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ABSTRACT. We revisit some of the basic results of generic vanishing theory, as pioneered by Green and Lazarsfeld, in the
context of constructible sheaves. Using the language of perverse sheaves, we give new proofs of some of the basic results of
this theory. Our approach is topological/arithmetic, and avoids Hodge theory.

1. INTRODUCTION

Let A be a compact complex torus of dimension g. Fix a field k of coefficients, and let

Char(A) := Hom
(
π1(A),Gm,k

)
' G2g

m,k

be the k-linear character variety of the fundamental group; this is a torus of dimension 2g over k. Given a character
χ ∈ Char(A), we write Lχ for the associated rank-one local system on A. The goal of this paper is to revisit some
results describing the behaviour of the cohomology M ⊗ Lχ, where M is a fixed constructible sheaf (or complex) on
A, and χ varies through points of Char(A). These results constitute the constructible sheaf variants of the pioneering
work of Green and Lazarsfeld [GL87, GL91], and have been revisited by many authors in the interim.

1.1. Generic vanishing. The first goal of this paper is to give a new short proof for the following vanishing theorem,
which is new in this generality.

Theorem 1.1. Let M ∈ Perv(A, k) be a perverse sheaf with k-coefficients. Then

Hi
(
A,M ⊗k Lχ

)
= 0 for all i 6= 0

for χ lying in a non-empty Zariski open subset of Char(A).

By a standard argument, Theorem 1.1 can be reformulated as the following assertion about constructible sheaves:

Corollary 1.2. Let F be a constructible sheaf on A with k-coefficients. Then

Hi
(
A,F ⊗k Lχ

)
= 0 for all i > dim(Supp F )

for χ lying in a non-empty Zariski open subset of Char(A).

Theorem 1.1 is an analogue for perverse sheaves of the “generic vanishing theorem” of Green and Lazarsfeld
[GL87]; indeed, Theorem 1.1 implies the Kodaira-Nakano type vanishing results of [GL87] via Hodge theory.

When A is an abelian variety and k = C, Theorem 1.1 was first proven in [KW15] using hard Lefschetz and Tan-
nakian categories arising via convolution, and independently in [Schn15] via Laumon-Rothstein’s Fourier transform
for D-modules on A. The new idea of our proof is to pass to the universal covering space of A, which is a complex
vector space, and then to apply Artin’s vanishing theorem for perverse sheaves on Stein manifolds; this was inspired
by [Scho15, §IV], which proves a vanishing theorem for the Fp-cohomology of Shimura varieties by invoking the
analog of Artin vanishing for the “perfectoid universal cover” of the Shimura variety. The implementation of this idea
relies on the Fourier-Mellin transform for constructible sheaves on abelian varieties, which coherently interpolates the
cohomology of all character twists M ⊗ Lχ of M . More precisely, the Fourier-Mellin transform is given by a functor

FMA : Db
c(A, k)→ Db

coh(Char(A))

from the constructible derived category of k-linear sheaves on A to coherent complexes on Char(A), such that the
fiber of FMA(M) at a point χ ∈ Char(A) is the cohomology of M ⊗ Lχ.
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1.2. Codimension estimates. From Theorem 1.1 and some basic properties of the Fourier transform, one can deduce
some additional results about the “cohomology support loci”

Si(A,M) := {χ ∈ Char(A) | Hi(A,M ⊗k Lχ) 6= 0} ,
which are easily seen to be Zariski closed subsets of Char(A). The proof of Theorem 1.1 immediately yields that
codim(Si(A,M)) ≥ |i| for all i when M is perverse. To get better estimates, we need to specialize our assumptions
on k and A.

Theorem 1.3. Assume that k is a field of characteristic 0, and that A is an abelian variety. Let M ∈ Db
c(A, k) be an

algebraically constructible complex. Then one has

M ∈ pD≤0
c (A, k) =⇒ codim(Si(A,M)) ≥ 2i for every i ∈ Z,

M ∈ pD≥0
c (A, k) =⇒ codim(Si(A,M)) ≥ −2i for every i ∈ Z.

In particular, if M is a perverse sheaf, then codim(Si(A,M)) ≥ |2i| for every i ∈ Z.

The converse to Theorem 1.3 is also true. In fact, both results can be deduced via the Riemann-Hilbert correspon-
dence from [Schn15]; the latter relies on Simpson’s work [Sim93] analyzing when subsets of a moduli space of rank
1 local systems are algebraic simultaneously in the Betti, de Rham, and Dolbeault realizations. The novelty of the
approach taken here to proving Theorem 1.3 is that it is essentially topological: we deduce the improved codimension
estimate formally from the Hard Lefschetz theorem and properties of the Fourier transform, without ever leaving the
world of constructible sheaves.

1.3. Linearity. The final result we shall discuss is one that gives a precise local description of the Fourier transform
FMA(M) for a simple perverse sheaf M of geometric origin on A. Roughly speaking, the result states that the stalk
of FMA(M) at the trivial character is given by a “linear complex” or a “derivative complex”. The precise statement
is given in Theorem 4.1 below. For this, we denote by S the co-ordinate ring of the formal completion of Char(A) at
the trivial character 1 ∈ Char(A). As Char(A) = Spec(k[π1(A)]), we have S ' Ŝym(H1(A, k)).

Theorem 1.4. LetA be an abelian variety, and let k be a field of characteristic 0. LetM be a simple k-linear perverse
sheaf on A of geometric origin. Then the completed stalk at 1 of FMA(M) ∈ Db

coh(Char(A)) is represented by the
S-complex

· · · → Hi−1(A,M)⊗k S → Hi(A,M)⊗k S → Hi+1(A,M)⊗k S → · · · ,
where the differential arises from the natural map Hi(A,M)→ Hi+1(A,M)⊗k H1(A, k) that is adjoint to the cup
product H1(A, k)⊗k Hi(A,M)→ Hi+1(A,M).

Theorem 1.4 is the constructible sheaf version of the key result of [GL91] (which dealt with the coherent context),
and is implied by the linearity result in [PS13] (which applies in the context of mixed Hodge modules); these results
form the essential ingredient in proving linearity properties of the cohomological support loci Si(A,M) of M . The
proofs of these results in both [GL91] and [PS13] rely on Hodge theory. In contrast, our proof is essentially arithmetic:
we deduce Theorem 1.4 by specializing to characteristic p, and using the theory of weights to prove a formality result
that implies the theorem via a version of the BGG correspondence.

