗QC '

∧d

E⊗QC
(V⊗QC) '

⊕
s∈S

∧d

C
Vs '

⊕
s∈S

(∧ps

C
V 1,0
s

)
⊗
(∧qs

C
V 0,1
s

)
,

where ps = dimC V
1,0
s and qs = dimC V

0,1
s . The assertion follows because the Hodge

type of each summand is evidently (ps, qs). �

We will now describe a condition on V that guarantees that the space
∧d
E V consists

entirely of Hodge cycles.
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DEFINITION 0.52. Let V be a rational Hodge structure of type {(1, 0), (0, 1)} with
E ↪→ EndQ-HS(V ) and dimE V = d. We say that V is of split Weil type relative to
E if there exists an E-hermitian form φ on V with a totally isotropic subspace of
dimension d/2, and a totally imaginary element ζ ∈ E, such that TrE/Q(ζφ) defines a
polarization on V .

According to Corollary 0.47, the condition on the E-hermitian form φ is the same
as saying that the pair (V, φ) is split.

If V is of split Weil type relative to E, and dimE V = d is even, then the space∧d

E
V ⊆

∧d

Q
V

consists of Hodge classes of type (d/2, d/2).

PROOF. Since ψ = TrE/Q(ζφ) defines a polarization, φ is nondegenerate; by
Corollary 0.47, it follows that (V, φ) is split. Thus for any complex embedding s : E ↪→
C, we have as = bs = d/2. Let φs be the induced hermitian form on Vs = V ⊗E,s C.
By Lemma 0.51, it suffices to show that dimC V

1,0
s = dimC V

0,1
s = d/2. By construc-

tion, the isomorphism
α : V ⊗Q C ∼−→

⊕
s∈S

Vs

respects the Hodge decompositions on both sides. For any v ∈ V , we have

ψ(v, v) = TrE/Q
(
ζφ(v, v)

)
=
∑
s∈S

s(ζ) · s
(
φ(v, v)

)
=
∑
s∈S

s(ζ) · φs(v ⊗ 1, v ⊗ 1).

Now if we choose a nonzero element x ∈ V 1,0
s , then under the above isomorphism,

−s(ζ)i · φs(x, x̄) = ψ
(
α−1(x), h(i) · α−1(x)

)
> 0

Likewise, we have s(ζ)i·φs(x, x̄) > 0 for x ∈ V 0,1
s nonzero. Consequently, dimC V

1,0
s

and dimC V
0,1
s must both be less than or equal to d/2 = as = bs; since their dimen-

sions add up to d, we get the desired result. �

0.6.6 André’s theorem and reduction to split Weil classes

The second step in the proof of Deligne’s theorem is to reduce the problem from ar-
bitrary Hodge classes on abelian varieties of CM-type to Hodge classes of split Weil
type. This is accomplished by the following pretty theorem due to Yves André in [2].

THEOREM 0.53 (André). Let V be a rational Hodge structure of type {(1, 0), (0, 1)},
which is of CM-type. Then there exists a CM-field E, rational Hodge structures Vα of
split Weil type (relative to E), and morphisms of Hodge structure Vα → V , such that
every Hodge cycle ξ ∈

∧2k
Q V is a sum of images of Hodge cycles ξα ∈

∧2k
Q Vα of split

Weil type.
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PROOF. Let V = V1 ⊕ · · · ⊕ Vr, with Vi irreducible; then each Ei = EndQ-HS(Vi)
is a CM-field. Define E to be the Galois closure of the compositum of the fields
E1, . . . , Er. Since V is of CM-type, E is a CM-field which is Galois over Q. Let
G be its Galois group over Q. After replacing V by V ⊗Q E (of which V is a direct
factor), we may assume without loss of generality that Ei = E for all i.

As before, let S = Hom(E,C) be the set of complex embeddings of E; we then
have a decomposition

V '
⊕
i∈I

Eϕi

for some collection of CM-types ϕi. Applying Lemma 0.42, we get

V ⊗Q E '
⊕
i∈I

⊕
g∈G

Egϕi .

