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Bhargav Bhatt, Wei Ho, Zsolt Patakfalvi and Christian Schnell

Abstract

We study the moduli space of a product of stable varieties over the field of complex
numbers, as defined via the minimal model program. Our main results are: (a) taking
products gives a well-defined morphism from the product of moduli spaces of stable
varieties to the moduli space of a product of stable varieties; (b) this map is always
finite étale; and (c) this map very often is an isomorphism. Our results generalize and
complete the work of Van Opstall in dimension 1. The local results rely on a study of
the cotangent complex using some derived algebro-geometric methods, while the global
ones use some differential-geometric input.

1. Introduction

The moduli space Mg of curves and its Deligne–Mumford compactification Mg are two
fundamental objects of modern mathematics with wide-ranging applications. A key to
their utility is the modularity of the compactification Mg: the compactification itself
parametrizes curves, possibly with mild singularities. Recent advances in the minimal model
program [BCHM10] have provided us with a good higher-dimensional analogue of this
phenomenon: after fixing the necessary numerical invariants, one now has access to a compact
moduli space Mh that contains the space Mh of smooth objects as an open subspace, with
the space Mh itself parametrizing mildly singular varieties called stable varieties [Kol10,
Kol13, Vie95]. Although Mh shares many nice properties of Mg, e.g., it is a DM-stack
of finite type over the base field, it may possibly have many connected components that
behave very differently [Cat86, Vak06]. Hence, almost all available results on the global
geometry of Mh pertain to specific components of the moduli of surfaces (e.g., [AP09, Lee00,
Liu12, Rol10, Ops05, Ops06]) or special components of the moduli of log-stable varieties
(e.g., [Ale02, Hac04, Has99, HKT09, HKT06]).

Our goal in this paper is to produce results applicable to every component of Mh for any h,
and in particular to any dimension, by generalizing the work of Van Opstall [Ops05]. Specifically,
we explore the behavior of these moduli spaces under the operation of taking products. To explain
our results, let us fix some notation first (precise definitions will be given later). Let k be a field
of characteristic 0. Given a stable variety Z over k, let M(Z) denote the connected component
of the appropriate moduli space Mh spanned by Z; this space is a Deligne–Mumford stack.
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Moduli of products of stable varieties

Given stable varieties X and Y , we show that taking products defines a morphism

ProdX,Y :M(X)×M(Y )→M(X × Y ).

Our main local result is the following theorem.

Theorem 1.1. The map ProdX,Y is a finite étale cover of Deligne–Mumford stacks for any
stable varieties X and Y .

Going one step further, one may ask when the map ProdX,Y is an isomorphism. By
Theorem 1.1, it suffices to find a single point of M(X × Y ) where ProdX,Y has degree 1. If
X and Y are isomorphic or even simply deformation equivalent, then ProdX,Y cannot be an
isomorphism due to the symmetry of the source. Our main global result is that this is essentially
the only obstruction, provided we work with smooth varieties.

Theorem 1.2. Let X and Y be two stable varieties such that X × Y is smooth and neither
X nor Y can be written nontrivially as a product of two stable varieties. If X and Y are not
deformation equivalent, then ProdX,Y is an isomorphism. Otherwise, the map ProdX,Y is an
S2-torsor.

The (slightly technical) notion of deformation equivalence above will be discussed more
carefully in § 2.1. A generalization of Theorem 1.2 applies to smooth stable varieties admitting a
product decomposition, as explained in Theorem 4.2. We expect but do not know if these results
are true without the smoothness assumption.

Theorem 1.2 is a consequence of the following more general result about canonically polarized
manifolds (i.e., compact complex manifolds with ample canonical bundle), whose proof occupies
§ 4 below.

Theorem 1.3. Every canonically polarized manifold decomposes uniquely into a product of
irreducible factors.

Comments on proofs
Granting the existence of a proper moduli stack of stable varieties, Theorem 1.1 immediately
reduces to a statement about the deformation theory of stable varieties. We approach this
statement via the Abramovich–Hassett theory of canonical covering stacks which relates the
admissible deformation theory of a stable variety X with the usual deformation theory of an
associated stack Xcan. The key point then (following obvious notation) is to show that DefXcan ×
DefY can is equivalent to Def(X×Y )can ; we show this by equating both sides with DefXcan×Y can via
a detailed study of the relevant cotangent complexes.

Theorems 1.2 and 1.3 are proved using differential-geometric methods. The main input is the
polystability of the tangent bundle on a canonically polarized manifold (ensured by two theorems
of Yau and Uhlenbeck–Yau), and the fact that a direct sum decomposition of the tangent bundle
induces a product decomposition of the universal cover (from a theorem of Beauville).

Organization of the paper
We set up the problem at hand, in § 2, by describing the appropriate moduli functors for families
of stable varieties and constructing the product map. Theorem 1.1 is proved in § 3 by first
considering a general theorem about deformations of products in § 3.1 and then specializing to
our moduli spaces in § 3.3. These proofs use the language of derived algebraic geometry, which is
reviewed in the Appendix. Finally, § 4 explains how many ways stable varieties can decompose
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as products, under assumptions about smoothness; in the many cases for which stable varieties
decompose uniquely as products, the associated product map is injective.

Notation

Throughout this paper, we use k to denote a field of characteristic 0 with two exceptions: in § 3,
we allow k to have positive characteristic unless otherwise indicated, and in the Appendix, we
allow k to be an arbitrary ring.

2. Stable varieties and construction of the product map

In this section, we define the moduli functor parametrizing stable varieties, and show that it
is representable by a proper Deligne–Mumford stack; the properness uses recent results in the
minimal model program due to Hacon–McKernan–Xu. We then show there is a well-defined
product map, which we will investigate in the sequel.

2.1 Definitions of stable varieties and moduli functors

As stated before, the moduli space of smooth projective curves of genus at least 2 may be
compactified by adding points representing some mildly singular curves obtained from smooth
curves by a limiting procedure; the resulting curves are called stable curves. To compactify the
space of birational equivalence classes of varieties of general type in higher dimensions, one is
then confronted with the problem of determining the singular varieties that should be allowed
at the boundary. Mori theory solves this problem by providing a viable candidate definition for
higher-dimensional stable varieties and stable families; the robustness of the solution ensures that
the moduli functor thus defined is automatically separated (by an old result of [MM64]) and also
proper, granting standard conjectures in higher-dimensional geometry that are now theorems.

Our goal in this section is to review the definitions of stable varieties and stable families,
and also to say a few words about the resulting moduli space; more information can be
found in the survey articles [Kol10, Kov09]. First, we recall some basic definitions. A variety
X is said to have log canonical singularities if X is normal, Q-Gorenstein, and satisfies the
following: for a log resolution of singularities g : X̃ →X with exceptional divisor E =

⋃
i Ei, if

we write KX̃ = g∗KX +
∑

i aiEi, then we have ai >−1 for all i. The notion of semi-log canonical
singularities is a non-normal generalization of log canonical singularities. Its definition is almost
verbatim the same as that of log canonical, but the log resolution is replaced by a good semi-
resolution. We refer the reader to [Kov09, § 6.5] and [Kol13, Definition–Lemma 5.1] for more
detail, and simply remark here that such singularities are automatically reduced, satisfy Serre’s
S2 condition, are Q-Gorenstein, and are Gorenstein in codimension 1. For a coherent sheaf F
on a noetherian scheme X such that Supp(F) =X, the reflexive hull F∗∗ is defined to be the
double dual of F . If X is S2 and G1 (Gorenstein in codimension 1) and F is a line bundle in
codimension 1, say over U ⊆X, then F∗∗ ∼= j∗(F|U ) [Har94, Theorem 1.12], where j : U →X is
the natural embedding. The reflexive powers F [i] are then defined to be (F⊗i)∗∗ for any integer
i with the convention that F⊗i :=Hom(F ,OX)⊗−i for i < 0; these definitions will typically be
applied when F has generic rank 1.

The main object of study in this paper is contained in the following definition.

Definition 2.1. A proper geometrically connected k-variety X is called stable if X has semi-log
canonical singularities and KX is a Q-Cartier and ample divisor.
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Next, we define families. The naive definition of a family of stable varieties (namely, a
flat family with stable fibers) leads to pathologies as there are ‘too many’ such families;
see [Kov09, § 7] for examples. The correct definition, given below, imposes certain global
constraints on the family. In the sequel, we sometimes refer to such families as admissible families.
The condition appearing below is known as Kollár’s condition.

Definition 2.2. Given a k-scheme S, a stable family f :X → S is a proper flat morphism whose
fibers are stable varieties and such that ω[m]

X/S is flat over S and commutes with base change, for
every m ∈ Z.

Finally, we are ready to define the moduli functor of stable varieties. The functor SlcModh
in [Kol10] is similar but we choose to keep track of automorphisms.

Definition 2.3. Let h(m) be an integer-valued function. Then the moduli functorMh of stable
varieties with Hilbert function h is defined by settingMh(S) to be the groupoid of stable families
f :X → S whose fibers have Hilbert function h with respect to ωX/S . Given a stable variety X
over k, we letM(X) denote the connected component ofMh(X) that contains [X], where h(X)
is the Hilbert function of X. Then two varieties X and Y are deformation equivalent if M(X)
and M(Y ) coincide.

2.2 Automorphisms of stable varieties
In this section, we show thatM(X) is a Deligne–Mumford stack for stable varieties X, although
this fact must surely be known by the experts. We start with a lemma that bounds how negative
the canonical line bundle on a resolution of singularities of a stable variety can be.

Lemma 2.4. Let X be a stable variety over k, and let π : Y →X be a semi-resolution with
(reduced) exceptional divisor E. Then KY + E is big.

Proof. Let E =
∑

i Ei be the reduced union of the π-exceptional divisors. As X has semi-log
canonical singularities, we can write

KY = π∗KX +
∑
i

aiEi

with ai >−1, or equivalently, we can write

KY + E = π∗KX +
∑
i

biEi

with bi > 0. The stability of X implies that KX is ample. The preceding formula then expresses
KY + E as the sum of a big divisor and an effective one, proving bigness. 2

We now show that stable varieties do not admit infinitesimal automorphisms; this fact was
stated in [Ops05], but the proof was incomplete.

Lemma 2.5. Let X be a stable variety over a field k of characteristic 0. Then X has no
infinitesimal automorphisms.

We give two proofs of this result: the first is cohomological and relies on recent
work [GKKP11].

Proof 1. We wish to show that HomX(LX ,OX) = 0. Consider the usual exact triangle as in the
following diagram.

τ<0LX // LX // ΩX
+1 //
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As ExtiX(τ<0LX ,OX) = 0 for i= 0,−1, one has HomX(LX ,OX)'HomX(ΩX ,OX), so it is
enough to show that the latter is zero. We are going to show the vanishing of this group when X
is normal; the general case is similar but requires an analysis of how ΩX(log D) relates to ΩX ,
where n :X →X is the normalization of X and D is the conductor. Because restriction to the
smooth locus is fully faithful on the category of reflexive sheaves on a normal scheme, we have

HomX(ΩX ,OX)'HomXsm(ΩX ,OX)'HomXsm(ωX , Ωn−1
X )'HomX(ωX , Ω

[n−1]
X ),

which vanishes by [GKKP11, Theorem 7.2]. 2

The second proof of Lemma 2.5 is more direct and geometric.

Proof 2. We give a proof in the case that X is normal and of index 1, leaving the rest for the
reader. Since X is assumed to have an ample canonical bundle, the group sheaf T 7→Aut(XT ) is
represented by a closed subgroup scheme Aut(X)⊂ PGLn for suitable n, which allows us to talk
about its identity component Aut0(X). Now assume towards contradiction that X has nontrivial
infinitesimal automorphisms, i.e., that Aut0(X) has a nonzero tangent space at the identity. By
Chevalley’s theorem, Aut0(X) either contains a linear algebraic subgroup, or is itself an abelian
variety. We treat these cases separately; the idea in either case is to show that the presence
of a positive dimensional group action forces X to be fibered over a lower dimensional base
with fibers of Kodaira dimension 60 (up to an alteration), which is then shown to contradict
stability.