Acknowledgements. We would like to thank Jacob Lurie for a very helpful conversation about §4.2. During the
preparation of this work, Bhatt was partially supported by the NSF Grant DMS #1501461 and a Packard fellowship,
Schnell was partially supported by NSF grant DMS#1404947 and by a Centennial Fellowship from the AMS, and
Scholze was supported by a Clay research fellowship. Both Bhatt and Scholze would like to thank the University of
California, Berkeley, the MSRI, and the Clay foundation for their hospitality and support during the initiation of this
project. Both Bhatt and Schnell would like to thank the Simons Center for Geometry and Physics for their hospitality
during the program “Complex, p-adic, and logarithmic Hodge theory and their applications”.

2. FOURIER-MELLIN TRANSFORMS AND GENERIC VANISHING

In this section, we prove Theorem 1.1. We use the formalism of constructible complexes and perverse sheaves in
the setting of complex manifolds; more details can be found in [HTT08, Section 4.5] and [Dim04, Chapter 4]. Many
of the basic compatibility results proven below concerning the Fourier-Mellin transforms on compact complex tori
are analogs of analogous results for `-adic sheaves on algebraic tori proven by Gabber-Loeser [GL96]. We fix the
following notation:
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Notation 2.1. Fix a field k, and a complex torus A of dimension g. Write Db
c(A, k) for the bounded derived category

of constructible complexes of k-modules on A; this triangulated category comes equipped with the constant sheaf
abusively denoted by k, and Verdier’s duality functor DA,k(−) := RHomk(−, k[2g]).

Let R = k[π1(A)] be the group algebra of the fundamental group π1(A) of A; we always choose the base point at
0. Note that R is a regular noetherian ring, and Char(A) := Spec(R) is the character variety of A (relative to k). As
before, one has the corresponding constructible derived category Db

c(A,R) of R-modules on A and its Verdier duality
functor DA,R(−) := RHomR(−, R[2g]).

Let π : V → A be the universal cover of A, so V is a vector space, and there is a natural action of π1(A) on V by
deck transformations. In particular, the sheaf LR := π!k is naturally a sheaf of R-modules on A.

The sheaf LR introduced above is a central player in this work. It may be viewed as the “universal” rank 1 local
system on A in the following sense:

Lemma 2.2. The R-module LR is locally free of rank 1. In fact, it is the R-local system associated to the tautological
character can : π1(A)→ R∗.

Proof. Let U ⊂ A be a simply connected open subset. Then Ã ×A U → U is isomorphic to tπ1(A)U → U . By
proper base change, it follows that (π!k)|U is identified with the constant sheaf R as R-modules, proving the first part.
The second part follows by unwinding definitions. �

As LR is a local system, we may dualize it to obtain another local system L∨R := RHomR(LR, R) of R-modules
on A. One then has:

Lemma 2.3. There is a canonical identification [−1]∗LR ' L∨R.

Proof. By the previous lemma, LR is the local system associated to the tautological character can : π1(A) → R∗.
Thus, its dual L∨R corresponds to the character

π1(A)
can−−→ R∗

ι−→ R∗,

where ι(g) = g−1. Since [−1]∗ acts via −1 on π1(A), the previous composition is identified with

π1(A)
[−1]∗−−−→ π1(A)

can−−→ R∗,

which proves the claim. �

This construction satisfies the following compatibility:

Lemma 2.4. The following diagram is canonically commutative:

Db
c(A, k)

LR⊗k(−) //

DA,k(−)

��

Db
c(A,R)

DA,R(−)

��
Db
c(A, k)

L∨R⊗k(−) // Db
c(A,R).

Here the vertical maps are antiequivalences.

Proof. Fix some K ∈ Db
c(A, k). We must show that the natural map

L∨R ⊗k RHomk(K, k[2g])→ RHomR(LR ⊗k K,R[2g])

is an isomorphism of sheaves. This assertion is local on A. Moreover, since LR is locally constant, it reduces to
the following statement: the functor Db

c(A, k) → Db
c(A,R) given by extension of scalars along k → R carries

RHomk(F,G) to RHomR(F ⊗k R,G⊗k R). This assertion is standard. �

Recall that the functor RΓ(A,−) carries Db
c(A,R) to Dperf (R), and, as A is compact, intertwines Verdier duality

on Db
c(A,R) with the trivial duality DR(−) := RHomR(−, R) on Dperf (R). Combining this with Lemma 2.4, we
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obtain the following commutative diagram of functors:

(1) Db
c(A, k)

LR⊗k(−) //

DA,k(−)

��

Db
c(A,R)

DA,R(−)

��

RΓ(A,−) // Dperf (R)

DR(−)

��
Db
c(A, k)

L∨R⊗k(−) // Db(A,R)
RΓ(A,−) // Dperf (R).

In particular, using Lemma 2.3, we arrive at the following compatibility:

(2) DR

(
RΓ(A,M ⊗k LR)

)
' RΓ(A,D([−1]∗M)⊗k LR).

This allows us to define:

Definition 2.5. For M ∈ Db
c(A, k), define its Fourier transform FMA(M) as

FMA(M) := RΓ(A,M ⊗k LR) ∈ Dperf (R).

To justify the name, we show the following: for any M ∈ Db
c(A, k), the quasi-coherent complex FMA(M)

on Char(A) interpolates the cohomology of the character twists of M , as one would expect from a Fourier-type
transform. More precisely, given a point χ ∈ Char(A) with residue field κ(χ), we obtain an induced character
χ̃ : π1(A)

can−−→ R∗ → κ(χ)∗, and thus an associated rank 1 local system Lχ of κ(χ)-modules on A. One then has:

Lemma 2.6. For any χ ∈ Char(A), there is a canonical isomorphism

FMA(M)⊗LR κ(χ) ' RΓ(A,M ⊗k Lχ).

Proof. By the projection formula for A→ ∗, the left side identifies with

RΓ(A,M ⊗k LR ⊗R κ(χ)).

As LR is the R-local system associated to π1(A)
can−−→ R∗, the base change LR ⊗R κ(χ) is the κ(χ)-local system

associated to π1(A)
can−−→ R∗ → κ(χ)∗. But the latter is clearly also simply Lχ, proving the claim. �

The key assertion responsible for Theorem 1.1 is:

Proposition 2.7. The functor FMA(−) carries pD≥0(A, k) intoD≥0(R); the functorDR(FMA(−)) carries pD≤0(A, k)
into D≥0(R). In particular, if M ∈ Perv(A, k), then both FMA(M) and DR(FMA(M)) lie in D≥0(R).