Since each Egϕi is one-dimensional over E, we get(∧2k

Q
V
)
⊗Q E '

∧2k

E
(V ⊗Q E) '

∧2k

E

⊕
(i,g)∈I×G

Egϕi '
⊕

α⊆I×G
|α|=2k

⊗
(i,g)∈α

Egϕi

where the tensor product is over E. If we now define Hodge structures of CM-type

Vα =
⊕

(i,g)∈α

Egϕi

for any subset α ⊆ I × G of size 2k, then Vα has dimension 2k over E. The above
calculation shows that (∧2k

Q
V
)
⊗Q E '

⊕
α

∧2k

E
Vα,

which is an isomorphism both as Hodge structures and as E-vector spaces. Moreover,
since Vα is a sub-Hodge structure of V ⊗Q E, we clearly have morphisms Vα → V ,
and any Hodge cycle ξ ∈

∧2k
Q V is a sum of Hodge cycles ξα ∈

∧2k
E Vα.

It remains to see that Vα is of split Weil type whenever ξα is nonzero. Fix a subset
α ⊆ I ×G of size 2k, with the property that ξα 6= 0. Note that we have∧2k

E
Vα '

⊗
(i,g)∈α

Egϕi ' Eϕ,

where ϕ : S → Z is the function

ϕ =
∑

(i,g)∈α

gϕi

The Hodge decomposition of Eϕ is given by

Eϕ ⊗Q C '
⊕
s∈S

Cϕ(s),ϕ(s̄).
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The image of the Hodge cycle ξα in Eϕ must be purely of type (k, k) with respect to
this decomposition. But

ξα ⊗ 1 7→
∑
s∈S

s(ξα),

and since each s(ξα) is nonzero, we conclude that ϕ(s) = k for every s ∈ S. This
means that the sum of the 2k CM-types gϕi, indexed by (i, g) ∈ α, is constant on S.
We conclude by the criterion in Proposition 0.6.6 that Vα is of split Weil type. �

The proof makes use of the following criterion for a Hodge structure to be of split
Weil type. Let ϕ1, . . . , ϕd be CM-types attached to E. Let Vi = Eϕi be the Hodge
structure of CM-type corresponding to ϕi, and define

V =
d⊕
i=1

Vi.

Then V is a Hodge structure of CM-type with dimE V = d.

If
∑
ϕi is constant on S, then V is of split Weil type.

PROOF. To begin with, it is necessarily the case that
∑
ϕi = d/2; indeed,

d∑
i=1

ϕi(s) +

d∑
i=1

ϕ(s̄) =

d∑
i=1

(
ϕi(s) + ϕi(s̄)

)
= d,

and the two sums are equal by assumption. By construction, we have

V ⊗Q C '
d⊕
i=1

(
Eϕi ⊗Q C

)
'

d⊕
i=1

⊕
s∈S

Cϕi(s),ϕi(s̄).

This shows that

Vs = V ⊗E,s C '
d⊕
i=1

Cϕi(s),ϕi(s̄).

Therefore dimC V
1,0
s =

∑
ϕi(s) = d/2, and likewise dimC V

0,1
s =

∑
ϕi(s̄) = d/2.

Next, we construct the required E-hermitian form on V . For each i, choose a
Riemann form ψi on Vi, whose Rosati involution acts as complex conjugation on E.
Since Vi = Eϕi , there exist totally imaginary elements ζi ∈ E×, such that

ψi(x, y) = TrE/Q
(
ζixȳ

)
for every x, y ∈ E. Set ζ = ζd, and define φi(x, y) = ζiζ

−1xȳ, which is an E-
hermitian form on Vi with the property that ψi = TrE/Q(ζφi).

For any collection of totally positive elements fi ∈ F ,

ψ =

d∑
i=1

fiψi



CharlesSchnell July 5, 2013 6x9

55

is a Riemann form for V . As E-vector spaces, we have V = E
⊕
d, and so we can

define a nondegenerate E-hermitian form on V by the rule

φ(v, w) =

d∑
i=1

fiφi(vi, wi).

We then have ψ = TrE/Q(ζφ). By the same argument as before, as = bs = d/2, since
dimC V

1,0
s = dimC V

0,1
s = d/2. By construction, the form φ is diagonalized, and so

its discriminant is easily found to be

discφ = ζ−d
d∏
i=1

fiζi mod NmE/F (E×).