Assume first that Aut0(X) has a nonzero linear algebraic subgroup. Since char(k) = 0, we can
pick a one-dimensional connected smooth group scheme G⊂Aut0(X), necessarily either Gm or
Ga. Let Z ⊂X denote the singular locus, and choose a G-equivariant resolution of singularities
f : Y →X with exceptional locus E = π−1(Z)red. Now consider the diagram

G× Y a //

π

��

Y

Y

where a is the map defining the group action, while π is a projection map. Since the representation
G→Aut(Y ) is faithful with dim(G)> 0 and G is smooth, we can choose a smooth divisor H ⊂ Y
such that the restriction of a to G×H is dominant and generically étale. By compactifying π|H
and resolving singularities, we obtain a diagram

G×H � � j //

π|H
��

C
π

��

q // Y

H H

where C is smooth, π is a proper surjective morphism of relative dimension 1, j is a dense open
immersion, and q is a proper, surjective, generically étale map extending a. In particular, we
see that the map π restricts to the trivial G-bundle over some dense open subset of H, where
G'P1 is the natural projective compactification of G. We then have the following possibilities
for G and the corresponding intersection numbers of ωC(q−1E) with a general fiber of π.

– When G= Gm, the general fiber of π is a P1 that passes through a general point of Y and
meets E in at most two points: its image in X contains the Gm-orbit through a smooth

2040



Moduli of products of stable varieties

point, and hence meets Sing(X) = f(E) in at most two points. Since ωC restricts to OP1(−2)
on the general fiber of π, we find that ωC(q−1E) has degree 60 on a general fiber of π.

– When G= Ga, exactly as above, we find that ωC(q−1E) has degree 6− 1 on a general fiber
of π.

Hence, the bundle ωC(q−1E) always has degree 60 on a general fiber of π. On the other hand,
Lemma 2.4 shows that ωY (E) is big, and thus so is ωC(q−1E) = q∗ωY (E)⊗ ωC/Y since ωC/Y is
effective. Hence, the degree of ωC(q−1E) on a general fiber of π should be positive, which leads
to a contradiction proving the claim in this case.

If Aut0(X) does not contain a linear algebraic subgroup, then Aut0(X) is an abelian variety A,
say of dimension g. Assume first that g > dim(X). Since A acts faithfully on X, there is an open
subset U ⊂X which consists of points with no A-stabilizers. Translating a closed point in U
using A then shows that g = dim(X), and that X =A. In particular, ωX is trivial, contradicting
the ampleness of ωX . If g < dim(X), then we argue as in the case of Gm above, subject to the
following changes: use a codimension g subvariety H ⊂ Y instead of a divisor; use that restriction
of ωC to the appropriate general fiber is trivial, as abelian varieties have trivial canonical bundle;
and observe that the general fibers of π map to A-orbits of smooth points in X, and so miss E
entirely when mapped to Y . 2

Remark 2.6. Lemma 2.5 admits a simple cohomological proof when X is itself smooth: it suffices
to check that H0(X, TX) = 0, which follows by Serre duality and Kodaira vanishing (using
the ampleness of ωX). An advantage of the cohomological approach is that it also works in
characteristic p as long as X lifts to W2 and dim(X)< p (as Kodaira vanishing is then true
by [DI87, Corollary 2.8]). We do not know what happens if either of these assumptions is dropped.
The geometric argument in the second proof of Lemma 2.5 runs into problems immediately as
infinitesimal group actions cannot usually be integrated to positive dimensional group actions in
positive characteristic.

Next, we prove a separation result for the moduli functor.

Lemma 2.7. Let X → S and Y → S be two families of stable schemes over a curve S with normal
generic fiber. Let 0 ∈ S be a point, such that for U := S\{0}, XU

∼= YU as schemes over U . Then,
X ∼= Y as schemes over S.

Proof. First, we may assume that S is affine, by throwing out a point if necessary. Choose
a common resolution Z of X and Y . Since XU

∼= YU , Z can be chosen so that it is an
isomorphism over U . Let f : Z→X and g : Z→ Y be the birational morphisms obtained this
way. Since X and Y are families of stable schemes over a smooth curve, they are S2 by [Gro65,
Proposition 6.3.1]. Since both have normal generic fiber, both X and Y are R1. Hence, they are
both normal. Also, since both ωX/U and ωY/U are Q-line bundles, so are ωX and ωY . Therefore, by
[Kaw07, Theorem], (X, Xs) and (Y, Ys) are log canonical for every s ∈ S. In particular, so are
X and Y , and furthermore, every divisor with negative discrepancy dominates S. That is, the
canonical divisors of X, Y and Z are related by the equations

KZ +M = f∗KX + F, KZ +N = g∗KY +G, (1)

where F , G, M and N are effective, exceptional (with respect to the adequate morphisms)
Q-divisors, such that every prime divisor in M and N has coefficient at most 1 and dominates S.
Furthermore, since M and N are determined on XU and YU , in fact M =N . We use M to denote
both divisors.
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Let r be the lowest common multiple of the indices of KX and KY . Let R(X, D) :=⊕
j H

0(X,OX(jD)) denote the Cox ring of the divisor D on X, for any divisor D on a scheme X.
Then by (1), we have

R(X, rKX)'R(Z, r(g∗KY +G))'R(Z, r(KZ +M))'R(Z, r(f∗KX + F ))'R(Y, rKY )

where the first isomorphism follows from F being effective and f -exceptional (similarly for the
last isomorphism, using G). Since both rKX and rKY are ample line bundles (as they are
relatively ample over an affine base), we obtain

X ' ProjR(X, rKX)' ProjR(Y, rKY )' Y.

Furthermore, since S was affine, this isomorphism respects S. 2

The main existence result concerning the moduli functor is the following theorem.

Theorem 2.8. For a fixed Hilbert function h, the moduli functor Mh is a proper Deligne–
Mumford stack.

Proof. That Mh is a locally algebraic Artin stack follows from [AH10] and Artin’s method.
Lemma 2.5 then shows that Mh is actually a Deligne–Mumford stack. For generically normal
families, the separatedness of Mh follows from Lemma 2.7, and the general case can be proved
by similar techniques. Finally, the valuative criterion for properness is proved in [HX11, § 7],
while boundedness will be shown in forthcoming work by Hacon, McKernan and Xu. 2

2.3 The stability of products
This section is devoted to constructing the map ProdX,Y alluded to in § 1. First, we check that
a product of stable varieties is stable.

Lemma 2.9. The product of varieties with only semi-log canonical singularities has semi-log
canonical singularities.

Proof. This is proved in [Ops05, Theorem 3.2]; for the reader’s convenience, we give a direct and
slightly different argument here. We use the criterion that X has semi-log canonical singularities
if and only if the pair (X ′, D) is log canonical, where X ′→X is the normalization and D the
conductor.

Let X1 and X2 be two varieties with only semi-log canonical singularities, and set X =
X1 ×X2. Then we haveX ′ =X ′1 ×X ′2, andD = (D1 ×X2) ∪ (X1 ×D2), and therefore (X ′, D) =
(X ′1, D1)× (X ′2, D2). By assumption, X1 and X2 are reduced and Q-Gorenstein, and so the same
is clearly true for X ′. Now let fi : Yi→X ′i be log resolutions for the two pairs; by assumption on
the singularities,

KYi
≡ f∗i

(
KX′i +Di

)
+
∑
j

ai,jEi,j

with ai,j >−1. Setting Y = Y1 × Y2 and f = f1 × f2, the morphism f : Y →X ′ is a log resolution
for the pair (X ′, D). We compute that

KY ≡ p∗1KY1 + p∗2KY2 ≡ f∗(KX′ +D) +
∑
j

(a1,jE1,j × Y2 + a2,jY1 × E2,j),

which shows that (X ′, D) is indeed log canonical. 2

If F is a sheaf on X, we let F∗ =HomOX
(F ,OX) denote the OX -linear dual. We record an

elementary algebraic fact next that will be used repeatedly in the sequel.
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Lemma 2.10. Let f :X → S be a flat morphism of noetherian schemes, and let F be a coherent
sheaf on S. If F is reflexive, so is f∗F . If f is surjective, the converse is also true.

Proof. The formation of HomS(E , G) commutes with flat base change on S for any pair of
coherent sheaves E and G. In particular, the formation of F∗ commutes with flat base change.
Now consider the biduality map F → (F∗)∗. Since the reflexivity of F is precisely the condition
that this map is an isomorphism, all claims follow from basic properties of flatness. 2

Next, we show that exterior products of reflexive sheaves remain reflexive.

Lemma 2.11. Let f : X →B and g : Y →B be two flat morphisms, and let Z =X ×B Y be
their fiber product. Let F and G be reflexive sheaves on X and Y , respectively. If F and G are
B-flat, then F � G is a reflexive sheaf on Z.

Proof. Let pX : Z→X and pY : Z→ Y be the two projection maps. By Lemma 2.10, the sheaves
p∗XF and p∗Y G are reflexive. Then we have

(p∗XF∗ ⊗ p∗Y G∗)∗ = Hom(p∗XF∗ ⊗ p∗Y G∗,OZ)
' Hom(p∗XF∗,Hom(p∗Y G∗,OZ)) (by adjointness)
' Hom(p∗XF∗, p∗Y G) (by reflexivity of G)
' Hom(p∗XF∗,OZ)⊗ p∗Y G (by flatness of pX and pY )
' p∗X(F∗)∗ ⊗ p∗Y G
' p∗XF ⊗ p∗Y G (by reflexivity of F).

Thus, p∗XF ⊗ p∗Y G is the dual of a coherent sheaf on Z and, therefore, reflexive. 2

We now show that the product of stable families is stable.

Proposition 2.12. The fiber product of two stable families is again a stable family.

Proof. Let f : X →B and g : Y →B be two stable families, and set Z =X ×B Y and h : Z→B.
Since f and g are flat, projective, and have connected fibers, the same is true for h. Lemma 2.9
shows that each fiber Zb =Xb × Yb has semi-log canonical singularities. Next, we verify Kollár’s
condition. By assumption, the formation of ω[k]

X/B commutes with arbitrary base change, and so

by [AH10, Theorem 5.1.4], we may conclude that ω[k]
X/B is flat over B; we also reproduce the

essential part of this argument below as Lemma 2.13 and Corollary 2.14 for the convenience of
the reader. Since f and g are flat morphisms, Lemma 2.11 shows that

p∗Xω
[k]
X/B ⊗ p

∗
Y ω

[k]
Y/B

is again a reflexive sheaf on Z. Arguing as in [Kov09, Lemma 7.3], we see that it agrees with the
reflexive sheaf ω[k]

Z/B on an open set whose complement has relative codimension at least two in
Z. We must therefore have

ω
[k]
Z/B ' p

∗
Xω

[k]
X/B ⊗ p

∗
Y ω

[k]
Y/B.

This formula implies that the formation of ω[k]
Z/B commutes with arbitrary base change, and so

Kollár’s condition holds for the family h : Z→B. Also, when k is the least common multiple
of the index of X and the index of Y , the formula shows that ω[k]

Z/B is a relatively ample line
bundle, proving that ωZ/B is an ample Q-line bundle. This concludes the proof that h : Z→B
is a stable family. 2
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The next lemma and following corollary are here for the reader’s convenience, as they are
used in the proof of Proposition 2.12; see [Kol95] for more results like these.

Lemma 2.13. Let f : (R,m)→ (S, n) be an essentially finitely presented flat local map of
noetherian local rings. Let M be a finitely presented S-module. Assume the following.

(i) The locus of points on Spec(S) where M is flat over Spec(R) is dense in the fiber Spec(S/m).
(ii) The support of any nonzero m ∈M/mM contains a generic point of Spec(S/m).

Then M is R-flat.