Proof. By equation (2), it suffices to show FMA(−) carries pD≥0(A, k) intoD≥0(R). For this, recall that LR := π!k,
where π : V → A is the universal cover. The projection formula gives

FMA(M) := RΓ(A,LR ⊗kM) ' RΓc(V, π
∗M)

for any M ∈ Db
c(A, k). Now if M ∈ pD≥0(A, k), then π∗(M) ∈ pD≥0(V, k). Artin vanishing on the Stein space V

(see [KS90, Theorem 10.3.8]) implies that RΓc(V,−) carries pD≥0
c (V, k) into D≥0(k), proving the claim. �

To pass from Proposition 2.7 to the classical generic vanishing theorem, we recall the following (well-known) result
in commutative algebra:

Lemma 2.8. Say S is a noetherian ring with a dualizing complex ω•S , normalized so that the dualizing sheaf sits in
cohomological degree −dim(S). Fix M ∈ Db

coh(S) and some integer k. Then the dual D•S(M) := RHomS(M,ω•S)
lives in D≥−k(S) if and only if dim(Supp Hi(M)) ≤ k − i for all i

This result can be found in [Kas04, Proposition 5.2], and a variant is implicit in [Scho15, Corollary IV.2.3].

Proof. For the forward implication, we recall the following fact about Grothendieck duality (see [Sta16, Tag 0A7U]). If
N is a finitely generated S-module, then ExtiS(N,ω•S) is 0 for i /∈ {−dim(SuppN), ...., 0}. Now, forM ∈ Db

coh(S),
consider the cohomological spectral sequence

Ei,j2 : ExtiS(H−j(M), ω•S)⇒ Hi+j(D•S(M)).

As M is bounded and ω•S has finite injective dimension, there are no convergence problems. Now, if dim(Hi(M)) ≤
k − i for all i, then the aforementioned fact shows that Ei,j2 = 0 if i < −k − j. The spectral sequence then shows
D•S(M) ∈ D≥−k(S).
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For the converse, we need the following fact concerning the commutation of local duality with localization. If
(S,m) is local and p ⊂ S is a prime ideal of codimension cp, we have (ω•S)p ' ω•Sp

[cp], and hence, for any
M ∈ Db

coh(S), we get D•S(M)p = D•Sp
(Mp)[cp]. Now assume that D•S(M) ∈ D≥−k(S). We must show that

dim(Supp Hi(M)) ≤ k − i. For this, we may assume S is local with maximal ideal m, and that the statement is
known for all nontrivial localizations of S. Fix a nonmaximal prime p ⊂ S of codimension cp. Then our hypothesis
gives D•Sp

(Mp)[cp] ∈ D≥−k, and hence D•Sp
(Mp) ∈ D≥−k+cp . By induction and exactness of localization, we learn

that dim(Supp Hi(M)p) ≤ k − cp − i for any such p. In particular, if U = Spec(S)− {m}, then Supp Hi(M) ∩ U
has dimension ≤ k − 1 − i since cp ≥ 1 for any p ∈ U . As Spec(S) is obtained from U by adding a single closed
point that every point in U specializes to, it follows immediately that Supp Hi(M) has dimension ≤ k − i. �

Remark 2.9. In the situation of Lemma 2.8, it is sometimes convenient to work with dualizing complexes normalized
slightly differently. Thus, set

DS(M) = RHomS(M,ω•S [−dim(S)]).

If S is Gorenstein, this reduces to the trivial duality functor RHom(−, S) up to a twist. Lemma 2.8, reinterpreted
for DS instead of D•S and with k = dim(S), states: for M ∈ Db

coh(S), one has DS(M) ∈ D≥0(S) if and only if
codim(Supp Hi(M)) ≥ i for all i.

One can now prove the generic vanishing theorem readily:

Corollary 2.10. If M is a perverse sheaf on A, then one has the following:

(1) codim(Supp Hi(FMA(M))) ≥ i and codim(Supp Hi(DR(FMA(M)))) ≥ i for all i;
(2) Hi(A,M ⊗k Lχ) = 0 for all i 6= 0 for χ in a non-empty Zariski open subset of Char(A);
(3) χ(A,M) ≥ 0;
(4) χ(A,M) = 0 if and only if RΓ(A,M ⊗ Lχ) = 0 for some χ ∈ Char(A).

Proof. (1) follows from Proposition 2.7 and Remark 2.9. As a consequence of (1), there is a nonempty Zariski
open U ⊂ Char(A) such that FMA(M)|U is a locally free OU -module placed in degree 0. On the other hand,
if χ ∈ Char(A), then Lemma 2.6 shows that FMA(M) ⊗LR κ(χ) ' RΓ(A,M ⊗R Lχ). Now, if χ ∈ U , then
FMA(M)⊗LRκ(χ) ' (FMA(M))|U⊗OU

κ(χ) is concentrated in degree 0 by our choice of U ; thus,RΓ(A,M⊗kLχ)
is also concentrated in degree 0, giving (2). Now (3) is immediate as χ(A,M) = χ(A,M⊗kLχ) for any χ ∈ Char(A)
as they are both the Euler characteristics of different fibers of the perfect complex FMA(M) on the connected variety
Char(A). The same argument also proves⇐ in (4). Conversely, the implication⇒ in (4) comes from (2). �

Remark 2.11. It seems natural to ask if the results discussed in this section continue to hold for abelian varieties in
positive characteristic, with k being a finite ring whose order is invertible on the base. We do not know the answer to
this question. The fundamental question seems to be the following: given an abelian variety A over an algebraically
closed field of characteristic p, a prime ` different from p, and a constructible sheaf M of F`-vector spaces on A, does
the direct limit

lim−→
n

Hi(A, [`n]∗M)

vanish for i > dim(Supp M)? In other words, if A∞ denotes the inverse limit of the tower

· · · → A
`−→ A

`−→ A

of multiplication by ` maps on A, is the analog of Artin vanishing true for A∞? While we do not know the answer to
this question, note that [Wei16] does affirmatively answer the variant of this question where A lives over Fp and M is
a Q`-sheaf of geometric origin.