On the other hand, we know from general principles that, for any s ∈ S,

sgn
(
s(discφ)

)
= (−1)bs = (−1)d/2.

This means that discφ = (−1)d/2f for some totally positive element f ∈ F×. Upon
replacing fd by fdf−1, we get discφ = (−1)d/2, which proves that (V, φ) is split. �

0.6.7 Split Weil classes are absolute

The third step in the proof of Deligne’s theorem is to show that split Weil classes are
absolute. We begin by describing a special class of abelian varieties of split Weil type
where this can be proved directly.

Let V0 be a rational Hodge structure of even rank d and type {(1, 0), (0, 1)}. Let
ψ0 be a Riemann form that polarizes V0, and W0 a maximal isotropic subspace of
dimension d/2. Also fix an element ζ ∈ E× with ζ̄ = −ζ.

Now set V = V0 ⊗Q E, with Hodge structure induced by the isomorphism

V ⊗Q C ' V0 ⊗Q
(
E ⊗Q C

)
'
⊕
s∈S

V0 ⊗Q C.

Define a Q-bilinear form ψ : V × V → Q by the formula

ψ(v0 ⊗ e, v′0 ⊗ e′) = TrE/Q
(
ee′
)
· ψ0(v0, v

′
0).

This is a Riemann form on V , for which W = W0 ⊗Q E is an isotropic subspace of
dimension d/2. By Lemma 0.49, there is a unique E-hermitian form φ : V × V → E
such that ψ = TrE/Q(ζφ). By Corollary 0.47, (V, φ) is split, and V is therefore of
split Weil type. Let A0 be an abelian variety with H1(A0,Q) = V0. The integral
lattice of V0 induces an integral lattice in V = V0 ⊗Q E. We denote by A0 ⊗Q E the
corresponding abelian variety. It is of split Weil type since V is.

The next result, albeit elementary, is the key to proving that split Weil classes are
absolute.
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Let A0 be an abelian variety with H1(A0,Q) = V0 as above, and define A =

A0 ⊗Q E. Then the subspace
∧d
E H

1(A,Q) of Hd(A,Q) consists entirely of
absolute Hodge classes.

PROOF. We have Hd(A,Q) '
∧d

QH
1(A,Q), and the subspace

∧d

E
H1(A,Q) '

∧d

E
V0 ⊗Q E '

(∧d

Q
V0

)
⊗Q E ' Hd(A0,Q)⊗Q E

consists entirely of Hodge classes by Proposition 0.6.5. But since dimA0 = d/2, the
space Hd(A0,Q) is generated by the fundamental class of a point, which is clearly
absolute. This implies that every class in

∧d
E H

1(A,Q) is absolute. �

The following theorem, together with Principle B as in Theorem 0.21, completes
the proof of Deligne’s theorem.

THEOREM 0.54. Let E be a CM-field, and let A be an abelian variety of split Weil
type (relative to E). Then there exists a family π : A → B of abelian varieties, with B
irreducible and quasi-projective, such that the following three things are true:

(a) A0 = A for some point 0 ∈ B.

(b) For every t ∈ B, the abelian variety At = π−1(t) is of split Weil type (relative
to E).

(c) The family contains an abelian variety of the form A0 ⊗Q E.

The proof of Theorem 0.54 takes up the remainder of this section. Throughout, we
let V = H1(A,Q), which is an E-vector space of some even dimension d. The polar-
ization onA corresponds to a Riemann form ψ : V ×V → Q, with the property that the
Rosati involution acts as complex conjugation on E. Fix a totally imaginary element
ζ ∈ E×; then ψ = TrE/Q(ζφ) for a uniqueE-hermitian form φ by Lemma 0.49. Since
A is of split Weil type, the pair (V, φ) is split.

As before, let D be the period domain, whose points parametrize Hodge structures
of type {(1, 0), (0, 1)} on V that are polarized by the form ψ. Let Dsp ⊆ D be the
subset of those Hodge structures that are of split Weil type (relative to E, and with
polarization given by ψ). We shall show that Dsp is a certain hermitian symmetric
domain.