Proof. By the local flatness criterion, it suffices to check that the natural surjective maps

an : mn/mn+1 ⊗R/m M/mM �mnM/mn+1M

are isomorphisms for all n. Let Kn = ker(an). The assumption that the flat locus is dense in
the fibers tells us that Kn is not supported at any of the generic points of Spec(S/m). Since
the source of an can be identified with a direct sum of copies of M/mM , it follows that if Kn 6= 0,
then M/mM admits sections not supported at the generic points of Spec(S/m). However, this
contradicts the second assumption, so Kn = 0, proving flatness. 2

Corollary 2.14. Let f :X → S be a locally finitely presented flat map of noetherian schemes
with fibers that are S2 and of pure dimension d. Let U ⊂X be an open subset dense in all the
fibers. Let F be a coherent sheaf on X such that F|U is S-flat. Assume that F|Xs

is reflexive for
any s ∈ S. Then F is S-flat.

Proof. There is nothing to show when d= 0 as U =X in that case by density, so we may assume
d > 0. To show the S-flatness of F , we will check that the conditions of Lemma 2.13 hold locally
on X. The first condition is satisfied by assumption on U . For the second one, given a point
s ∈ S, the reflexivity of F|Xs

tells us that, locally on Xs, we may realize F|Xs
as a subsheaf of a

direct sum of copies of OXs
. Since Xs is a pure and positive dimensional S2 scheme, all nonzero

local sections of OXs
are supported at some generic point of Xs, and so the same is true for

F|Xs
, showing the second condition is satisfied. By Lemma 2.13, we conclude that F is S-flat,

as desired. 2

By Proposition 2.12, the fiber product of two stable families is also a stable family. Hence,
we define the desired product map as follows.

Definition 2.15. For any two stable varieties X and Y , let ProdX,Y be the morphism

ProdX,Y :M(X)×M(Y )→M(X × Y )

defined by taking fiber products of stable families.

3. The local theory

Our goal in this section is to explain why taking products of stable varieties defines a finite
étale morphism on moduli spaces. The two main steps of the proof are: (a) showing that the
deformation theory of products behaves in the expected way for a fairly large class of algebro-
geometric objects, and (b) dealing with the slightly subtle issues related to the deformation
theory of stable varieties, stemming ultimately from Kollár’s condition in Definition 2.2 of
admissible stable families. We first study (a) in § 3.1. Then § 3.2 contains some general results on
deformations of morphism, which form the key technical ingredients of the proofs in § 3.3, where
we carry out step (b).
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The two main tools used in our proofs are the Abramovich–Hassett description of the
admissible deformation theory of stable varieties in terms of the (usual) deformation theory
of certain associated stacks (see [AH10]), and derived algebraic geometry. The former reduces
the admissible deformation theory of stable varieties to the usual deformation theory of certain
associated stacks, permitting us to use the cotangent complex. The main advantage of the
derived perspective is an explicit construction of deformations and obstructions which makes
calculations feasible, especially in the singular case (see the proof of Proposition 3.10). The
relevant background is summarized in the Appendix; we note here that all derived rings that
occur in the discussion below are especially mild: they are simplicial k-algebras with finite
dimensional homology.

3.1 The deformation theory of products

Fix a field k. The main result of this section, Theorem 3.3, is a general theorem about the
deformation theory of products of two Deligne–Mumford stacks. Under some mild hypotheses
on the two stacks, the main one being lack of infinitesimal automorphisms, we show that the
deformations of the product are given uniquely by products of deformations of the factors. The
meat of the proof is a rather thankless task: we check that obstructions behave predictably under
taking products. We will use this result in § 3.3 to understand the infinitesimal behavior of our
global product map ProdX,Y . We remark that the aforementioned stack-theoretic description
of the admissible deformation theory of a stable variety necessitates formulating and proving
results in the present section for stacks rather than varieties.

We introduce two pieces of notation first.

Notation 3.1. Let SArtk denote the ∞-category of derived local artinian k-algebras, i.e., those
A ∈ SAlgk with π0(A) local with residue field k, and

⊕
i πi(A) finite dimensional as a k-vector

space. The category SArtk provides test objects for deformation-theoretic questions in derived
algebraic geometry, and we call its objects small derived algebras. Any map A→B in SArtk that
is surjective on π0 can be factored as A=A0→A1→ · · · →An =B with Ai→Ai+1 a square-
zero extension of Ai+1 by k[j] for some j (see [Lur04, Lemma 6.2.6]). We let Artk denote the
full subcategory of SArtk spanned by discrete small derived algebras. Note that Artk is simply
the ordinary category of artinian local k-algebras with residue field k; we refer to its objects as
small algebras.

Notation 3.2. For a Deligne–Mumford k-stack X, let DefX be the ∞-groupoid-valued functor
which associates to A ∈ SArtk the∞-groupoid of all pairs (f : X → Spec(A), i :X →X ) where f
is a flat morphism, and i identifies X with the special fiber of f . We will refer to such pairs (f, i)
as flat deformations of X. When restricted to Artk ⊂ SArtk, this definition recovers the ordinary
groupoid-valued functor of flat deformations of X. For a morphism π : Y →X, let Defπ(A) be
the ∞-groupoid of quadruples (f : X → Spec(A), g : Y → Spec(A), πA : Y →X , φ) where f and
g are flat deformations of X and Y respectively to A, πA is an A-map deforming π, and φ is an
identification of πA ⊗A k with π.

Given two Deligne–Mumford k-stacks X and Y , there is a natural morphism

prodX,Y : DefX ×DefY →DefX×Y

given by taking fiber products. Our basic theorem concerns the behavior of the map prodX,Y .
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Theorem 3.3. Fix a field k. Let X and Y be proper geometrically connected and geometrically
reduced Deligne–Mumford k-stacks with no infinitesimal automorphisms. Then the map prodX,Y
considered above is an isomorphism of functors on Artk.

Let us record certain vanishings that are available to us; these results enable fluid passage
between the product and its factors.

Lemma 3.4. Fix a field k. Let X and Y be proper Deligne–Mumford k-stacks. Assume that X
admits no infinitesimal automorphisms, and that H0(Y,OY ) = k. Then the natural map

ExtiX(LX ,OX)→ ExtiX×Y (p1
∗LX ,OX×Y )

induced by pulling back along the projection p1 :X × Y →X is bijective for i= 0, 1, and injective
for i= 2.

Proof. The projection formula and adjointness give natural identifications

ExtiX×Y (p1
∗LX ,OX×Y ) = ExtiX(LX , Rp1∗OX×Y )

= ExtiX(LX , RΓ(Y,OY )⊗OX).

Now consider the exact triangle

OX
u−−→ RΓ(Y,OY )⊗k OX →Q

+1−−−→

where Q is defined to be the homotopy cokernel of u. Applying Exti(LX ,−) gives

Exti(LX ,Q[−1])→ Exti(LX ,OX)→ ExtiX×Y (p1
∗LX ,OX×Y )→ ExtiX(LX ,Q).

Thus, it suffices to check that Exti(LX ,Q) = 0 for i6 1. Since LX is connective and Q∈D>1(X),
we immediately see that Ext0(LX ,Q) = 0. To check that Ext1(LX ,Q) vanishes as well, note that
the exact triangle

τ>2Q[−1]→H1(Q)[−1]→Q +1−−−→
shows that Ext1(LX ,Q)' Ext0(LX ,H1(Q)). By construction, H1(Q)'H1(Y,OY )⊗OX is
a free OX -module. The desired claim now follows from the stability assumption that
Ext0(LX ,OX) = 0. 2

We can now prove the desired result.

Proof of Theorem 3.3. We will show that

prodX,Y (A) : DefX(A)×DefY (A)→DefX×Y (A)

is an equivalence of groupoids for A ∈Artk by working inductively on dimk(A). As X and Y
lack infinitesimal automorphisms, the groupoids in question are discrete, and will be viewed as
sets. When dimk(A) = 1, we have A= k and there is nothing to show as both sides are reduced
to points. By induction, we may assume that the desired claim is known for all A ∈Artk with
dimk(A)6 n for some fixed integer n. Given an Ã ∈Artk with dimk(Ã) = n+ 1, we can find a
surjection Ã→A with kernel k as an A-module. This gives a diagram

DefX(Ã)×DefY (Ã)
prodX,Y (Ã)

//

��

DefX×Y (Ã)

��
DefX(A)×DefY (A)

prodX,Y (A)
// DefX×Y (A)
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with prodX,Y (A) bijective by induction. We will show that prodX,Y (Ã) is bijective. As there
is nothing to show if the bottom row is empty, we may fix a base point of the bottom row,
i.e., we fix flat deformations f : X → Spec(A) and g : Y → Spec(A) of X and Y to Spec(A).
Let πf,g : X ×Spec(A) Y → Spec(A) denote their fiber product, and let p : X ×Spec(A) Y →X and
q : X ×Spec(A) Y →Y be the two projection maps.

We first show that all fibers of prodX,Y (Ã) are non-empty, i.e., if πf,g admits a deformation
across Spec(A) ↪→ Spec(A′), then the same is true for f and g. Let DA : LA→ k[1] be the
derivation classifying the surjection Ã→A (see Theorem A.4). Associated to this derivation,
we have obstruction classes

ob(f, f∗DA) : LX/A[−1]→OX [1] and ob(g, g∗DA) : LY/A[−1]→OY [1]

on X and Y, and the obstruction class

ob(πf,g, π∗f,gDA) : LX×Spec(A)Y/Spec(A)[−1]→OX×Spec(A)Y [1]

on the product given by Theorem A.5. By Theorem A.3, these classes are compatible in the
sense that the following diagram commutes.

p∗LX/A[−1]
p∗ob(f,f∗DA) //

��

OX×Spec(A)Y [1]

LX×Spec(A)Y/Spec(A)[−1]
ob(πf,g,π∗f,gDA)

// OX×Spec(A)Y [1]

q∗LY/A[−1]
q∗ob(g,g∗DA) //

OO

OX×Spec(A)Y [1]

The assumption that πf,g admits a deformation across Spec(A) ↪→ Spec(A′) ensures that
the middle horizontal arrow in the above diagram is 0. It follows by the commutativity that the
same is true for other horizontal arrows, i.e., that p∗ob(f, f∗DA) = 0, and similarly for Y . To
show that ob(f, f∗DA) = 0, it now suffices to show that the pullback

π0(HomX (LX/Spec(A)[−1], k ⊗A OX [1]))
→ π0(HomX×Spec(A)Y(p∗1(LX/Spec(A))[−1], p∗1(k ⊗A OX )[1]))

is injective, and similarly for Y . Simplifying, this amounts to showing that the pullback

Ext2X (LX/Spec(A),OX)→ Ext2X×Spec(A)Y(p∗1LX/Spec(A),OX×Y )

is injective, and similarly for Y . By base change (see Appendix A.8) and adjointness, it is enough
to check that the pullback

Ext2X(LX ,OX)→ Ext2X×Y (p∗1LX ,OX×Y )

is injective, which follows from Lemma 3.4; similarly for Y .
Next, we show that all fibers of prodX,Y (Ã) are reduced to points, i.e., we will check that

all possible deformations of X ×Spec(A) Y → Spec(A) across Spec(A) ↪→ Spec(A′) are obtained
uniquely by taking products of deformations of each factor. By the above, we may assume that
both X → Spec(A) and Y → Spec(A) admit deformations across Spec(A) ↪→ Spec(A′). Following
the same method used above to linearize the problem, we immediately reduce to verifying that
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the natural map

Ext1X(LX ,OX)× Ext1Y (LY ,OY )→ Ext1(LX×Y ,OX×Y )

is bijective. This, in turn, results from the base change formula (see Appendix A.8) and
Lemma 3.4. 2

Warning 3.5. The conclusion of Theorem 3.3 fails if we consider both sides as functors on
the larger category SArtk of all small derived algebras rather than simply the ordinary ones.
Indeed, the data of the functor DefX on SArtk is equivalent to the data of the object
R Hom(LX ,OX) (with its extra structure coming from Lie theory; see [Lur10, Theorem 5.2])
at least in characteristic 0. The failure of the product map

R Hom(LX ,OX)× R Hom(LY ,OY )→ R Hom(LX×Y ,OX×Y )

to be an isomorphism then explains the failure of prodX,Y to be an equivalence as functors
on SArtk. For example, let X and Y be genus g curves for g > 0. One then computes
that Ext2(LX×Y ,OX×Y ) 6= 0, but Ext2(LX ,OX) = Ext2(LY ,OY ) = 0. What this means is that
X × Y has a nontrivial deformation over the derived local artian k-algebra k ⊕ k[1], while X and
Y do not.