3. CODIMENSION INEQUALITIES VIA HARD LEFSCHETZ

In this section, we make stronger hypothesis: Let A be an abelian variety of dimension g over C, and assume that
k is a field of characteristic 0. Let R = k[π1(A)], let X = Spec(R), and let FMA : Db

c(A, k) → Dperf (R) be the
Fourier transform from §2. Recall that for any K ∈ Dperf (R), one has the cohomology support loci

Si(K) := {x ∈ X | Hi(K ⊗R κ(x)) 6= 0}.
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The subsets Si(K) ⊂ X are closed, and we set Si(A,M) := Si(FMA(M)) for any M ∈ Db
c(A, k); thus, the k-

points of Si(A,M) coincide with the set of characters χ : π1(A)→ k∗ such that Hi(A,M ⊗k Lχ) 6= 0. Our goal is
to prove the following estimate on the dimension of these subspaces:

Theorem 3.1. Fix M ∈ Db
c(A, k). Then we have:

(1) If M ∈ pD≤0(A, k), then codim(Si(A,M)) ≥ 2i for all i ∈ Z.
(2) If M ∈ pD≥0(A, k), then codim(Si(A,M)) ≥ −2i for all i ∈ Z.

In particular, if M ∈ Perv(A, k), then codim(Si(A,M)) ≥ |2i| for all i.

Our strategy is to prove Theorem 3.1 by exploiting the Hard Lefschetz theorem on A. Recall the statement:

Theorem 3.2 (Hard Lefschetz). If c ∈ H2(A, k) is the Chern class of an ample line bundle (ignoring twists) and if
N ∈ Perv(A, k) is semisimple, then the cup product map

H−i(A,N)
ci−→ Hi(A,N)

is an isomorphism for any i.

Remark 3.3. When N is of geometric origin, Theorem 3.2 follows from the theory of mixed perverse sheaves
[BBD82] (which builds on Deligne’s [Del80], and works over a base field of any characteristic) or the work of Saito
[Sai88] on mixed Hodge modules. The general case was conjectured by Kashiwara [Kas98]; in fact, he conjectured the
same for any (i.e., not necessarily regular) simple holonomic D-module. For simple perverse sheaves, this conjecture
was proven using a specialization argument by Drinfeld [Dri01] relying crucially on the work of Lafforgue [Laf02] and
assuming a finiteness conjecture of de Jong [dJ01] on the monodromy of lisse sheaves on varieties over finite fields;
the latter was proven independently by Gaitsgory [Gai07] and Böckle-Khare [BK06]. An alternate analytic proof
was given by Sabbah [Sab05] and Mochizuki for semisimple local systems. The general case of simple holonomic
D-modules was settled in a series of works by Mochizuki [Moc11].

For a simple perverse sheaf M , Theorem 3.2 implies a non-trivial statement about the fibers of FMA(M). To
“integrate” this fibral information over X , we use the following construction:

Proposition 3.4. The functor D(R)→ D(A, k) defined by N 7→ LN := LR ⊗R N satisfies the following:
(1) It is left-adjoint to M 7→ RΓ(V, π∗M), where π : V → A is the universal cover, and the R-module structure

on RΓ(V, π∗M) is induced by the π1(A)-equivariance of π.
(2) It is fully faithful.

Recall that LR is an R-local system of rank 1, obtained by descending the constant R-local system R ∈ D(V, k)
along the π1(A)-torsor π : V → A using the tautological π1(A)-action on R. Thus, one may view the complex
LN as the locally constant sheaf on A whose pullback to V is identified with the constant sheaf N , equipped with
its canonical π1(A)-equivariant structure coming from the R-module action. Unraveling definitions, one sees that
Lκ(x) ' Lx for any point x ∈ Char(A).

Proof. For (1), given N ∈ D(R) and M ∈ D(A, k), we must check that

RHomD(A,k)(LN ,M) ' RHomR(N,RΓ(V, π∗M)).

By taking a free resolution for N , and observing that both sides behave similarly with respect to the free resolution,
we may assume N = R. We must thus check that

RHomD(A,k)(LR,M) ' RΓ(V, π∗M).

As LR := π!k, and because π∗ ' π!, the left side simplifies to RHomD(V,k)(k, π
∗M) ' RΓ(V, π∗M), as wanted.

For (2), fix N,N ′ ∈ D(R). We must check that the functor N 7→ LN induces an identification

RHomR(N,N ′) ' RHomD(A,k)(LN ,LN ′).

By (1), the right side simplifies to RHomR(N,RΓ(V, π∗LN ′)). Now π∗LN ′ is the constant sheaf with valueN ′ (since
the same is true when N ′ = R, by proper base change along π). As V is contractible, this gives RΓ(V, π∗LN ′) ' N ′,
which gives the desired identification. �

The full faithfulness above yields the following criterion for certain cup product maps to be 0.
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Lemma 3.5. Fix some t ∈ Hi(A, k) and x ∈ X = Spec(k[π1(A)]). If codim(x) < i, then the cup product with t
map

∪ t : Lκ(x) → Lκ(x)[i]

is the 0 map.

Proof. By Proposition 3.4, the group HomD(A,k)(Lκ(x),Lκ(x)[i]) identifies with ExtiR(κ(x), κ(x)). The latter can
also be calculated as ExtiRx

(κ(x), κ(x)), and hence vanishes if i > codim(x) since Rx is a regular local ring of
dimension codim(x) < i. �

Exploiting the tension between a cup product map being an isomorphism (as in Theorem 3.2) and 0 (as in Lemma 3.5),
we can prove the main theorem of this section:

Theorem 3.6. Fix M ∈ Perv(A, k). Then codim(Supp Hi(FMA(M))) ≥ 2i for all i ≥ 0.

Proof. We may assume that M is simple since the conclusion behaves well under exact sequences. For simple M , we
work by descending induction on i. The claim is clearly true for i� 0 as FMA(M) is bounded. Fix an integer i > 0
and a point x ∈ X of codimension < 2i. We must show that Hi(FMA(M))x = 0. Induction lets us assume that
Hk(FMA(M))x = 0 for k > i. This implies that Hi(FMA(M)⊗R κ(x)) ' Hi(FMA(M))x/mx, where mx ⊂ Rx
is the maximal ideal. By Nakayama, it thus suffices to check thatHi(FMA(M)⊗R κ(x)) = 0. Thanks to Lemma 2.6,
this is equivalent to checking that Hi(A,M ⊗k Lκ(x)) = 0. Fix a class c ∈ H2(A, k) corresponding to the Chern
class of an ample line bundle. The Hard Lefschetz theorem (see Theorem 3.2) implies that the cup product with ci

map

α : H−i(A,M ⊗k Lκ(x))
ci−→ Hi(A,M ⊗k Lκ(x))

is an isomorphism; here we implicitly use that M ⊗k Lκ(x) is a semisimple perverse sheaf over κ(x).1 This map is
induced by applying the functor H0(A,M ⊗k −) to the cup product with ci map

Lκ(x)[−i]
ci−→ Lκ(x)[i].