We begin by observing that there are essentially 2[E:Q]/2 many different choices
for the totally imaginary element ζ, up to multiplication by totally positive elements in
F×. Indeed, if we fix a choice of i =

√
−1, and define ϕζ : S → {0, 1} by the rule

ϕζ(s) =

{
1 if s(ζ)i > 0,
0 if s(ζ)i < 0,

(6)

then ϕζ(s) + ϕζ(s̄) = 1 because s̄(ζ) = −s(ζ), and so ϕζ is a CM-type for E.
Conversely, one can show that any CM-type is obtained in this manner.
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LEMMA 0.55. The subset Dsp of the period domain D is a hermitian symmetric
domain; in fact, it is isomorphic to the product of |S| = [E : Q] many copies of Siegel
upper halfspace.

PROOF. Recall that V is an E-vector space of even dimension d, and that the Rie-
mann form ψ = TrE/Q(ζφ) for a split E-hermitian form φ : V × V → E and a totally
imaginary ζ ∈ E×. The Rosati involution corresponding to ψ induces complex conju-
gation on E; this means that ψ(ev, w) = ψ(v, ēw) for every e ∈ E.

By definition, Dsp parametrizes all Hodge structures of type {(1, 0), (0, 1)} on V
that admit ψ as a Riemann form and are of split Weil type (relative to the CM-field E).
Such a Hodge structure amounts to a decomposition

V ⊗Q C = V 1,0 ⊕ V 0,1

with V 0,1 = V 1,0, with the following two properties:

(a) The action by E preserves V 1,0 and V 0,1.

(b) The form −iψ(x, ȳ) = ψ
(
x, h(i)ȳ

)
is positive definite on V 1,0.

Let S = Hom(E,C), and consider the isomorphism

V ⊗Q C ∼−→
⊕
s∈S

Vs, v ⊗ z 7→
∑
s∈S

v ⊗ z,

where Vs = V ⊗E,s C. Since Vs is exactly the subspace on which e ∈ E acts as mul-
tiplication by s(e), the condition in (a) is equivalent to demanding that each complex
vector space Vs decomposes as Vs = V 1,0

s ⊕ V 0,1
s .

On the other hand, φ induces a hermitian form φs on each Vs, and we have

ψ(v, w) = TrE/Q
(
ζφ(v, w)

)
=
∑
s∈S

s(ζ)φs(v ⊗ 1, w ⊗ 1).

Therefore ψ polarizes the Hodge structure V 1,0 ⊕ V 0,1 if and only if the form x 7→
−s(ζ)i · φs(x, x̄) is positive definite on the subspace V 1,0

s . Referring to the definition
of ϕζ in (6), this is equivalent to demanding that x 7→ (−1)ϕζ(s)φs(x, x̄) be positive
definite on V 1,0

s .
In summary, Hodge structures of split Weil type on V for which ψ is a Riemann

form are parametrized by a choice of d/2-dimensional complex subspaces V 1,0
s ⊆ Vs,

one for each s ∈ S, with the property that

V 1,0
s ∩ V 1,0

s = {0},

and such that x 7→ (−1)ϕζ(s)φs(x, x̄) is positive definite on V 1,0
s . Since for each s ∈ S,

we have as = bs = d/2, the hermitian form φs has signature (d/2, d/2); this implies
that the space

Ds =
{
W ∈ Grassd/2(Vs)

∣∣ W ∩W = {0} and (−1)ϕζ(s)φs(x, x̄) > 0 for 0 6= x ∈W
}
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is isomorphic to Siegel upper halfspace. The parameter spaceDsp for our Hodge struc-
tures is therefore the hermitian symmetric domain

Dsp '
∏
s∈S

Ds.

In particular, it is a connected complex manifold. �

To be able to satisfy the final condition in Theorem 0.54, we need to know that Dsp

contains Hodge structures of the form V0 ⊗Q E. This is the content of the following
lemma.

LEMMA 0.56. With notation as above, there is a rational Hodge structure V0 of
weight one, such that V0 ⊗Q E belongs to Dsp.

PROOF. Since the pair (V, φ) is split, there is a totally isotropic subspace W ⊆ V
of dimension dimEW = d/2. Arguing as in the proof of Corollary 0.47, we can
therefore find a basis v1, . . . , vd for the E-vector space V , with the property that

φ(vi, vi+d/2) = ζ−1 for 1 ≤ i ≤ d/2,
φ(vi, vj) = 0 for |i− j| 6= d/2.