Remark 3.6. The main input from derived algebraic geometry in our proof of Theorem 3.3 is
an explicit construction of the deformation and obstruction classes associated to a morphism
π : Y →X; having access to the construction renders the functoriality transparent. It is tempting
to deduce this functoriality directly from Illusie’s formula for the obstruction class in terms of
the cup product of the Kodaira–Spencer class for π and the Ext1 class describing the relevant
deformation ofX. One can implement this strategy with a good understanding of the functoriality
of the Ext1 class describing the relevant deformation of X.

Remark 3.7. The proof of Theorem 3.3 has two essential parts: showing that the map prodX,Y
is injective, and showing that prodX,Y is surjective. The injectivity of prodX,Y is a standard
verification with tangent spaces that holds under fairly general hypothesis. The surjectivity
of prodX,Y , on the other hand, crucially needs the stability assumption that X and Y have no
infinitesimal automorphisms. For example, ifX and Y are elliptic curves, then the product variety
X × Y admits a 4-dimensional space of first order deformations, while the first order deformations
which are products span a 2-dimensional subspace (and both sides are unobstructed).

3.2 Some general results on deformations of morphisms
The general theme of the results discussed in this section is the deformation theory of morphisms.
Our goal is to write down some natural conditions on a morphism π : Y →X which allow one to
transfer deformation-theoretic information from X to Y , and vice versa. These results constitute
the heart of the proof of Proposition 3.19 in § 3.3, but may be read independently of the rest
of the paper.

We first need the following algebraic lemma.

Lemma 3.8. Let R be a noetherian ring, and let M be a finitely generated R-module. If M
vanishes at all points of codimension 6N of Spec(R) and R satisfies Serre’s condition SN+1 at
all points of Supp(M), then ExtiR(M, R) = 0 for 06 i6N .

Proof. Let d= dim(R), let X = Spec(R), let F be the coherent OX -module defined by M , let
Z = Supp(F), let U =X − Z, and let j : U → Spec(R) be the natural open immersion. Then we
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have the exact triangle

OX → Rj∗OU →Q
+1−−−→

where Q is the homotopy cokernel, and is identified with the complex RΓZ(OX)[1]. Applying
R Hom(F ,−) and taking homology, we obtain a long exact sequence

. . . Exti−1
X (F ,Q)→ ExtiX(F ,OX)→ ExtiX(F , Rj∗OU ) . . . .

The term on the right is 0 by adjointness and the fact that j∗F = 0. Hence, it suffices to
show that Exti−1

X (F ,Q) = 0 for i6N . By connectivity estimates, it suffices to check that
Q[N − 1] ∈D[1,∞](OX), i.e. it suffices to check that Hi−1(Q) = 0 for i6N . Translating to local
cohomology, it suffices to check that H i

Z(OX) = 0 for i6N . Since the codimension of any point
occurring in Z is at least N + 1, the claim now follows from the assumption that X satisfies
Serre’s condition SN+1 at all points of Z coupled with the fact that the I-depth of a module P
over a ring R with ideal I can be recovered as the infimum of the depths of the localizations of
P at all points of Spec(R/I); see, for example, [Mat80, § 15, p. 105]. 2

The following proposition gives some conditions on a map π : Y →X which ensure that
deformations of X can be followed by deformations of Y and π.

Proposition 3.9. Let π : Y →X be an essentially finitely presented morphism of noetherian
Deligne–Mumford stacks. Assume that the following conditions hold:

(i) the map π is étale on an open set U ⊂ Y that contains all the codimension 62 points of Y ;

(ii) the stack Y satisfies Serre’s condition S3 at points of Z = Y − U .

Then Exti(Lπ,OX) = 0 for i6 2. If X is essentially finitely presented over a field k, then the
natural map Defπ→DefX is an equivalence of functors on Artk.

Proof. We first show the Ext vanishing claim. By the local-to-global spectral sequence for Ext,
it suffices to show that Exti(Lπ,OY ) = 0 for i6 2. Since the latter is a local statement, we may
étale localize on Y and reduce to the case that Y is a noetherian local scheme. In this local
setup, we will check that Exti(Lπ,OY ) = 0 for i6 2. We first filter Lπ using the filtration in
the derived category arising from the standard t-structure. This filtration of Lπ has associated
graded pieces of the form H−j(Lπ)[j]. Hence, the groups Exti(Lπ,OY ) are filtered with graded
pieces contained in Exti−j(H−j(Lπ),OY ) for 06 j 6 i. Thus, to show Exti(Lπ,OY ) = 0 for i6 2,
it suffices to show that Extk(H−j(Lπ),OY ) = 0 for 06 k 6 2, and any j. However, this follows
from the N = 2 case of Lemma 3.8 once we observe that the sheaves H−j(Lπ) vanish at all
codimension 62 points of Y by the assumption that π is étale at such points.

The claim about deformation functors is deduced in a standard manner from the relative
Ext vanishing proved above. Fix an A ∈Artk, and consider the induced map of groupoids
f : Defπ(A)→DefX(A). The vanishing of Ext2(Lπ,OY ) implies that f is surjective on π0, the
vanishing of Ext1(Lπ,OY ) implies that f is injective on π0, and the vanishing of Exti(Lπ,OY )
for i6 1 implies that f is bijective on π1. To make these assertions precise, one climbs up a tower
of small extensions as in the proof of Theorem 3.3; we leave the details to the reader. 2

Next, we study the dual question of conditions on a map π : Y →X that ensure that
deformations of Y can be followed by deformations of X and π.

Proposition 3.10. Let π : Y →X be a morphism of essentially finitely presented Deligne–
Mumford stacks over a field k satisfying π∗OY 'OX and that Ext0X(ΩX , R1π∗OY ) = 0.
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Then the forgetful morphism q : Defπ→DefY of functors on Artk is formally smooth with
discrete fibers; it is an equivalence if X has no infinitesimal automorphisms.

Proof. Let f :X → Spec(k) and g : Y → Spec(k) denote the structure maps. Fix an A ∈Artk and
a flat deformation πA : Y →X of π to Spec(A). Given a surjection A′→A with kernel isomorphic
to k, we obtain the following diagram.

Defπ(A′) a //

b
��

DefY (A′)

c

��
Defπ(A) d // DefY (A)

(2)

By induction on dimk(A), we may assume that d is surjective on π0 and has discrete fibers.
Furthermore, if X has no infinitesimal automorphisms we may also assume that d is an
equivalence. We will show the following: (a) a is surjective on π0 and has discrete fibers; and (b)
a is an equivalence if X has no infinitesimal automorphisms.

Fix a flat deformation Y ′→ Spec(A′) of Y → Spec(A) corresponding to a point pY ′ ∈
DefY (A′). Let Fib(a, pY ′) denote the homotopy-fiber of the map a at the point pY ′ ; this
∞-groupoid can be thought of as parametrizing triples (X ′→ Spec(A′), πA′ : Y ′→X ′, φ) where
X ′→ Spec(A′) is a flat deformation of X to Spec(A′), πA′ is a deformation of π to Spec(A′), and
φ is an identification of the restriction (X ′, πA′)|A with (X , πA). We will check that Fib(a, pY ′)
is discrete and non-empty, and furthermore it is contractible when X has no infinitesimal
automorphisms. First, we record a relation between maps on X and Y .

Claim 3.10.1. The natural map

ExtiX (LX/A,OX))→ ExtiY(π∗ALX/A,OY )

is an isomorphism for i6 1 and it is injective for i= 2.

Proof of claim. The above natural map is obtained as the composition of the adjointness
ExtiY(π∗ALX/A,OY )∼= ExtiX (LX/A, RπA,∗OY ), and the natural map ExtiX (LX/A,OX)→ ExtiX
(LX/A, RπA,∗OY ). The former one is an isomorphism, hence we are supposed to prove the
claimed properties only for the latter maps. Consider the following exact triangle guaranteed
by the condition f∗OY ∼=OX .

OX // RπA,∗OY // τ>1RπA,∗OY
+1 //

Applying ExtiX (LX/A, ) implies that it is enough to show that ExtiX (LX/A, τ>1RπA,∗OY ) = 0
for i6 1. Since LX/A is supported in non-positive cohomology degrees, while τ>1RπA,∗OY is
only supported in positive degrees, this vanishing is immediate for i6 0. For i= 1, again by
cohomology degree argument, it is the same as showing that the Ext group

Ext0X (H0(LX/A),H1(τ>1RπA,∗OY ))∼= Ext0X (ΩX/A, R
1πA,∗OY )∼= Ext0X(ΩX , R1πA,∗OY )

is zero, which is exactly one of the assumptions of the proposition. This finishes the proof of the
claim. 2

To show that Fib(a, pY ′) is non-empty and discrete, we will first construct a deformation of
X to A′ lifting X , and then show that this deformation admits a morphism from the chosen
deformation of Y to A′ lifting Y.
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We now show the existence of a flat deformation X ′→ Spec(A′) of X → Spec(A) across
Spec(A)⊂ Spec(A′). The obstruction of the existence of such a deformation is the homomorphism
ob(f, f∗DA) : LX/A[−1]→OX [1]. Since Y already has such a square-zero extension, the
corresponding obstruction ob(g, g∗DA) : LY/A[−1]→OX [1] is homotopic to zero. Furthermore,
by Theorem A.6, these two obstructions are related via the following diagram (which is
commutative in a specified manner).

π∗ALX/A[−1] //

π∗Aob(f,f∗DA) ''OOOOOOOOOOO
LY/A[−1]

ob(g,g∗DA)

��
OY [1]

In particular, π∗Aob(f, f∗DA) is nullhomotopic. By Claim 3.10.1, ob(f, f∗DA) is also
nullhomotopic, so there exists a deformation X ′→ Spec(A′) of X → Spec(A), as claimed above;
we fix one such deformation.

Next, we show that the deformation X ′→ Spec(A′) chosen above can be modified to
allow for an A′-linear map πA′ : Y ′→X ′ extending πA. Let DX : LX →OX [1] (respectively
DY : LY →OY [1]) be the derivation corresponding to the deformation X ′→ Spec(A′) constructed
above (respective to the deformation Y ′→ Spec(A′) that we started with). We obtain a diagram

g∗LA

DA

��

// π∗LX //

DX

��

LY

DY

��
g∗k[1] π∗OX [1] OY [1]

(3)

where the square on the left commutes in a specified way by construction of X ′, and the outer
square commutes in a specified way as Y ′→ Spec(A′) lifts g. We must replace DX by a suitable
map so that the square on the right also commutes in a manner compatible with the other two
squares. The failure of the commutativity of the square on the right is measured by the difference
δ of the two paths π∗LX →OY [1] in the square on the right. Since the outer square commutes,
this obstruction δ factors as a map π∗LX/A→OY [1]. By Claim 3.10.1, this map is obtained
as the pullback of a map δ′ : LX/A→OX [1]. Replacing DX with D′′ :=DX + δ′ ◦ can (where
can : LX → LX/A is the canonical map) as the middle vertical arrow in diagram (3) then makes
all squares commute compatibly. This derivation D′′ and the commutativity of the left-hand
square give rise to a deformation X ′′→ Spec(A′) of X → Spec(A) across Spec(A)⊂ Spec(A′),
while the commutativity of the right-hand square gives rise to the promised map πA′ : Y ′→X ′′.
In particular, this proves that Fib(a, pY ′) is non-empty.

Next, we check that Fib(a, pY ′) is discrete. For a point (X ′→ Spec(A′), πA′ : Y ′→X ′, φ)
of this groupoid, an automorphism σ is given by an automorphism σ of X ′ that commutes
with πA′ and φ. Since topoi do not change under deformations, it suffices to prove that σ acts
as the identity on X ′. By definition, the induced action on π−1OX ′ commutes with the map
π∗A′ : π−1OX ′ →OY ′ . Since the latter map is injective (which can be checked, for instance, by
filtering both sides using powers of the maximal ideal of A′ to reduce to the known injectivity
over k), it follows that σ = id, proving discreteness.