Since x has codimension < 2i, Lemma 3.5 tells us that this last map is 0, and hence so is the map labelled α above.
Thus, α is both the 0 map and an isomorphism, so Hi(A,M ⊗k Lκ(x)) = 0, as wanted. �

Proof of Theorem 3.1. We first show that if M ∈ Perv(A, k), then codim(Si(A,M)) ≥ 2i for all i. A point
x ∈ X lies in Si(A,M) exactly when Hi(FMA(M)(x)) 6= 0. If codim(x) < 2i, then Theorem 3.6 implies that
FMA(M)x ∈ D<i(Rx), and hence Hi(FMA(M)(x)) = 0; this shows that any x ∈ Si(A,M) has codim(x) ≥ 2i.

The claim in (1) follows formally from the previous paragraph by expressing M as an iterated extension of shifted
perverse sheaves. For (2), observe that for any x ∈ X , the complex RΓ(A,M ⊗k Lx) is the κ(x)-linear dual of
RΓ(A,DA,k(M) ⊗k Lx−1): this results from the commutation of Verdier duality with RΓ(A,−) and the formula
DA,κ(x)(M ⊗k Lx) = DA,k(M)⊗k Lx−1 . Hence, we have an equality

Si(A,M) = inv∗S−i(A,DA,k(M))

as subspaces ofX (where inv : X → X denotes inversion on the torusX), which immediately yields (2) from (1). �

Remark 3.7. It seems natural to wonder if Theorem 3.1 continues to hold for abelian varieties over a field of positive
characteristic. More precisely, given an abelian variety A over an algebraically closed field of characteristic p and
a prime ` different from p, one may define the “open unit disc” version ̂Char(A) (as a rigid space over Q`) of the
character variety Char(A), together with a Fourier transform functor F̂MA : Db

c(A,Q`) → Db
coh( ̂Char(A)). One

may then ask if Theorem 3.6 holds true for F̂MA(M). For perverse sheaves M of geometric origin, the main obstacle
is proving the Hard Lefschetz theorem for the sheaves M ⊗ Lχ for varying characters χ. We do not know how to
prove this result; note that Drinfeld’s conjecture Kash`(k) from [Dri01, §1.7] predicts a positive answer to a much
more general version of this question.

1To see this, one can assume that k is algebraically closed, in which case M ⊗k Lκ(x) is actually simple, as one sees for example by using the
classification of simple perverse sheaves as intermediate extensions of local systems.
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4. LINEARITY

Fix an abelian variety A over C, and let k be a field of characteristic 0. We follow the notation of §2 above. Our
goal is to show that the Fourier transform of a perverse sheaf has good linearity properties near the origin of Char(A),
so let S ' Ŝym(H1(A, k)) be the completed local ring of Char(A) at the origin. The main theorem of this section is:

Theorem 4.1. Let M ∈ Perv(A, k) be a simple perverse sheaf of geometric origin. Then the completed stalk at
1 ∈ Char(A) of FMA(M) ∈ Db

coh(Char(A)) is represented by the S-complex

· · · → Hi−1(A,M)⊗k S → Hi(A,M)⊗k S → Hi+1(A,M)⊗k S → · · · ,
where the differential arises from the natural map Hi(A,M)→ Hi+1(A,M)⊗k H1(A, k) that is adjoint to the cup
product H1(A, k)⊗k Hi(A,M)→ Hi+1(A,M).

Note that one can apply the theorem also to twists of M by torsion characters, so a similar result holds for the
completion of FMA(M) at torsion points in Char(A).

The strategy for proving the theorem is as follows. As the perverse sheaf M is of geometric origin, we may
specialize to the algebraic closure of a finite field. Now, by a version of the BGG correspondence, we reduce the
linearity assertion above to a formality statement for the action of RΓ(A, k) on RΓ(A,M). This formality is then
deduced from Deligne’s theory [Del80] of weights (as cast in [BBD82]).

We recall the relevant version of the BGG correspondence in §4.1 using the language of∞-categories [Lur09] and
higher algebra [Lur]. The payoff for bringing in these tools is the material in §4.2: we give a quick deduction of some
rather strong formality results that follow almost immediately from the theory of weights using higher algebra. With
this ingredients in place, the strategy outlined in the previous paragraph is implemented in §4.3 in characteristic p, and
the characteristic 0 case follows by spreading-out.

4.1. Recollections on the symmetric and exterior algebra duality. We begin with reminders on the Koszul duality
relating exterior and symmetric algebras. The main difference, when compared to most standard standard references,
is that we do not restrict to the graded setting. All derived categories appearing in this section are viewed as stable
k-linear∞-categories (or, equivalently, differential graded (dg) categories over k, up to quasi-equivalence) in the sense
of [Lur, Chapter 1]. The basic objects of interest are defined next:

Notation 4.2. Fix a field k and a k-vector space V of dimension d with dual W . Let S0 = Sym∗(V ), and let S be the
completion of S0 at the augmentation S0 → k given by V 7→ 0. Let E := RHomS(k, k), viewed as an E1-k-algebra
or, equivalently, as an E1-algebra in the symmetric monoidal category D(k)2. Then V ' m/m2 is the cotangent space
of S, and H∗(E) is an exterior algebra on W . Moreover, attached to E, one has the derived∞-category D(E) with
its distinguished object k ∈ D(E). Let Dcoh(E) ⊂ D(E) be the full∞-subcategory of those M ∈ D(E) that have
finite dimensional total homology (as k-modules); this is also smallest full stable∞-subcategory that contains k, see
Lemma 4.8 below. We will occassionally use the the natural Gm-action3 on S0 (which gives Symn(V ) weight n);
this induces a Gm-action on E giving Hi(E) ' ∧iW weight −i. We write a superscript of Gm on a derived ∞-
category to denote the Gm-equivariant version of the derived∞-category; for example D(k)Gm describes the derived
∞-category of graded k-vector spaces, and the Gm-action on V naturally lifts E to an object of D(k)Gm .

The following notion of formality for E1-k-algebras will play an important role in the sequel.

Definition 4.3. An E1-k-algebra A is formal if there exists an isomorphism αA : A ' H∗(A) of E1-k-algebras
inducing the identity on cohomology; here H∗(A) is viewed as a differential graded k-algebra with trivial differential
and Hi(A) living in cohomological degree i.