Let V0 be the Q-linear span of v1, . . . , vd; then we have V = V0 ⊗Q E. Now define
V 1,0

0 ⊆ V0 ⊗Q C as the C-linear span of the vectors hk = vk + ivk+d/2 for k =
1, . . . , d/2. Evidently, this gives a Hodge structure of weight one on V0, with hence
a Hodge structure on V = V0 ⊗Q E. It remains to show that ψ polarizes this Hodge
structure. But we compute that

ψ

d/2∑
j=1

ajhj , i

d/2∑
k=1

akhk

 =

d/2∑
k=1

|ak|2ψ
(
vk + ivk+d/2, i(vk − ivk+d/2)

)

= 2

d/2∑
k=1

|ak|2ψ(vk, vk+d/2)

= 2

d/2∑
k=1

|ak|2 TrE/Q
(
ζφ(vk, vk+d/2)

)
= 2[E : Q]

d/2∑
k=1

|ak|2,

which proves that x 7→ ψ(x, ix̄) is positive definite on the subspace V 1,0
0 . The Hodge

structure V0 ⊗Q E therefore belongs to Dsp as desired. �

PROOF OF THEOREM 0.54. Let θ : A → Â be the polarization on A. As before,
letM be the moduli space of abelian varieties of dimension d/2, with polarization of
the same type as θ, and level 3-structure. ThenM is a quasi-projective complex mani-
fold, and the period domain D is its universal covering space (with the Hodge structure
H1(A) mapping to the point A). Let B ⊆ M be the locus of those abelian varieties
whose endomorphism algebra contains E. Note that the original abelian variety A is
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contained in B. Since every element e ∈ E is a Hodge class in End(A) ⊗ Q, it is
clear that B is a Hodge locus; in particular, B is a quasi-projective variety by the theo-
rem of Cattani-Deligne-Kaplan. As before, we let π : A → B be the restriction of the
universal family of abelian varieties to B.

Now we claim that the preimage of B in D is precisely the set Dsp of Hodge
structures of split Weil type. Indeed, the endomorphism ring of any Hodge structure
in the preimage of B contains E by construction; since it is also polarized by the
form ψ, all the conditions in Definition 0.52 are satisfied, and so the Hodge structure
in question belongs to Dsp. Because D is the universal covering space of M, this
implies in particular that B is connected and smooth, hence a quasi-projective complex
manifold.

The first two assertions are obvious from the construction, whereas the third follows
from Lemma 0.56. This concludes the proof. �

To complete the proof of Deligne’s theorem, we have to show that every split Weil
class is an absolute Hodge class. For this, we argue as follows. Consider the family
of abelian varieties π : A → B from Theorem 0.54. By Proposition 0.6.5, the space
of split Weil classes

∧d
E H

1(At,Q) consists of Hodge classes for every t ∈ B. The
family also contains an abelian variety of the form A0⊗QE, and according to Proposi-
tion 0.6.7, all split Weil classes on this particular abelian variety are absolute. But now
B is irreducible, and so Principle B applies and shows that for every t ∈ B, all split
Weil classes on At are absolute. This finishes the third step of the proof, and finally
establishes Deligne’s theorem.
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[15] Deligne, P.: Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math. No. 44
(1974), pp. 5-–77.

[16] Deligne, P.: Hodge cycles on abelian varieties (notes by J. S. Milne), in Lecture
Notes in Mathematics 900, pp. 9–100, Springer-Verlag, 1982.

[17] Deligne, P., Milne, J.: Tannakian categories, in Lecture Notes in Mathematics
900, pp. 101–220, Springer-Verlag, 1982.

[18] Fulton, W., Harris, J.: Representation theory. A first course, Graduate Texts in
Mathematics 129, Readings in Mathematics. Springer-Verlag, New York, 1991.

[19] van Geemen, B.: Kuga-Satake varieties and the Hodge conjecture, in The arith-
metic and geometry of algebraic cycles (Banff, AB, 1998), pp. 51-–82, NATO Sci.
Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000.

[20] Grothendieck, A.: On the de Rham cohomology of algebraic varieties, Pub. Math.
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