The conclusion of the preceding paragraphs is that the map a from diagram (2) is surjective
with discrete fibers, and consequently that the map q : Defπ→DefY is formally smooth with
discrete fibers.
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Finally, we show that Fib(a, pY ′) is contractible when X has no infinitesimal automorphisms.
For i= 1, 2, let (X ′i → Spec(A′), πi,A′ : Y ′→X ′i , φi) be two possibly distinct points of Fib(a, pY ′);
we will show they are connected. First, we show that X1 and X2 are isomorphic as deformations
of X → Spec(A) across Spec(A)⊂ Spec(A′); this part will not use the assumption on X. Let
Di : LX →OX [1] be the derivation classifying the deformation Xi. Then the information of πi,A′
gives, for each i, a commutative diagram as shown below.

g∗LA

DA

��

// π∗LX //

π∗Di

��

LY

DY

��
g∗k[1] π∗OX [1] OY [1]

The commutativity shows that π∗D1 and π∗D2 are homotopic maps π∗LX →OY [1]: they are
both homotopic to the composition π∗LX → LY

DY−−−→OY [1]. By Claim 3.10.1, D1 and D2 are
also homotopic, which proves that X1 and X2 are isomorphic as deformations of X → Spec(A)
across Spec(A)⊂ Spec(A′). Hence, to show that Fib(a, pY ′) is contractible, it suffices to check:
given deformations X ′→ Spec(A′) of X → Spec(A), and Y ′→ Spec(A′) of Y → Spec(A), there
exists at most one extension of πA : Y →X to an A′-map πA′ : Y ′→X ′. The ∞-groupoid of
choices for such extensions is easily verified to be a torsor for

Ω HomY(π∗ALX/A,OY [1])'HomY(π∗ALX/A,OY ).

By Claim 3.10.1, the∞-groupoid on the right is equivalent to HomX (LX/A,OX). By adjointness
(see the proof of Theorem 3.3), this ∞-groupoid is identified with HomX(LX ,OX) which, by
assumption, is contractible.

Remark 3.11. The methods used to show Proposition 3.10 also show that (under the same
hypotheses) one has a natural equivalence e : Def idX

×DefX
Defπ 'Defπ ×DefY

Defπ where we
view Def idX

as a space fibered over DefX with fibers given by the automorphism groups of the
corresponding deformation, and the map e is given by (a, b) 7→ (a ◦ b, b).

Remark 3.12. The technique used in Proposition 3.10 can be used to show the following
refinement (under the same hypotheses): the map q : Defπ→DefY has a distinguished section s.
Indeed, in the notation of the proof of Proposition 3.10, constructing s amounts to constructing
a canonical base point of Fib(a, pY ′); such a base point is provided by the deformation of
X coming from the derivation DX : LX →OX [1] whose pullback along π∗ is the derivation
π∗LX → LY

DY−−−→OY [1]. We leave the details to the reader.

This next lemma relates infinitesimal automorphisms of the source and target of a given
morphism under favorable conditions; this will be used in the sequel to move information
about discreteness of the automorphism group of a stable variety to its covering stack (see
Theorem 3.20).

Proposition 3.13. Let π : Y →X be an essentially finitely presented morphism of noetherian
Deligne–Mumford stacks (over some base ring k). Assume the following:

(i) the map π is étale on an open subset U ⊂ Y that contains all the codimension 1 points of Y ;

(ii) the stack Y satisfies Serre’s S2 condition at points of Y − U ;

(iii) the map π satisfies π∗OY 'OX .
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Then the infinitesimal automorphisms of X and Y coincide, i.e., there is a natural isomorphism
Ext0(LX ,OX)' Ext0(LY ,OY ) (where all cotangent complexes are computed relative to k).

Proof. The transitivity triangle for π and the assumption that π∗OY 'OX give a long exact
sequence

1→ Ext0(Lπ,OY )→ Ext0(LY ,OY )→ Ext0(LX ,OX)→ Ext1(Lπ,OY )→ · · · .

Thus, it suffices to show that Exti(Lπ,OY ) = 0 for i6 1. This follows by the exact same method
used in the proof of Proposition 3.9; we omit the details. 2

3.3 The Q-Gorenstein deformation theory
We now return to the product map for moduli spaces of stable varieties. Our goal is to show that
the global product map ProdX,Y is finite étale for two stable varietiesX and Y . To understand the
local behavior of this map, we cannot simply consider the local product map prodX,Y described
in § 3.1 because Kollár’s condition restricts the allowable deformations on both sides. Instead, we
introduce the canonical covering stack Zcan of a variety Z for the reasons explained in § 1. We
simply remark here that Proposition 3.19 below, which equates DefXcan×Y can with Def(X×Y )can

under favorable assumptions, is proved using the results of § 3.2.

Definition 3.14. Fix a field k, and let X be an essentially finitely presented Q-Gorenstein k-
scheme satisfying Serre’s condition S2. Then we define its canonical covering stack π :Xcan→X
by the formula

Xcan = [Spec(⊕i∈Zω
[i]
X )/Gm]

where Spec denotes the relative spectrum of a quasi-coherent OX -algebra, ω[i]
X is the ith reflexive

power of the dualizing sheaf ωX , and the Gm-action is given by the evident grading.

We now describe some properties of canonical covering stacks.

Lemma 3.15. Fix a field k. Let X be an essentially finitely presented Q-Gorenstein k-scheme
satisfying Serre’s condition S2, and let π :Xcan→X denote the structure morphism of the
canonical cover. Then the following are true:

(1) the stack Xcan is an essentially finitely presented Artin k-stack satisfying Serre’s condition
S2. If k has characteristic 0, then Xcan is Deligne–Mumford;

(2) the formation of π commutes with relatively Gorenstein essentially finitely presented flat
base changes f : U →X;

(3) the map π is a coarse moduli space that is an isomorphism on the Gorenstein locus of X;

(4) the natural map OX → Rπ∗OXcan is an isomorphism.

Proof. We first observe that the formation of Xcan→X commutes with localization on X as
the same is true for the sheaves ωX and their reflexive powers. By the Q-Gorenstein assumption,
we may pick an integer n > 0 such that ω[n]

X is actually a line bundle. After localizing on X if
necessary, we can pick an isomorphism OX ' ω[n]

X defined by a section s ∈ ω[n]
X . Such a choice

allows us to define the structure of a OX -algebra with a µn-action on the coherent OX -module

A=
⊕
i∈Z/n

ω
[i]
X

in the obvious way: we view A as the quotient algebra of the algebra
⊕

i∈Z ω
[i]
X by the equation

s= 1, and the µn-action corresponds to the induced Z/n-grading. We set Y = Spec(A) and
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observe that the natural map Y →Xcan is µn-equivariant and therefore descends to a map

g : [Y/µn]→Xcan.

We leave it to the reader to check that g is an isomorphism; the key point is that the defining map
Xcan→B(Gm) factors through B(µn)→B(Gm) via the choice of s, and the scheme Y is simply
the fiber of the resulting map Xcan→B(µn). This presentation shows that Xcan is an essentially
finitely presented Artin k-stack if X is so; if k has characteristic 0, then the presentation gives
rise to a Deligne–Mumford stack since µn is discrete. To finish checking property (1), we observe
that, by construction, the sheaves ω[i]

X are S2. Hence, the same is true for the scheme Y and the
stack Xcan.

Property (2) follows from Lemma 3.16 and 2.10. Indeed, if F is any coherent OU -module and
L is a line bundle on U , then there is a natural isomorphism of U -stacks

[Spec(⊕i∈Z(F ⊗ L)[i])/Gm]' [Spec(⊕i∈ZF [i])/Gm].

This observation applies here with F = f∗ωX and L= ωf .
For property (3), we note that OX is the sheaf of µn-invariants of A, which shows that π is a

coarse moduli space. The claim concerning the behavior over the Gorenstein locus follows from
property (2).

For property (4), observe that the formula Xcan = [Y/µn] identifies the QCoh(Xcan) with
the category QCoh(Y )µn of µn-equivariant quasi-coherent sheaves on Y . The functor π∗ :
QCoh(Xcan)→QCoh(X) is then identified with the functor µn-invariants which is exact because
µn is linearly reductive, showing that Riπ∗OXcan = 0 for i > 0. Since the claim for i= 0 was
already shown, the result follows. 2

The following lemma is used in the proof of property (2) above.

Lemma 3.16. Let f : U →X be a flat relatively Gorenstein morphism between essentially
finitely presented schemes over some field k, and assume that X admits a dualizing complex ω•X .
Then there is a natural isomorphism of sheaves

f∗ωX ⊗ ωf ' ωU .

Proof. We normalize dualizing complexes so that the dualizing sheaf of a scheme sits inside the
dualizing complex in homological degree equal to dimension of the scheme. After spreading out
U and X, we may assume that f is a map between finite type separated k-schemes. Choose
compatible compactifications U ⊂ U and X ⊂X together with a map f : U →X extending f .
By [Nee96, Theorem 5.4] (which applies because U and X are noetherian, and because Rf∗
preserves coproducts by [Nee96, Lemma 1.4]), we have a canonical isomorphism

f
∗
ω•
X
⊗ ωf ' ω

•
U
.

Note that the dualizing complexes furnished by [Nee96] agree with the usual ones for proper
k-schemes. Restricting to U , using the relatively Gorenstein assumption on f , and applying
H−dim(U) now gives the desired claim. 2

Remark 3.17. The only place where the characteristic 0 assumption was used in Lemma 3.15 was
to conclude that Xcan was a Deligne–Mumford stack rather than an Artin stack. This distinction
is crucial to our proofs as Deligne–Mumford stacks have connective cotangent complexes, and
the connectivity makes the proofs of Propositions 3.9 and 3.10 work. For Artin stacks with finite
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stabilizers, even the simplest ones like B(µp) in characteristic p, the cotangent complex is not
connective, so the argument does not work.

We record the following lemma here for use in Proposition 3.19.

Lemma 3.18. Let (R,m) and (S, n) be two essentially finitely presented k-algebras over some
algebraically closed field k, and let (T, p) be the Zariski localization of R⊗k S at the maximal
ideal generated by m and n. Then we have

depthp(T ) = depthm(R) + depthn(S).

Proof. The map (R,m)→ (T, p) is an essentially finitely presented flat local homomorphism of
noetherian local rings with fiber T/mT ' S. The addition formula for depth (see [Mat80, § 21.C,
Corollary 1]) now implies the claim. 2

Finally, we show that the deformations of products of canonical covering stacks are the
same as those for the canonical covering stack of a product provided there are no infinitesimal
automorphisms in sight.

Proposition 3.19. Fix a field k of characteristic 0. Let X and Y be two essentially finitely
presented Q-Gorenstein k-schemes that are both Gorenstein in codimension 61 and satisfy
Serre’s condition S2. Assume that X × Y has no infinitesimal automorphisms. Then one has a
natural equivalence of deformation functors DefXcan×Y can →Def(X×Y )can as functors on Artk.

Proof. Let π :Xcan × Y can→ (X × Y )can denote the canonical map, and let Defπ denote the
deformation functor associated to π. Forgetting information defines morphisms a : Defπ→
DefXcan×Y can and b : Defπ→Def(X×Y )can . We will show that each of these maps is an equivalence.

To show that the map b is an equivalence, we apply Proposition 3.9. Let U ⊂Xcan × Y can

denote the locus where π is étale. We will check that U contains all the codimension 2 points, and
that Xcan × Y can satisfies Serre’s condition S3 on the complement of U . Since both conditions
are local on X × Y , we localize on the latter whenever necessary. Moreover, we freely identify
points on a Deligne–Mumford stack and those on the coarse space.

Both Xcan × Y can and (X × Y )can are étale over X × Y at the Gorenstein points of the
latter which includes all the codimension 1 points. Hence, it suffices to check that π is étale at
the codimension 2 points of Xcan × Y can. We first observe that this last claim is clear if one of X
or Y is Gorenstein itself: the formation of Xcan→X commutes with flat relatively Gorenstein
base changes on X by property (2) in Lemma 3.15. Now a point of Xcan × Y can is given by a
product (x, y). Such a product has codimension 2 if either both x and y have codimension 1,
or one has codimension 2 and the other has codimension 0. In either case, one of the factors
appearing in the product is Gorenstein, and hence the map is étale by the preceding observation;
this verifies that U contains all the codimensions 62 points.