We begin by observing that E is formal in the best possible way:

Lemma 4.4. The E1-k-algebra E is canonically Gm-equivariantly formal, i.e., there exists a unique (up to con-
tractible ambiguity) Gm-equivariant isomorphism E

α' H∗(E) of E1-k-algebras in D(k)Gm inducing the identity
on cohomology.

2For any commutative ring A, the notion of an E1-A-algebra is one formalization of a homotopy-theoretically robust notion of an “associative
algebra in D(A)”; this notion is equivalent to that of either A∞-A-algebras or differential graded A-algebra (or, for short, A-dga), see [Lur,
Proposition 7.1.4.6].

3One can work equivalently with Z-graded objects. However, to avoid confusing this grading with the cohomological degree, we stick to the
Gm-action perspective.
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Proof. This follows from exactly the same argument as the one used in Proposition 4.14. Indeed, consider the full
∞-subcategory Dw=0 of D(k)Gm spanned by complexes K with Hi(K) have weight exactly −i. The symmetric
monoidal structure on D(k)Gm) induces one on Dw=0, and our definition of the Gm-action on V show that E
naturally lifts to an E1-algebra in Dw=0. But every object in Dw=0 is canonically a direct sum of its cohomology
groups (for weight reasons), so all E1-algebras in Dw=0 are formal. �

For the rest of this section, we fix the (essentially unique) formality isomorphism α : E ' H∗(E) ' ∧∗W .

Remark 4.5. Let (R,m) be any regular local k-algebra with residue field k. Then we have RHomR(k, k) '
RHomR̂(k, k) as E1-R-algebras, where R̂ is the m-adic completion. Since R̂ ' S (non-canonically), we learn
that RHomR(k, k) is also formal by Lemma 4.4.

Remark 4.6. Let M∗ be a graded ∧∗W -module. We may view M∗ as a complex with trivial differential by placing
M i in degree i; this complex is naturally a dg-module over the k-dga ∧∗W . Let Gm act on this complex by giving the
term M i weight −i. The resulting complex is a Gm-equivariant dg-module over the k-dga ∧∗W . Via the formality
isomorphism α : E ' ∧∗W , this construction gives a functor

Modgr(∧∗W ) := {graded ∧∗W−modules} Φ−→ D(E)Gm .

If one restricts to finitely generated graded modules on the left side, one obtains a functor

Modgrfg(∧
∗W )

Φ−→ Dcoh(E)Gm .

This functor will play a crucial role in this section.

In order to do calculations in Dcoh(E), such as those of Hom-sets, we need an effectively computable projective
resolution of the generator k. A standard such resolution arises from a variant of the Koszul complex, recorded next:

Construction 4.7. The following quasi-isomorphism of E-complexes gives a Gm-equivariant resolution of k:

(3)
(
....→ Γn(W )[−n]⊗k E → ...→ Γ2(W )[−2]⊗k E →W [−1]⊗k E → E

)
'−→ k.

Here Γn(W ) ' (Symn(V ))∨ has weight −n. To describe the differential, note that

HomGm

E (Γn(W )[−n]⊗k E,Γn−1[−n](W )⊗k E) ' HomGm

k (Γn(W )[−1],Γn−1(W )⊗k E)

' HomGm

k (Symn(V )∨,Symn−1(V )∨ ⊗k E[1])

' Homk(Symn(V )∨,Symn−1(V )∨ ⊗k V ∨).

(4)

Under this isomorphism, the differential corresponds to the obvious map Symn(V )∨ → Symn−1(V )∨ ⊗ V ∨, dual to
multiplication in the symmetric algebra. The reason this defines a complex is that the canonical map Symn−1(V ) ⊗
V ⊗ V → Symn+1(V ) vanishes on the subspace of V ⊗ V that is dual to the quotient W ⊗W → ∧2W .

Using this resolution, we check that k generates Dcoh(E), as promised earlier.

Lemma 4.8. The category Dcoh(E) is the smallest stable∞-subcategory of D(E) that contains k.

Proof. Using the resolution from Construction 4.7, one checks that if M ∈ D(E) lies in D≤n(k), then any map
E[−n]→M factors through the canonical mapE[−n]→ k[−n]. More precisely, the complexes RHomE(k[−n],M)
and RHomE(E[−n],M) are connective, and the canonical map from first one to the second one is surjective onH0. In
particular, if M ∈ Dcoh(E), then one can find a map k[−n]→M in Dcoh(E) whose cone Q has smaller dimensional
total homology than M as a k-vector space. Proceeding this way, it follows that Dcoh(E) is generated by k under
finite direct sums, shifts, and cones. �

The next lemma relates perfect complexes on S to coherent complexes on E; the idea here is roughly that perfect
complexes on S can be computed via derived Cech descent along the map Spec(k)→ Spec(S). This lemma may also
be viewed as a variant of the BGG construction, the main difference being that we do not restrict to the graded setting.

Proposition 4.9. The functor F := RHomS(k,−) gives an equivalence Dperf (S) → Dcoh(E) with inverse G :=
RHomE(k,−)[d]⊗k ∧dV .
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Proof. The∞-category Dperf (S) of perfect S-complexes is the smallest stable∞-subcategory of D(S) that contains
S and is closed under retracts (by definition of perfect complexes). By Lemma 4.8, the ∞-category Dcoh(E) of
coherent E-complexes is the smallest stable∞-subcategory of D(E) that contains k. Moreover, this∞-category is
automatically closed under retracts in D(E) by the definition of Dcoh(E). Also, we have F (S) = RHomS(k, S) '
k[−d] ⊗k (∧dV )∨ by a Koszul cohomology calculation; as the latter module is identified with k[−d] (after fixing
a trivialization of ∧dV ), the functor F carries a generator to a generator. It thus suffices to check that F induces
an isomorphism RHomS(S, S) ' RHomE(k[−d], k[−d]) (and similarly for G, which actually reduces to the same
calculation). The left side is just S, so we must calculate that the right side is also S. In other words, we need to check
that the natural map S → RHomE(k, k) is an isomorphism. This is a standard calculation (see the equivalences E
and C in [DG02, Theorem 2.1] for a much more general statement), and we briefly sketch how it works. Using the the
resolution in Construction 4.7 to resolve the first copy of k (and representing E as the Koszul complex over S onW to
ensure we have S-free modules everywhere), we learn that RHomE(k, k) is computed by the product totalization of a
fourth quadrant bicomplex whose n-th column is the (standard Koszul resolution over S for) k-complex Symn(V )[n],
and the map Symn(V )[n]→ Symn+1(V )[n+ 1] induced by the horizontal differential going from the n-th column to
the (n+ 1)-st column classifies the standard S-module extension of Symn(V ) by Symn+1(V ). Collapsing to a single
complex then gives the desired identification RHomE(k, k) ' S. �

Remark 4.10. The equivalences F and G are Gm-equivariant, and they are Gm-equivariantly inverse to one another.
We write

Dcoh(E)Gm
GGm // Dperf (S)Gm

FGm

oo

for the induced equivalences at the level of equivariant derived categories. With this notation, the constructions thus
far in this section may be summarized in the following commutative diagram:

(5) Modgrfg(∧∗W )
Φ //

Ψ

''

Dcoh(E)Gm
GGm //

forget

��

Dperf (S)Gm

forget

��

FGm

oo

Dcoh(E)
G // Dperf (S)
F

oo

Here the functors FGm and GGm are defined as Remark 4.10, the functor Φ is defined in Remark 4.6, and Ψ is
defined as the composition making the triangle commute.

The explicit identification of the composite G ◦Ψ (or, better, GGm ◦Φ) in the diagram above forms the basis of the
BGG correspondence [BGG78] relating graded H∗(E)-modules to linear S-complexes, and is recalled next.

Construction 4.11 (BGG). Let M∗ be a graded ∧∗W -module. Assume that M i is a finite dimensional k-vector
space for each i, and M i = 0 for |i| � 0. By Remark 4.6 and our finiteness assumption, this gives M := Φ(M∗) ∈
Dcoh(E)Gm . Our goal is to construct a canonical identification in Dperf (S)Gm of the form

GGm(M) '
(
...→M0 ⊗k S →M1 ⊗k S → ....→Mn ⊗k S → ...

)
[d]⊗k ∧dV,

where M i has weight −i, and the map M i ⊗k S → M i+1 ⊗k S is Gm-equivariant S-module map defined by the
canonical map M i → M i+1 ⊗k V → M i+1 ⊗k S coming from the action map W ⊗M i → M i+1. In particular,
since M i ⊗k S ' S(i)⊕ dim(Mi), the complex GGm(M) is a linear complex, i.e. it can be represented by a complex
of graded free S-modules where the term in cohomological degree i is isomorphic to S(c+ i)⊕ni for suitable ni ≥ 0
and constant c independent of i.

Since GGm(−) := RHomE(k,−)[d] ⊗k ∧dV , it suffices to calculate RHomE(k,M). The Gm-equivariant reso-
lution from Construction 4.7 shows that RHomE(k,M) is the product totalization of the Gm-equivariant bicomplex

K := M∗ →M∗ ⊗ V [1]→M∗ ⊗ Sym2(V )[2]→ ...→M∗ ⊗ Symn(V )[n]→ ....,

with Kp,q = Mp+q ⊗k Symp(V ), trivial vertical differentials (since M∗ has a trivial differential), and horizontal
differentials Mp+q ⊗k Symp(V ) → Mp+q+1 ⊗k Symp+1(V ) from the action of W on M∗. Taking the product
totalization, we learn that RHomE(k,M) is calculated by the following Gm-equivariant perfect complex over S

...→M0 ⊗k S →M1 ⊗k S → ....→Mn ⊗k S → ...,
10



as asserted.

4.2. Weights and pure complexes. We recall the basic structure of the category in which the `-adic cohomology of
smooth projective varieties over finite fields takes values.

Notation 4.12. Fix a prime p, a power q = pr, and a prime ` different from p. Let k = Q`. For i ∈ R, we say that
α ∈ k∗ is a Weil number of weight i if |τ(α)| = q

i
2 for every embedding τ : k ↪→ C. LetW i ⊂ k∗ denote the set of all

possible Weil numbers of weight i. Note that W i∩W j = ∅ for i 6= j, and W i ·W j ⊂W i+j . For any variety X0 over
Fq with base change X to Fq , the complex RΓ(X, k) acquires a natural action of the (q-power) geometric Frobenius.
We view the resulting Galois representation RΓ(X, k) as an object of the∞-category Dperf (k[t, t−1]) having finite
length cohomology sheaves; here t acts by geometric Frobenius. By [Del80], any such complex is supported on
tiW i ⊂ Spec(k[t, t−1]).

We isolate the main subcategory of interest:

Definition 4.13. A complex K ∈ Dperf (k[t, t−1]) is pure of weight 0 if Hi(K) is supported set-theoretically on
W i ⊂ Spec(k[t, t−1]) for each i. The collection of all such complexes spans a full ∞-subcategory Dpure,0 ⊂
Dperf (k[t, t−1]).

By perfectness, any K ∈ Dpure,0 has finite length when viewed as a k[t, t−1]-complex, i.e., the complex has
finitely many non-zero cohomology modules, and each of those modules is a finite length k[t, t−1]-module. The key
observation is that pure complexes inhabit a discrete world. In fact, they are all equivalent to their cohomology groups
in an essentially unique way.

Proposition 4.14. For any K ∈ Dpure,0, there is a canonical isomorphism αK : K ' ⊕iHi(K)[−i]. Moreover,
Dpure,0 ⊂ D(k[t, t−1]) is a discrete subcategory, i.e., Extik[t,t−1](K,L) = 0 for i < 0 and K,L ∈ Dpure,0.

Proof. For any finite length K ∈ Dperf (k[t, t−1]), we have a canonical map

αK : K →
∏
i

∏
x∈W i

Kx '
⊕
i

⊕
x∈W i

Kx.

This map is an isomorphism if K is acylic outside tiW i ⊂ Spec(k[t, t−1]) (and thus for K ∈ Dpure,0). Moreover, if
K ∈ Dpure,0, then the right side identifies with ⊕iHi(K)[−i] by defintion, giving the desired identification. For the
second part, the same argument shows that

RHomk[t,t−1](K,L) '
∏
i

RHomk[t,t−1](H
i(K), Hi(L)).

The right side clearly has no cohomology in negative degrees, proving the claim. �

The fundamental examples of pure complexes come from geometry:

Example 4.15. Let X0 be a proper variety over Fq , and let M0 be a pure perverse sheaf of weight 0 on M0. If X and
M denote the base change of X0 and M0 to Fq , then RΓ(X,M) is pure of weight 0. When X0 is smooth and M is
lisse, this comes from [Del80, Corollary 3.3.6]; the general case comes from [BBD82, Corollary 5.4.2].