Next, we check Serre’s condition. The same reasoning used above also shows that a point (x, y)
in the complement of U defines points x ∈X and y ∈ Y each with codimension >2. Property (1)
from Lemma 3.15 implies that each of Xcan and Y can satisfy Serre’s condition S2. Hence, any
point (x, y) ∈Xcan × Y can − U automatically satisfies Serre’s condition S3 by Lemma 3.18. By
applying Proposition 3.9, we may now conclude that b is an equivalence.

To show that the map a is an equivalence, we apply Proposition 3.10. In order to apply
this proposition, we first need to check that (X × Y )can has no infinitesimal automorphisms.
This follows from Proposition 3.13 applied to the map (X × Y )can→X × Y and the assumption

2055



B. Bhatt et al.

that X × Y has no infinitesimal automorphisms. Next, we need to verify that O(X×Y )can
'−−→

π∗OXcan×Y can and that R1π∗OXcan×Y can = 0. We may localize to assume that both X and Y are
affine. Note that we have a commutative diagram

Xcan × Y can π //

f

��

(X × Y )can

g

��
B(Gm ×Gm)

p // B(Gm)

where the vertical maps classify the defining quotient stack structure, and the map p is induced
by the multiplication map Gm ×Gm→Gm. Since we are working with affines, the vertical maps
are affine faithfully flat and finitely presented maps and, thus, the corresponding pushforward
functors are faithful. Now observe that the category QCoh(Xcan × Y can) can be identified as
the category of (Gm ×Gm)-equivariant objects on the fiber of f , and similarly for (X × Y )can.
It is then easy to see that the functor π∗ is identified with the functor of taking invariants
under the antidiagonal Gm ⊂Gm ×Gm: it suffices to check the analogous claim for the map p
since pushing forward along the vertical maps is faithful, and then the claim follows from the
basic formalism of classifying stacks. In particular, since Gm is linearly reductive, the higher
direct images Riπ∗OXcan×Y can vanish for i > 0. The claim for i= 0 is an easy exercise in local
coordinates, and we leave this to the reader. 2

We now may put together all of our results on deformation theory to obtain our main theorem.

Theorem 3.20. Let X and Y be two stable varieties over a field k of characteristic 0. Then the
natural map

ProdX,Y :M(X)×M(Y )→M(X × Y )

is finite étale.

Proof. We first note that the morphism is well defined by Proposition 2.12. By Theorem 2.8,
the stacks M(X) are proper Deligne–Mumford stacks. Hence, by Zariski’s main theorem for
Deligne–Mumford stacks, it suffices to check that the map ProdX,Y is étale at each point of
M(X)×M(Y ). Moreover, since each point of M(X)×M(Y ) is given as a pair of stable
varieties, we may without loss of generality restrict our attention to the canonical point of
M(X)×M(Y ) defined by X and Y . In this case, by the main result of [AH10], the deformation
theory of M(X) at the point defined by X is controlled by the functor DefXcan on Artk, and
similarly for Y and X × Y . Hence, it suffices to check that the natural transformation

DefXcan ×DefY can →Def(X×Y )can

is an equivalence of functors on Artk. The result now follows from the factorization

DefXcan ×DefY can
a−−→DefXcan×Y can

b−−→Def(X×Y )can

coupled with the fact that a is an equivalence by Theorem 3.3, while b is an equivalence by
Proposition 3.19 (which applies by Lemmas 2.5 and 3.15). 2

4. The global theory

In this section, we prove Theorems 1.3 and 1.2. Note that, by the Lefschetz principle, we may
assume that the base field is the field of complex numbers, which we shall do from now on.
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4.1 Canonically polarized manifolds
Recall that a canonically polarized manifold is a compact complex manifold whose canonical
line bundle is ample; such a manifold is automatically a smooth complex projective variety. We
shall use two important theorems from differential geometry, Yau’s theorem about the existence
of Kähler–Einstein metrics, and the Uhlenbeck–Yau theorem, to show that any canonically
polarized manifold can be uniquely decomposed into a product of ‘irreducible’ factors.

Definition 4.1. A canonically polarized manifold X is called irreducible if it does not admit a
nontrivial product decomposition X ∼=X1 ×X2.

It is easy to see that, in any product decomposition of a canonically polarized manifold,
every factor is again canonically polarized. By Chow’s theorem, such a decomposition is then
automatically also a decomposition in the category of smooth complex projective varieties. The
main goal of this section is to prove the following existence result for product decompositions.

Theorem 4.2. Let X be a canonically polarized manifold. Then there is a product
decomposition

X ∼=X1 × · · · ×Xr

into irreducible canonically polarized manifolds, and this decomposition is unique up to the order
of the factors.

4.2 Products of stable varieties
The following statements are immediate consequences of Theorem 4.2.

Corollary 4.3. If Z is a canonically polarized manifold with irreducible decomposition Z =
Z1 × Z2, such that M(Z1) 6=M(Z2) as components of the moduli stack of all stable varieties,
then the product map

ProdZ1,Z2 :M(Z1)×M(Z2)→M(Z)

is an isomorphism. Furthermore, the image of ProdX,Y intersectsM(Z) if and only if X ∈M(Z1)
and Y ∈M(Z2) or Y ∈M(Z1) and X ∈M(Z2).

Corollary 4.4. If X is a canonically polarized manifold with irreducible decomposition

X ∼=
r∏
i=1

( ni∏
j=1

Xij

)
such that M(Xij) =M(Xi′j′) if and only if i= i′, then

M(X)∼=
r∏
i=1

[
M(Xi1)×ni

/
Sni

]
,

where the symmetric group Sni
acts on M(Xi1)×si by permuting the factors, and the quotient

is taken in the stack sense.

We also have the following general formula for the degree of the fibers.

Proposition 4.5. If X and Y are stable schemes, then the fiber of the map ProdX,Y :
M(X)×M(Y )→M(X × Y ) over X × Y contains as many points as∑

V ∈M(X),W∈M(Y ),V×W∼=X×Y

∣∣∣∣Aut(X × Y )
/

Aut(V )×Aut(W )

∣∣∣∣.
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4.3 Polystability of the tangent bundle
The goal of this and the next section is to investigate the stability properties of the tangent
bundle TX of a canonically polarized manifold X with respect to the ample line bundle ωX . The
example of a product of curves shows that TX need not be stable: the tangent bundle of each
factor contributes a (stable) summand to TX with the same slope as TX . We will show that this
behaviour is typical, i.e., that TX is always polystable.

Theorem 4.6. If X is a canonically polarized manifold, then TX is polystable with respect to
ωX . More precisely, TX uniquely decomposes into a direct sum of stable, pairwise non-isomorphic
subbundles of slope µ(TX).

We shall briefly recall the definition of stability and polystability. For a torsion-free coherent
sheaf F on X, we define the slope µ(F) with respect to the ample line bundle ωX by the formula

µ(F) =
c1(F) · c1(ωX)dimX−1

rk F
, (4)

see for example [HL97, Definition 1.2.11]. If i : U →X is the inclusion of the open subset where
F is locally free, then rk F means the rank of i∗F , and c1(F) is defined as the first Chern class
of the line bundle det F = i∗ det(i∗F).

Definition 4.7. Let F be a torsion-free sheaf on a canonically polarized complex manifold X.
Then:

(i) F is stable if for every subsheaf G ⊆ F with 0< rk G < rk F , one has µ(G)< µ(F);

(ii) F is polystable if it is the direct sum of stable sheaves of the same slope.

The following simple lemma will be used in two places below.

Lemma 4.8. Let E = E1 ⊕ · · · ⊕ En be a polystable vector bundle, with Ei stable and pairwise
non-isomorphic. If E = F ⊕ G for two subsheaves F , G ⊆ E , then there is a subset I ⊆ {1, . . . , n}
with the property that

F =
⊕
i∈I
Ei and G =

⊕
i6∈I
Ei.

Proof. Since Ei are stable and pairwise non-isomorphic, [HL97, Proposition 1.2.7] shows that we
have

Hom(Ei, Ej) =

{
C for i= j,
0 for i 6= j.

(5)

Now consider the composition iFpF : E → E of the projection pF : E →F and the inclusion
iF : F → E . It is naturally represented by an n× n-matrix; by (5) this matrix is diagonal
with entries in C. Moreover, all diagonal entries are either 0 or 1, on account of the identity
(iFpF )(iFpF ) = iFpF . The same is true for the matrix representing iGpG ; since we have
iFpF + iGpG = idE , the assertion follows. 2

4.4 Differential geometry
We shall now use two results from differential geometry to prove Theorem 4.6.

Let (X, ω) be a compact Kähler manifold; by a slight abuse of notation, we shall use the
symbol ω both for the Kähler metric and for its associated real closed (1, 1)-form. We can
use the same formula as in (4) to define the slope of torsion-free coherent sheaves on X,
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replacing c1(ωX) by the cohomology class [ω] ∈H2(X, R) of the Kähler form. We therefore have
the notion of stability and polystability with respect to ω.

Now recall that the Kähler metric ω is called Kähler–Einstein if Ric ω = λω for some real
number λ. Here Ric ω is the Ricci curvature form of ω, or equivalently the Chern curvature√
−1Θ(det TX , det ω) of the naturally induced metric on the holomorphic line bundle det TX ;

the constant λ is called the scalar Ricci curvature of ω.

Theorem 4.9 [Aub76, Yau78]. If X is a canonically polarized complex manifold, and λ < 0 a
real number, then X admits a unique Kähler–Einstein metric with scalar Ricci curvature λ.

In the following, we shall normalize the Kähler–Einstein metric ω on a canonically polarized
manifold X by taking its scalar Ricci curvature equal to −2π; in other words, we shall assume
that Ric ω =−2πω. With this convention,

c1(ωX , (det ω)−1) = ω, (6)

where c1(ωX , (det ω)−1) is the Chern form of the induced metric on the canonical line bundle.
Indeed,

c1(ωX , (det ω)−1) =−c1(det TX , det ω) =−
√
−1

2π
Θ(det TX , det ω) =− 1

2π
Ric ω = ω,

where the second equality is by [Huy05, Example 4.4.8.i]. This ensures that the slope with
respect to the ample line bundle ωX is the same as the slope with respect to the Kähler form ω;
in particular, the two notions of stability (and polystability) coincide.

Proposition 4.10 (e.g., [Huy05, Definitions 4.B.1 and 4.B.11]). Let (X, ω) be a compact
Kähler–Einstein manifold. Then the induced metric on the holomorphic tangent bundle TX
is Hermite–Einstein.

Recall that a Hermitian metric h on a holomorphic vector bundle E is called Hermite–Einstein
if

√
−1ΛωΘ(E , h) = λ idE ; (7)

here Λω is the metric contraction on the space of complex-valued two-forms, induced by the
Kähler metric ω. The Uhlenbeck–Yau theorem relates this differential-geometric condition back
to algebraic geometry.

Theorem 4.11 [UY86]. On a compact Kähler manifold (X, ω), a holomorphic vector bundle
admits a Hermite–Einstein metric if and only if it is polystable with respect to ω.

Here is the proof that the tangent bundle of a canonically polarized manifold is polystable.

Proof of Theorem 4.6 Since X is canonically polarized, it admits a unique Kähler–Einstein metric
ω with Ric ω =−2πω. The induced metric on the tangent bundle is Hermite–Einstein, and by the
Uhlenbeck–Yau theorem, TX is polystable with respect to ω, hence also polystable with respect
to ωX . This means that we have a decomposition

TX = E1 ⊕ · · · ⊕ En

into stable subbundles Ei of slope

µ(Ei) = µ(TX) =−c1(ωX)dimX

dimX
< 0.
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The argument in [Bea00, Lemma 1.3] now shows that the Ei must be pairwise non-isomorphic:
indeed if Ei ' Ej for i 6= j, then Ei would carry a flat connection, which is not possible because
µ(Ei)< 0. Finally, the uniqueness of the decomposition follows from Lemma 4.8. 2

4.5 Proof of the theorem
We now come to the proof of Theorem 4.2. It is easy to see (by induction on the dimension) that
every canonically polarized manifold has at least one decomposition

X ∼=X1 × · · · ×Xr

into irreducible canonically polarized manifolds Xi. It remains to show that this decomposition
is unique, up to the order of the factors. For this, it is clearly enough to prove that any two
product decompositions of a canonically polarized manifold admit a common refinement. This,
in turn, is implied by the following special case.

Lemma 4.12. Let X ∼= Y × Z ∼= Y ′ × Z ′ be two product decompositions of a canonically
polarized manifold. Then there is a common refinement X ∼=W1 ×W2 ×W3 ×W4, with the
property that

Y ∼=W1 ×W2, Z ∼=W3 ×W4, Y ′ ∼=W1 ×W3, Z ′ ∼=W2 ×W4. (8)

Proof. By Theorem 4.6, the tangent bundle of X is polystable, and in fact, decomposes uniquely
as

TX = E1 ⊕ · · · ⊕ En (9)

with Ei stable and pairwise non-isomorphic. To simplify the notation, we put

E(I) =
⊕
i∈I
Ei

for any subset I ⊆ {1, . . . , n}. The decompositions X ∼= Y × Z ∼= Y ′ × Z ′ of the manifold X
induce decompositions TX = p∗Y TY ⊕ p∗ZTZ = p∗Y ′TY ′ ⊕ p∗Z′TZ′ of its tangent bundle. It then
follows from Lemma 4.8 that the set {1, . . . , n} can be partitioned into four disjoint subsets
I1, I2, I3, and I4, in such a way that

p∗Y TY = E(I1 ∪ I2), p∗ZTZ = E(I3 ∪ I4), p∗Y ′TY ′ = E(I1 ∪ I3), p∗Z′TZ′ = E(I2 ∪ I4).

Let π : X̃ →X be the universal covering space of X; note that X̃ will usually be non-compact.
The splitting TX = E(I1)⊕ E(I2)⊕ E(I3)⊕ E(I4) lifts to a splitting of TX̃ , and therefore induces
a decomposition

X̃ ∼=M1 ×M2 ×M3 ×M4

into integral submanifolds of the foliations π∗E(Ik), according to [Bea00, Theorem A]. By the
same result, the fundamental group G= π1(X) acts compatibly on each factor Mk, in such a way
that the natural action on X̃ is diagonal. In particular, this means that we have an embedding
of groups

G→Aut(M1)×Aut(M2)×Aut(M3)×Aut(M4),

where Aut(Mk) denotes the group of biholomorphic automorphisms of the complex manifold Mk.
Let us denote the preimage of Aut(Mk) under this embedding by the letter Gk, the preimage of
Aut(Mk)×Aut(M`) by the letter Gk`, and so on. We claim that G∼=G1 ×G2 ×G3 ×G4.

To prove this claim, we observe that M1 ×M2 is a simply connected integral submanifold
of the foliation π∗p∗Y TY , and must therefore be the universal covering space of Y ; consequently,

2060



Moduli of products of stable varieties

π1(Y ) embeds into Aut(M1)×Aut(M2). The same is of course true in the other three cases. Since
we have π1(X)∼= π1(Y )× π1(Z)∼= π1(Y ′)× π1(Z ′) compatibly with the above decompositions,
it follows that

G∼=G12 ×G34
∼=G13 ×G24.

From this, it is easy to deduce that G∼=G1 ×G2 ×G3 ×G4.
To conclude the proof, we define Wk =Mk/Gk. We then have X ∼=W1 ×W2 ×W3 ×W4,

and so each Wk must be a compact complex manifold; because X is canonically polarized, each
Wk is also canonically polarized, and therefore a smooth complex projective variety by Chow’s
theorem. It is clear from the construction that (8) is satisfied, and so the lemma is proved. 2
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Appendix. Review of some derived algebraic geometry

In this appendix, we summarize the deformation theory relevant to us, using the language of
derived algebraic geometry. Our primary goal is to explain certain functorialities in the usual
deformation-obstruction theory of varieties by interpreting everything in terms of derivations
in the derived category.1 We do so by first discussing the deformation-obstruction theory for
derivations (see Appendices A.9 and A.10), then explaining how to realize the theory of square-
zero extensions as a special case of the theory of derivations (see Appendix A.11), and then finally
recording the corresponding statements for the deformation-obstruction theory for square-zero
extensions (see Appendix A.12). The format adopted is that of short numbered paragraphs, each
one discussing an algebraic problem and its solution first, and then stating the corresponding
scheme-theoretic result (with references). To avoid mentioning derived Deligne–Mumford stacks
in the statements of various theorems below, we impose flatness hypotheses in the statements.
We hope that this sacrifice of generality will make the statements more readily accessible. Our
primary references will be [Lur04] and [Ill71], though occasionally we refer to [Lur11, ch. 8] as
well; we freely use the language of [Lur09] and [Lur11, ch. 1].

A.1 Conventions
We use the term ∞-groupoid when referring to a mapping space in an ∞-category. Given an
∞-category C and objects X, Y ∈ C, we let HomC(X, Y ) denote the ∞-groupoid of maps in
C between X and Y ; we drop the subscript C from the notation when the category is clear
from context. Fix a Grothendieck abelian category A, and consider the stable ∞-category
D of (unbounded) chain complexes over A with its usual t-structure; see [Lur11, § 1.3.5] for
more. Given an object K ∈ D and an integer j, the complex K[j] denotes the complex K with
homological degree increased by j. We freely identify D60 with the ∞-category of simplicial
objects in A via the Dold–Kan correspondence, and we use the term connective to refer to such

1 We hasten to remark that all statements written here are well known to the experts, and have been written down
simply to provide a convenient reference.
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chain complexes. We sometimes denote the shift functor K 7→K[−1] by Ω. Since A has enough
injectives, for any two (bounded above) complexes C and D in D, the ∞-groupoid Hom(C, D)
of maps C→D in D can also be realized as

Hom(C, D) = τ60 Hom•(C, D̃),

where D→ D̃ is a quasi-isomorphism between D and a complex D̃ of K-injectives, and
Hom•(C, D̃) is the mapping chain complex in the usual sense of homological algebra; note
that Hom(C, D) is a simplicial abelian group. If f :M →N is a morphism in a stable
∞-category C, then N/M denotes the pushout of f along M → 0 and is called the homotopy
cokernel of f . Dually, the pullback of f along 0→N is called the homotopy kernel of f . Note
that ΩN is simply the homotopy kernel of 0→N . We denote by

M →N →N/M
+1−−−→

the exact triangle defined by f in the homotopy category of C.

A.2 The basic setup
We will work in the setting of derived algebraic geometry provided by the ∞-category SAlgk of
simplicial commutative k-algebras over some fixed (ordinary) base ring k rather than any more
sophisticated variants; the full subcategory of SAlgk spanned by discrete k-algebras is ordinary
and will be denoted Algk. All tensor products are assumed to be derived and relative to k
unless otherwise specified; in particular, the subcategory Algk ⊂ SAlgk is not closed under the
⊗-products unless k is a field. The reference [Lur11] works in the setting of E∞-rings rather than
SAlgk (the two coincide with Q⊂ k, up to connectivity constraints), but can also be adapted to
work for SAlgk; we choose to ignore this issue when referring to [Lur11] below.

A.3 Stable ∞-categories of modules and their functorialities
Given an A ∈ SAlgk, one can define a stable ∞-category Mod(A) of A-modules which comes
equipped with a natural ⊗-product structure. When A is discrete, this ∞-category realizes
the derived category of the abelian category of A-modules as its homotopy category; we stress
that Mod(A) is not the ordinary category of A-modules when A is discrete. The association
A 7→Mod(A) obeys the expected functorialities. For example, if f :A→B is a map in SAlgk,
there is an extension of scalars functor Mod(A)→Mod(B) induced by tensoring with B,
and there is a restriction functor Mod(B)→Mod(A) obtained by remembering only the A-
structure. These functors are adjoint: given M ∈Mod(A) and N ∈Mod(B), there exist functorial
equivalences

HomMod(A)(M, N)'HomMod(B)(M ⊗A B, N).

A.4 The cotangent complex
Let A be an ordinary k-algebra. The cotangent complex LA of A relative to k, sometimes denoted
by LA/k when the ring k is not clear from context, is an object in Mod(A) constructed as follows:
pick an A• ∈ SAlgk with an equivalence f :A•→A such that each An is a free k-algebra. Then the
A-modules Ω1

An/k
⊗An

A assemble naturally to form a simplicial A-module. The corresponding
object in Mod(A) is called the cotangent complex LA. This construction can be generalized to
an arbitrary A ∈ SAlgk, and also generalizes to simplicial rings in an arbitrary topos. Note that
in each case the cotangent complex is actually connective; non-connective cotangent complexes
arise if one works with Artin stacks, but these do not concern us. A non-abelian derived functor
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approach to the cotangent complex can be found in [Qui70]; the book [Ill71] is the original source,
and contains the details of the above construction.

A.5 Derivations
Let A ∈ SAlgk, and let M be an A-module. A k-linear derivation A→M is, by definition,
a k-algebra section of the projection map A⊕M →A, where A⊕M is given an A-algebra
structure via the usual A-action on M , and with M ⊂A⊕M being a square-zero ideal; one can
easily check that this recovers the usual notion when A and M are discrete. Let Derk(A,M)
denote the ∞-groupoid of all k-linear derivations A→M (we drop the subscript k from the
notation when the base ring k is fixed). By construction of the cotangent complex, one has a
derivation d :A→ LA. It is a theorem that this derivation is the universal one.

Theorem A.1. With notation as above, composition with d induces a functorial equivalence

Hom(LA, M)'Der(A,M). (10)

The case when k, A, and M are discrete can be found in [Ill71, Corollary II.1.2.4.3], while the case
where M is allowed to be a complex can be found in [Ill71, Proposition II.1.2.6.7]. In [Lur04],
the cotangent complex is defined using the preceding property (see the discussion preceding
[Lur04, Remark 3.2.8]). To see that this construction agrees with the Illusie’s construction as
explained in Appendix A.4, one observes that there is a map from Lurie’s cotangent complex
to Illusie’s. Moreover, this map is an isomorphism when the algebra is free (use [Lur04, Lemma
3.2.13]), and therefore always an isomorphism by passage to free resolutions. A model-categorical
approach to the universal properties of the cotangent complex can be found in [Qui70].

A.6 Functoriality of derivations
Let f :A→B be a map in SAlgk, and let N be a B-module. Using formula (10), we see

Der(A, N)'HomA(LA, N)'HomB(LA ⊗A B, N).

In other words, the natural derivation A→ LA→ LA ⊗A B is the universal derivation from A
into a B-module.

A.7 The transitivity triangle
Let f :A→B be a map in SAlgk. Composing the natural derivation B→ LB with f defines a
derivation A→ LB and, by Appendix A.6, a map LA ⊗A B→ LB. One can show that this map
induces an identification

LB/(LA ⊗A B)' LB/A
in the stable ∞-category of B-modules. At the level of triangulated categories, this gives rise
to an exact triangle (see [Lur04, Proposition 3.2.12] and [Ill71, Proposition II.2.1.2]), called the
transitivity triangle, of the form shown in the following diagram.

LA ⊗A B→ LB → LB/A
1+−−−→

The associated boundary map LB/A[−1]→ LA ⊗A B is called the Kodaira–Spencer class of f ,
and is denoted by κ(f).

A.8 Base change
Let A, B ∈ SAlgk. Then the composite map

LA ⊗B→ LA⊗B → LA⊗B/B
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is an isomorphism. One way to see this is by passage to free resolutions; see
[Lur04, Proposition 3.2.9] for the corresponding scheme-theoretic statement. Alternately, one can
also prove this directly using Appendix A.7. This fact (for k, A, and B discrete) can be found
in [Ill71, Proposition II.2.2.1].