Note that the category Dpure,0 inherits a natural symmetric monoidal structure:

Construction 4.16. As W i ·W j ⊂W i+j , the∞-category Dpure,0 is endowed with a symmetric monoidal structure
⊗ given by the tensor product of the underlying complexes of k-vector spaces, with t acting diagonally; under the
identification of Spec(k[t, t−1]) with the group Gm, this corresponds to convolution. The object RΓ(X, k) ∈ Dpure,0

as in Example 4.15 is an E∞-algebra for this symmetric monoidal structure.

Algebraic structures in Dpure,0 defined using this symmetric monoidal structure are formal:

Corollary 4.17. All E1-algebras and their modules in Dpure,0 are canonically formal.

Proof. This follows immediately from Proposition 4.14 as the isomorphism K ' ⊕iHi(K)[−i] in that proposition is
compatible with the symmetric monoidal structure. �
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Remark 4.18. Corollary 4.17 applies equally well to E∞-algebras, showing that the E∞-algebra RΓ(X, k) is formal
for a smooth proper variety X/Fq . Via the proper and smooth base change isomorphisms, it follows that the same
assertion holds true for smooth proper varieties X/C. In particular, after fixing an isomorphism k ' C and using
Artin’s comparison theorem RΓ(X, k) ' RΓsing(X

an,C), this reproves the formality result from [DGMS75] for
algebraic varieties. In fact, the proof above essentially fleshes out a heuristic argument outlined in [DGMS75, page
246, paragraph 1] using the modern language of∞-categories.

4.3. Abelian varieties over finite fields. In this section, we use the theory of weights to establish a linearity result
for the stalk at the origin of the Fourier transform of a simple perverse sheaf of geometric origin. In fact, working
exclusively over finite fields, we are able to prove a stronger result thanks to the work of Lafforgue.

Notation 4.19. Let A0 be an abelian variety of dimension g over a finite field Fq , and write A for its base change to
Fq . Set k = Q`. Write E := RΓ(A, k), viewed as an E1-k-algebra. Let S = kJπ1(A)`K be the completed group
algebra4 of the pro-` part of the geometric fundamental group π1(A) of A, so S is the completion of Sym∗(H1(A, k))
at its augmentation ideal; we then have a canonical identification E ' RHomS(k, k) arising from the K(π, 1)-nature
of abelian varieties. In particular, we may use the notation of §4.1 with V = H1(A, k), and W = H1(A, k). There
is a tautological character π1(A) → S∗, which defines an S-local system LS on A. For any M ∈ Db

c(A, k), write
F̂MA(M) := RΓ(A,M⊗kLS) ∈ Dperf (S). Note that there is a Gal(Fq/Fq)-action on S, E, and also on F̂MA(M)
if M is defined over Fq .

We can describe the stalk at 0 of the Fourier transform of certain sheaves explicitly:

Theorem 4.20. Let M0 ∈ Perv(A0, k) be absolutely irreducible, and let M be its base change to Fq . Then there is a
natural Gal(Fq/Fq)-equivariant identification

F̂MA(M) '
(
...→ Hi(A,M)⊗k S → Hi+1(A,M)⊗k S → ...

)
∈ Dperf (S),

where the differentials on the right are defined by the natural map Hi(A,M) → Hi+1(A,M) ⊗k H1(A, k) coming
from the cup product action H1(A, k)⊗Hi(A,M)→ Hi+1(A,M).

Proof. First, we observe that there is a canonical formality isomorphism can : E ' H∗(A, k) by purity via Corol-
lary 4.17. This allows us to contemplate the following diagram:

Modgrfg(H
∗(E))pure,0

forget Frobenius //

Φ

��

Modgrfg(H
∗(E))

Φ

��
Dcoh(E)Gm

GGm //

forget

��

Dperf (S)Gm

forget

��

FGm

oo

Dcoh(E)pure,0
forget Frobenius // Dcoh(E)

G // Dperf (S)
F

oo

Here the second and third columns come from diagram (5); the categoryDcoh(E)pure,0 denotes coherentE-complexes
inDpure,0 (i.e., the underlying complex with Frobenius action lies inDpure,0), and similarly for Modgrfg(H

∗(E))pure,0;
the horizontal maps labelled ‘forget Frobenius’ are obtained by forgetting the Gal(Fq/Fq)-action. Crucially, by Corol-
lary 4.17, the leftmost vertical map Φ is an equivalence with inverse given by taking cohomology.

To prove the theorem, we are allowed to replaceM0 with a twist by rank 1 local system on Spec(Fq). By Lafforgue
[Laf02, Corollary VII.8], we may thus assume that M0 is pure of weight 0. Now consider F̂MA(M) ∈ Dperf (S).
This is a Gal(Fq/Fq)-equivariant complex, so its image under F is Gal(Fq/Fq)-equivariant as well. Moreover, by

4More precisely, we define S as the completion of S0 := Z`Jπ1(A)`K⊗Z`
k at the point S0 → k corresponding to the trivial character, where

Z`Jπ1(A)`K is the Iwasawa algebra of the pro-`-fundamental group ofA, and is identified non-canonically with a power series ring in 2g variables
over Z`. In particular, S is a power series in the same set of variables over k.
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construction, this image is canonically identified with

F (F̂MA(M)) := RHomS(k, F̂MA(M))

'
(
FMA(M)⊗S k

)
[−2g]⊗k (∧2gH1(A, k))∨

' RΓ(A,M)⊗k (∧2gH1(A, k))∨[−2g],

(6)

where we used the Galois equivariant isomorphism RHomS(k,−) ' (∧2gH1(A, k))∨ ⊗S k ⊗S (−) of functors, as
in Proposition 4.9, to arrive at the second isomorphism above. As this isomorphism is Galois equivariant, it follows
from purity of M0 (see Example 4.15) that F (F̂MA(M)) is pure of weight 0 (note that (∧2gH1(A, k))∨[−2g] is pure
of weight 0), and hence comes from Dcoh(E)pure,0. As the left most vertical map is an equivalence with inverse
given by taking cohomology, the preceding diagram shows that F̂MA(M) ∈ Dperf (S) comes from H∗(A,M) ∈
Modgrfg(H

∗(E))pure,0 in the diagram above. The result now follows from the explicit identification of the functor
GGm ◦ Φ given in Construction 4.11. �

In particular, we get Theorem 4.1 using the material developed above.

Proof of Theorem 4.1. Since M has geometric origin, one can use spreading out arguments to find an abelian va-
riety over a finite field so that the base change FMA(M) ⊗R S can be calculated using `-adic cohomology as in
Notation 4.19. Then the result follows from Theorem 4.20. �
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