A.9 Extending derivations across morphisms

Let f :A→B be a map in SAlgk, and let M be an A-module. Given a derivation D :A→M , a
natural question to ask is if the diagram

A
D //

��

M

��
B M ⊗A B

(11)

can be filled using a k-linear derivation B→M ⊗A B. Formally speaking, we are asking the
following: given a k-algebra section sD :A→A⊕M of the projection map A⊕M →A, when
can the diagram

A
sD //

��

A⊕M

��
B B ⊕M ⊗A B

be filled with a k-algebra homomorphism B→B ⊕M ⊗A B splitting the projection B ⊕M ⊗A
B→B? By Theorem A.1 and its functoriality in A and M , the preceding question is equivalent
to asking if

LA //

��

M

��
LB M ⊗A B

can be filled using a B-module map LB →M ⊗A B; here the horizontal map LA→M is the
map defined by D. We may refine this diagram to obtain the following.

LA //

��

M

��
LA ⊗A B //

��

M ⊗A B

LB M ⊗A B

Thus, requiring the existence of a k-linear derivation B→M ⊗A B filling diagram (11) is
equivalent to requiring that the map LA ⊗A B→M ⊗A B induced by the original derivation
A→M factors through LA ⊗A B→ LB. Moreover, the space of all possible ways of filling the
diagram above is tautologically the homotopy-fiber of

HomB(LB, M ⊗A B)'Derk(B,M ⊗A B)→Derk(A,M)'HomB(LA ⊗A B,M ⊗A B)
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over the point corresponding to D :A→M . Using the rotated transitivity triangle

LB/A[−1]→ LA ⊗A B→ LB
+1−−−→

we see that such a factorization exists if and only if the induced map LB/A[−1]→M ⊗A B is
trivial. We denote this last map by ob(f, D) and refer to it as the obstruction to extending D
across f . When ob(f, D) vanishes, the description as a homotopy-fiber above shows that the
∞-groupoid of all possible ways of filling in diagram (11) by a k-linear derivation B→M ⊗A B
(together with the relevant homotopy) is naturally a torsor under Hom(LB/A, M ⊗A B); in
particular, the set of all possible extensions (up to homotopy) of D across f is a torsor under
π0(Hom(LB/A, M ⊗A B)). Generalizing this discussion to simplicial rings in a topos, and then
specializing to the case of Deligne–Mumford stacks, we obtain the following theorem.

Theorem A.2. Let f :X → Y be a flat morphism of Deligne–Mumford stacks, and let DY :
LY →M be a derivation on Y into a connective quasi-coherent complex M of OY -modules.

Then the obstruction to the existence of a derivation DX : LX → f∗M commuting with f∗DY

is the map

ob(f, f∗DY ) : LX/Y [−1]
κ(f)−−−−→ f∗LY

f∗DY−−−−−→ f∗M

where the map κ(f) is the Kodaira–Spencer class for f . When ob(f, f∗DS) vanishes, the

set of all pairs (DX : LX → f∗M, H :DX → f∗DY ) (where DX is a derivation, and H is a

homotopy expressing the commutativity of DX with f∗DY ) up to homotopy is a torsor for

Ext0X(LX/Y , f∗M). Moreover, the ∞-groupoid of automorphisms of any such pair is equivalent

to HomX(LX/Y , f∗M[−1]).

Theorem A.2 can be easily checked in the case where M is discrete (in which case the
automorphisms mentioned at the end of Theorem A.2 are all trivial). The general case comes at
no extra cost, and the additional flexibility of allowing M to be a genuine complex instead of
a sheaf will allow us later to treat the obstruction theory of square-zero extensions as a special
case of the obstruction theory of derivations as presented in Theorem A.2; see Appendix A.12,
especially Theorem A.5, which is essentially equivalent to the case of Theorem A.2 when M is
taken to be a sheaf placed in homological degree 1. Theorem A.2 is not stated explicitly in [Ill71]
for the simple reason that Illusie chooses not to develop an obstruction theory for derivations.

A.10 Compatibilities for obstructions with respect to a morphism

Let A
f−−→B

g−−→ C be composable maps in SAlgk. Given an A-module M and a derivation
D :A→M , the discussion in Appendix A.9 produces maps

ob(f, D) : LB/A[−1]→M ⊗A B and ob(g ◦ f, D) : LC/A[−1]→M ⊗A C

which are obstructions to extending the derivation D across f and g ◦ f respectively. These
obstructions are compatible in the sense that the following diagram commutes.

LB/A ⊗B C
ob(f,D)⊗BC //

��

M ⊗A B ⊗B C[1]'M ⊗A C[1]

��
LC/A

ob(g◦f,D) // M ⊗A C[1]
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This compatibility follows formally from the commutativity of the following diagram (which we
leave to the reader to verify).

LB/A[−1]⊗B C //

��

LA ⊗A B ⊗B C //

'
��

LB ⊗B C

��

+1 //

LC/A[−1] //

))RRRRRRRRRRRRRR
LA ⊗A C //

��

LC
+1 //

M ⊗A C

Here the first row is the exact triangle induced by tensoring the (rotated) transitivity triangle
for A→B with C, while the second row is the transitivity triangle for A→ C. Generalizing this
discussion to simplicial rings in a topos and then specializing to the case of Deligne–Mumford
stacks, we obtain the following theorem.

Theorem A.3. Let g : Y → S and f :X → S be flat morphisms of Deligne–Mumford stacks,
and let π : Y →X be an S-morphism. Let DS : LS →M be a derivation on S into a connective
quasi-coherent complex M of OS-modules. Then the obstructions ob(f, f∗DS) and ob(g, g∗DS)
(as defined in Theorem A.2) are compatible in the sense that

π∗LX/S [−1] π∗ //

π∗ob(f,f∗DS) **TTTTTTTTTTTTTTTT
LY/S [−1]

ob(g,g∗DS)

��
π∗f∗M' g∗M

is commutative, i.e., a canonical homotopy expressing the commutativity exists. In particular,
the cohomology classes

ob(f, f∗DS) ∈ Ext1X(LX/S , f
∗M) and ob(g, g∗DS) ∈ Ext1Y (LY/S , g

∗M)

map to the same class in

Ext1Y (π∗LX/S , π
∗f∗M)' Ext1Y (π∗LX/S , g

∗M)

under the natural maps.

This theorem is not stated explicitly in [Ill71] or [Lur04], but follows from the formula given
in Theorem A.2 and the functoriality in A of Theorem A.1.

A.11 Square-zero extensions
A square-zero extension of an A ∈ SAlgk by an A-module M is, by definition, a derivation
A→M [1]. In order to see the connection with the usual definition, we use the following
construction: a derivation D :A→M [1] gives rise to, by definition, a k-algebra section sD :
A→A⊕M [1] of the projection map A⊕M [1]→A. Hence, we can form the following pullback
square

AD //

��

A

sD

��
A

s0 // A⊕M [1]
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where s0 is the map associated to the 0 derivation A→M [1], i.e., the standard section. When A
and M are discrete, one calculates that AD is also discrete, and that the algebra map AD→A is
surjective with kernel a square-zero ideal isomorphic to M , justifying the choice of terminology.
There also exists an intrinsic definition of square-zero extensions, and it is a theorem of Lurie
(see the k =∞ and n= 0 case of [Lur11, Theorem 8.4.1.26]) that the preceding construction
produces all such square-zero extensions when certain connectivity assumptions on M (harmless
for applications we have in mind) are satisfied. Hence, we will often abuse notation and denote
a square-zero extension of A by M via an algebra map Ã→A with kernel M . Generalizing this
discussion to rings in a topos and then specializing to the case of Deligne–Mumford stacks, we
obtain the following theorem.

Theorem A.4. Let X be a Deligne–Mumford stack over some base scheme S, and let
I ∈QCoh(X). Then the construction above defines an equivalence between the groupoid
Hom(LX/S , I[1]) and the groupoid of all square-zero extensions of X by I over S.

The notion of ‘square-zero extensions’ used in Theorem A.4 coincides with that of
[Ill71, § III.1]. Theorem A.4 can be deduced from the k = 0 case of [Lur04, Proposition 3.3.5],
and can also be found in [Ill71, Theorem III.1.2.3].

A.12 Extending square-zero extensions across morphisms and compatibilities
Let f :A→B be a map in SAlgk, and let M be an A-module. Given a square-zero extension
Ã→A of A by M , a natural question to ask is whether or not there exists a square-zero extension
B̃→B of B by M ⊗A B and a map Ã→ B̃ such that the following diagram commutes and is a
pushout.2

Ã //

��

A

��
B̃ // B

Using our definition of square-zero extensions from Appendix A.11, this question is equivalent
to the following: given a derivation D :A→M [1], when does there exist a derivation D′ :B→
M ⊗A B[1] such that the following diagram commutes?

A
D //

��

M [1]

��
B

D′ // M ⊗A B[1]

Using the obstruction theory explained in Appendix A.9, we find that such an extension exists
if and only if ob(f, D) vanishes. When ob(f, D) does vanish, the ∞-groupoid of all possible
extensions is naturally a torsor under Hom(LB/A, M ⊗A B[1]); in particular, the set of all possible
extensions (up to homotopy) of Ã→A across f is a torsor under π0(Hom(LB/A, M ⊗A B[1])).
Generalizing this discussion to rings in a topos and then specializing to the case of Deligne–
Mumford stacks, we obtain the following theorem.

2 Note that when A, M and B are discrete and f is flat, the rings Ã and B̃ are necessarily discrete with the map
Ã→ B̃ being flat by the local flatness criterion. Hence, the preceding question generalizes the ordinary deformation-
theoretic question of extending square-zero deformations of the target of a flat morphism of Deligne–Mumford
stacks to that of the source.
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Theorem A.5. Let f :X → S be a flat morphism of Deligne–Mumford stacks. Fix a quasi-
coherent OS-module I, and a square-zero thickening S ↪→ S′ of S by I classified by a
derivation DS : LS →I[1]. The obstruction to finding a square-zero thickening X ↪→X ′ of X
by f∗I lying above S ↪→ S′ (via a flat map X ′→ S′) is the map

ob(f, f∗DS) : LX/S [−1]
κ(f)−−−−→ f∗LS

f∗DS−−−−→ f∗I[1]

where the map κ(f) is the Kodaira–Spencer class of f . When ob(f, f∗DS) vanishes, the set
of all pairs (X ↪→X ′, f ′ :X ′→ S′) (where X ′ is a thickening of X by f∗I, and f ′ is a flat
map deforming f) up to isomorphism is a torsor for Ext1X(LX/S , f∗I). Moreover, the group of

automorphisms of any such pair is canonically identified with Ext0X(LX/S , f∗I).

Theorem A.5 follows from [Lur11, Proposition 8.4.2.5]. Everything except the formula for
ob(f, f∗DS) can also be found in [Ill71, Proposition III.2.3.2], and the formula can be found in
[Ill71, § III.2.3.4]. Finally, combining Theorem A.5 with Theorem A.3, we obtain the following
theorem.

Theorem A.6. Let g : Y → S and f :X → S be flat morphisms of Deligne–Mumford stacks, and
let π : Y →X be an S-morphism. Fix a quasi-coherent OS-module I, and square-zero thickening
S ↪→ S′ of S by I classified by a derivation DS : LS →I[1]. Then the obstructions ob(f, f∗DS)
and ob(g, g∗DS) (as defined in Theorem A.5) are compatible in the sense that

π∗LX/S [−1] π∗ //

π∗ob(f,f∗DS) **UUUUUUUUUUUUUUUU
LY/S [−1]

ob(g,g∗DS)

��
π∗f∗I[1]' g∗I[1]

is commutative, i.e., a canonical homotopy expressing the commutativity exists. In particular,
the cohomology classes

ob(f, f∗DS) ∈ Ext2X(LX/S , f
∗I) and ob(g, g∗DS) ∈ Ext2Y (LY/S , g

∗I)

map to the same class in

Ext2Y (π∗LX/S , π
∗f∗I)' Ext2Y (π∗LX/S , g

∗I),

under the natural maps.
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